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Abstract
The bearing fault diagnosis plays an important role to reduce catastrophic failures and ensure the continuity of running 
machines to avoid heavy economic loss. The vibration signals of rolling bearings are often nonlinear and nonstationary; it 
is difficult to extract sensitive features and diagnose faults by traditional signal processing methods. To solve this problem, 
a novel intelligent fault-diagnosis approach based on whale optimization algorithm grey wolf optimization-variational 
mode decomposition (WOAGWO-VMD) algorithm and the marine predators algorithm optimization-least squares sup-
port vector machine (MPA-LSSVM) is proposed in this paper. Firstly, hybrid algorithm WOAGWO is used to optimize 
the parameters of VMD and obtain the optimal combination (K; α). Then, the optimized VMD algorithm is utilized to 
decompose the vibration signal of the rolling bearing into several intrinsic mode functions, and a new sensitive indica-
tor is created to select the components containing the most information. For these components, the dispersion entropy 
feature, permutation entropy feature, and singular value feature are extracted to form the multi-feature vector. Finally, 
the feature vectors obtained are input to the MPA-LSSVM for diagnosis and identification. The validity and strength of 
the proposed method is verified by experimental data under different bearing conditions. The results have shown that the 
proposed method can extract the fault feature information of 16 bearing signals of different fault types effectively and 
identify them accurately.

Keywords Fault diagnosis · Feature extraction · WOAGWO · Variational mode decomposition · MPA · LSSVM

1 Introduction

Rotating machines are one of the necessary equipment 
widely used in modern industry as they represent the 
mainstay of various vital industries such as nuclear 
power plants, petrochemical plants, and others, and due 
to their great importance, the continuity of the work of 

these machines is necessary, and despite their reliability, 
their work regularly under unstable conditions, such as 
variable rotational speed, overload, and unsteady ther-
mal condition, makes it vulnerable to several failures. 
It can lead to massive financial and economic losses 
or even human life safety problems if left undetected 
[1, 2]. One of the main causes responsible for stopping 
rotating machines is bearings defects, because they are 
often exposed to rigorous environments during long-
term operation. According to many studies, more than 
45% of rotating machinery failures are due to bearing  
failures [3]. Therefore, it is crucial to identify the fault  
state, timely, necessarily and accurately to ensure 
the safe and continuous operation of machinery. The 
diagnosis of bearing faults has become the concern of 
many researchers from various fields, where, at the pre-
sent time, it has formed a multi-disciplinary research 
structure. Its detection and diagnostic technologies 
mainly include vibration diagnostic technology, acous-
tic diagnostic technology, and temperature diagnostic 
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technology [4]. The combination of these technologies 
can improve diagnosis accuracy. Currently, vibration 
signal analysis (vibration diagnosis) is one of the most 
widely used techniques. According to Mohd Ghazali and 
Rahiman [5], the vibrational diagnosis technique rep-
resents more than 82% of the overall other techniques 
used in fault diagnosis. Due to the complex working 
conditions that bearings are subjected to, the vibration 
signal will inevitably be nonlinear and non-stationary 
and contain noise, which considerably increases the 
difficulties in diagnosing bearing faults [6, 7]. In the 
field of rolling bearing fault vibration signal process-
ing, there are some popular signal processing methods 
for example wavelet transform (WT) [8], Hilbert-Huang 
transform (HHT) [9], empirical mode decomposition 
(EMD) [10], ensemble empirical mode decomposition 
(EEMD) [11, 12], complete ensemble empirical mode 
decomposition adaptive noise (CEEMDAN) [13], and 
local mean decomposition (LMD) [14]. Although these 
methods gave some results, there are some problems, 
where WT needs to select the wavelet basis and decom-
position level, which partially limits their application, 
while HHT’s limitation is energy leakage produced by 
the endpoint effect and unexpected negative frequency 
[15]. As for EMD, EEMD, and LMD methods, they 
have some adverse effects such as mode mixing and 
endpoint effect [16]. To solve the problems found in 
the aforementioned methods such as mode mixing and 
endpoint effect, Dragomiretskiy [17] proposed a non-
iterative and adaptive signal processing method called 
variational mode decomposition (VMD) that has a solid 
mathematical basis, where it can adaptively decompose 
the vibration signal into several narrow-band signals of 
different frequencies. Marco Civera derived an effective 
comparison between the VMD, EMD, and CEEMDAN 
for the vibration-based structural health monitoring pur-
poses and denoted the feasibility of VMD over the later 
methods [18]. Ye et al. [19] used VMD to decompose 
the original bearing vibration signal into several intrin-
sic mode functions (IMFs) and used the feature energy 
ratio to reconstruct the bearing vibration signal, then 
the multiscale permutation entropy is calculated to con-
struct multidimensional feature vectors. And then the 
PSO-SVM model optimized is used in classification and 
identification of different faults of the rolling bearing. 
Fu et al. [20] proposed a new hybrid approach, coupling 
VMD algorithm, composite multiscale fine-sorted dis-
persion entropy (CMFSDE), and support vector machine 
(SVM) for fault diagnosis of rolling bearings. The origi-
nal signal was decomposed into several IMFs by VMD, 

and then calculated the CMFSDE value of each IMF 
to form fault features. Finally, these features are used 
as input to SVM classifier optimized by MSCAHHO 
to identify the fault types. The previous studies have 
proved the effectiveness of the VMD algorithm in sig-
nal decomposition. However, the selection of the main 
two parameters, the decomposition level K and the pen-
alty factor α, has always limited the improvement of the 
performance of VMD. Nowadays, with the development 
of smart algorithms, many researchers have proposed 
algorithms to solve this problem. Li et al. [21] utilized 
the genetic algorithm (GA) to optimize VMD parameters 
and used the sample entropy as the fitness function. Yao 
et al. [22] proposed a hybrid gearbox fault diagnosis 
method based on GWO‐VMD and DE‐KELM. Where 
they used the grey wolf optimizer (GWO) to optimize the 
parameters of the VMD in order to eliminate effectively 
the noise present in the vibration signals. Zhang et al. 
[23] proposed a method to select the optimal parameters 
[k, � ] in the VMD algorithm based on improved particle 
swarm optimization and the envelope entropy value as 
the fitness function. Feng et al. [24] applied the whale 
optimization algorithm (WOA) to optimize the param-
eters of VMD in order to reduce noise and obtain adap-
tive decomposition of vibration signals.

After decomposing the signal into several IMFs, the 
next procedure is to extract fault features from IMFs. 
With the evolution of artificial intelligence, bearing fault 
diagnosis is highly treated as a category of pattern recog-
nition. Its feasibility and reliability largely related to the 
choice of feature vector [25]. Zhang et al. [26] decom-
posed the experiment gear fault data into several IMFs 
by the adaptive local iterative filtering, and calculated 
the permutation entropy of each IMF as the fault feature 
vector. Jin et al. [27] proposed a fault diagnosis method 
of train rolling bearing based on VMD to decompose the 
original signal into several intrinsic mode components 
(IMF) and calculated the distribution entropy of each 
component as the feature vector. Cheng et al. [28] pro-
posed a bearing fault diagnosis method based on VMD 
and singular value feature (SVD) for feature extraction 
and G-G fuzzy clustering for fault identification. There-
fore, we consider in this paper the multi-features based 
on dispersion entropy feature (DE), permutation entropy 
feature (PE), and SVD as the fault feature vector of rolling 
bearing vibration signal.

Obviously, the key step after feature extraction is to 
use an effective classifier for fault identification. Cur-
rently and with the continuous development of machine 
learning and deep learning, there are several classifiers 
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that have been presented and used for fault diagnosis 
in rotating machines, such as artificial neural network 
(ANN) [29], extreme learning machines (ELMs) [30], 
SVM [31, 32], and deep learning [33]. In addition to 
these methods, we mention least-square support vec-
tor machines (LSSVM). The LSSVM can success-
fully process non-linear data. Hence, it was effectively 
investigated by many literatures in diagnosing and fault 
classification caused by bearings [34], and gears [35]. 
However, the accuracy of the LSSVM classification is 
highly sensitive to the selection of the penalty parameter 
C and kernel parameter g. To determine the values of the 
optimal parameters, a combination of intelligent optimi-
zation algorithms and LSSVM can be used. There are 
many smart optimization algorithms, including GA, par-
ticle swarm optimization (PSO), WOA, and GWO. Gao 
et al. [36] used the PSO to optimize LSSVM and applied 
it to fault classification of rolling bearings. Hanoi Uni-
versity of Industry et al. [37] proposed an automatic 
fault diagnosis approach for rolling bearing based on 
EEMD-LaS and Optimized Classifier BSO-LSSVM. 
Although the previously mentioned intelligent algo-
rithms have been successful in improving the LSSVM 
classifier parameter, they still have some limitations, 
where it is not accurate at finding the global optimum 
parameter optimization, and this is confirmed by the 
theory of no free lunch [38]. To solve this defect, novel 
meta-heuristic optimization algorithm called MPA has 
been applied. In this paper an, intelligent model was 
developed for fault diagnosis of rolling bearing. This 
model was based firstly on hybrid algorithm WOAGWO 
to optimize the parameters of VMD. Then, the optimized 
VMD algorithm is used to decompose the vibration sig-
nal into several IMFs. Secondly, a new sensitive indica-
tor (SI) is created to define the components containing 
the most information and calculate DE, PE, and SVD of 
each IMF to form the multi-feature vector. Finally, we 
used the marine predator algorithm MPA to optimize the 
parameters of classifier LSSVM; hence, the optimized 
model is used to classify and identify the different fault 
types of rolling bearing.

This paper is organized as follows. Section 2 presents 
the techniques used for fault feature extraction, includ-
ing WOAGWO-VMD algorithm, and SI. Section 3 elabo-
rates the fault feature classification using MPA-LSSVM. 
Section 4 describes the proposed intelligent diagnosis 
method based on WOAGWO-VMD and MPA-LSSVM. 
Section 5 presents the experimental analysis to check 
the validity of the proposed method for rolling bearing 
fault diagnosis; finally, the conclusion of this paper is 
given in Sect. 6.

2  Fault feature extraction

2.1  Variational mode decomposition

VMD is a novel signal processing method, which is 
adopted to decompose the original signal into several 
IMFs. In VMD algorithm, the vibration signal is adaptively 
decomposed into several IMFs in order to find the vari-
ational problem. The variational problem can be expressed 
as follows:

where uk is the kth IMF and �k is the bandwidth center fre-
quency.  K denotes the decomposition number. f (t) is the 
original signal. �t is the partial derivative function and �(t) is 
the Dirichlet function. In order to solve the variational prob-
lem, the parameters of penalty factor α and the Lagrange 
multiplication operator λ(t) are introduced to transform the 
constrained variational problem into an unconstrained prob-
lem as follows:

where α is the penalty parameter; λ is the Lagrange multiplier.
To find the optimal solution of Eq. (2), the alternating 

direction method of multipliers is utilized [16]. The imple-
mentation steps for the algorithm are as follows:

Step 1. Perform an iterative loop n = n + 1;
Step 2. Update 

{
ûk(�)

}
 for all � ≥ 0;

Step 3. Update the modal center frequency 
{
�̂k

}

Step 4. Update Lagrange multiplication operator �̂(�)
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Step 5. Repeat steps 1–4 until the iteration stop condition 
is satisfied

Step 6. End.
where ε represents the tolerance of convergence criterion.

2.2  WOAGWO algorithm

2.2.1  Whale optimization algorithm

WOA is a new optimization algorithm introduced in 
metaheuristic algorithms by Mirjalili and Lewis. WOA 
simulates humpback whale hunting behavior [39]. These 
whales generally prefer to hunt small fish near the surface of 
the sea, where they use a special fishing technique called the 
bubble net feeding technique. WOA includes three types of 
mathematical behavioral simulations, which are as follows:

(a) Encircling prey

In order to begin the hunt, humpback whales locate the prey 
and then surround it, and this behavior can be represented by 
the following formulas:

where ���⃗X∗(t) is the best position of search agent (whale) 
obtained so far, t is the current iteration, and �⃗X(t)  is the 
present positon of search agent at iteration t. �⃗A and ��⃗C are 
coefficient vectors. r⃗ is a random number in [0, 1].  �⃗a is 
linearly decreased from 2 to 0.

(b) Bubble-net attacking

This hunting method includes the following two behaviors: 
reducing the ring and continuing to surround the prey. These 
two behaviors are represented by the following equation:

(6)
�
K

‖�un+1
k

− �un
k
‖2
2

‖�un
k
‖2
2

< 𝜀

(7)�⃗X(t + 1) = ���⃗X∗(t) − �⃗A ⋅
��⃗D

(8)��⃗D =
|||��⃗C ⋅

���⃗X∗(t) − �⃗X(t)
|||

(9)�⃗A = 2 ⋅ �⃗a ⋅ r⃗ + �⃗a

(10)��⃗C = 2 ⋅ r⃗

(11)�⃗X(t + 1) = ����⃗D∗
⋅ ebl ⋅ cos(2𝜋l) + ���⃗X∗(t)

where b is a constant value that identifies the logarithmic 
spiral shape, l is a random number in the range [− 1, 1], and 
����⃗D∗  represents the distance between the whale and prey. 
Humpback whales rotate around their prey during predation 
and shrink their range, so each behavior has a 50% chance. 
It is expressed mathematically as follows:

where p is an arbitrary number between [0 and 1].

 (iii) Search for prey

Exploration step: At this point, the humpback whales search 
each other’s positions at random. They are represented math-
ematically as follows:

�⃗Xrand is the random whales in current iteration.

2.2.2  Grey wolf optimization

GWO was proposed by Mirjalili [40], an optimization algo-
rithm that simulates the hunting of grey wolves in wildlife. 
This algorithm was inspired by the social hierarchy of grey 
wolves as these wolves are categorized into four classes: ( � ) 
wolf leader, ( � ) helping the leader, ( � ) follows both previous 
wolves, and omega ( �).

(a) Social hierarchy

To emulate the social hierarchy of grey wolves, the fittest 
solution is regarded as � then � , and the third best solution is 
� , and the remaining candidate solutions are considered �.

(b) Encircling prey

The grey wolves encircle the prey in order to hunt, accord-
ing to the following equation:

(12)����⃗D∗ =
||| ���⃗X

∗(t) − �⃗X(t)
|||

(13)�⃗X(t + 1) =

{
���⃗X∗ − ���⃗A⋅��⃗D if p < 0.5

����⃗D∗
⋅ ebl ⋅ cos(2𝜋l) + ���⃗X∗(t) if p ≥ 0.5

(14)�⃗X(t + 1) = �⃗Xrand −
�⃗A.��⃗D

(15)��⃗D =
|||��⃗C. �⃗Xrand −

�⃗X
|||

(16)�⃗X(t + 1) = �⃗Xp(t) −
�⃗A ⋅

��⃗D

(17)��⃗D =
|||��⃗C ⋅

�⃗Xp(t) −
�⃗X(t)
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where  t is the current number of iterations, �⃗Xp(t)
 represents 

the position vector of the prey, and �⃗X(t) is the position vector  
of a grey wolf. �⃗A and ��⃗C are coefficient vectors that are cal-
culated from the following equations:

where �⃗a decreases linearly from 2 to 0 over the course of 
iterations, and r⃗1 and r⃗2 are random vectors between [0, 1].

 (iii) Hunting

After the encircling process, a grey wolf begins to hunt for 
the best solution. Despite the reality that the best solution must 
be optimized, alpha wolf saves the best solution in each itera-
tion and updates it if the solution is improved. Beta and delta 
can be used to identify the location of the prey. Thus, the best 
solutions are stored by each type of grey wolf and employed to 
update the position of grey wolves using the equations below.

 (iv) Attacking prey (exploitation)

In this step, a grey wolf can perform hunting mechanism to try 
to stop the movement of the prey for attack them. This mecha-
nism works by decreasing the value of �⃗a , where the value of 
�⃗A is also decreased by the value �⃗a , resulting in a value in the 
range [− 1, 1]. A grey wolf can be attacking the prey, if �⃗A is less 
than − 1 or greater than 1. However, the GWO is prone to stag-
nation in local solutions. Therefore, the researchers are attempt-
ing to discover various mechanisms for resolving this issue.

(e) Search for prey (exploration)

The searching mechanism is influenced by alpha, beta, 
and delta. These three categories are distinct from one 

(18)�⃗A = 2 �⃗a ⋅ r⃗1 − �⃗a

(19)��⃗C = 2 ⋅ r⃗2
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�⃗X𝛿 −
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(22)�⃗X(t + 1) =
�⃗X1 +

�⃗X2 +
�⃗X3

3

another. As a result, a mathematical equation is required 
for them to converge and attack the prey. Thus, the value 
of �⃗A must be between 1 and − 1; if its value is greater 
than 1 or less than − 1, this forces the search agents to 
diverge from the prey. Furthermore, if �⃗A is greater than 
1, the search agent will try to find a better prey. ��⃗C is 
another component factor that affects the exploration 
phase of GWO. Overall, the GWO algorithm generates 
a random population. The prey’s location is assumed by 
alpha, beta, and delta. The distance between candidate 
solutions is then updated. After that, a is reduced from 2 
to 0 in order to achieve a balance between the two phases. 
After that, if �⃗A > 1 , the search agents then move away 
from attacking the prey and if �⃗A < 1 they go forward the 
prey. Finally, the GWO reached a satisfactory result and 
was terminated.

2.2.3  WOAGWO

WOA is a recently implemented optimization algorithm 
to solve many optimization problems. Standard WOA 
may work well for the best solution. However, refining 
the optimal solution with each iteration is not enough. 
To solve this limitation, we introduce an algorithm called 
WOAGWO, proposed by Mohammed H [41]; this algo-
rithm is a hybrid between the WOA and GWO algorithm 
in order to improve the performances of WOA and to 
obtain better solutions. The WOA algorithm is hybridized 
by adding two sections. Firstly, to improve the hunting 
mechanism, a condition has been added in the exploita-
tion phase in WOA according to Eq. (22). The effects of 
A1, A2, and A3 on exploitation performance are greater. 
As a result, a new condition has been added to WOA’s 
standard exploitation phase to bypass local optima where 
each A is greater than − 1 or less than 1. Secondly, Eqs. 
(20), (21) and (22) have been adapted, and used within the 
conditions that have been added to the exploitation phase 
which contains A1, A2, and A3. Finally, to make the cur-
rent solution progress toward the best solution and prevent 
the whale from changing to a position that is not better 
than the previous position as well, for these purposes, 
another new condition has been added to the exploration 
phase. The pseudocodes of WOAGWO are presented in 
Algorithm 2.

2.2.4  Hybrid WOA with GWO

Pseudocodes of WOAGWO algorithm:
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2.3  Parameter adaptive optimization of VMD method 
based on WOAGWO

It is noteworthy that the parameter settings [k, α] of VMD 
need to be set in advance when decomposing signals due to 
their high impact on results [42], where alpha is directly pro-
portional to bandwidth since smaller alpha gives a smaller 
bandwidth and vice versa; on the other hand, smaller K will 
give raise to mode aliasing and if K is too large it will lead 
to useless component generation [46]. In this paper, after 
tremendous trials, and investigating multiple manuscripts 
[21, 22, 42–44], we finally chose a reasonable range of α 
which is [200, 4000], and the selection range of K is [2, 
12]. Therefore, in this section, we are introducing the hybrid 
algorithm WOAGWO to optimize the parameters of VMD. 
The WOAGWO-VMD algorithm needs to define the fitness 
function. According to reference [43], information entropy 
is an eminent indicator for judging signal sparseness, where 
the higher the entropy value, the higher the noise content of 
the signal, while the smaller indicates that the signal con-
tains more fault information [44]. In this paper, we consider 
the average of the weighted permutation entropy of modes 
obtained by VMD as an objective function of the WOAGWO 
optimization algorithm, as shown in Fig. 1. The purpose 

of the parameter optimization process of VMD using 
WOAGWO is clearly interpreted as an efficient search for 
the minimum value of the objective function, as illustrated 
in Eq. (23):

where wpe(i) is the weighted permutation entropy of the  
ith IMF component. K and α  denote the mode number  
and the penalty factor respectively. The details of wpe(i) 
is shown in [45], and its parameters used in this paper  
are embedding dimension m = 4 and time delay τ = 1, and 
the parameters of WOAGWO are population size = 20  
and maximum iteration = 15, and its initial parameters  
are shown in Table 1. The flowchart of WOAGWO-VMD 
algorithm is shown in Fig. 2, and its steps are as follows:

Step 1: Set the parameters of the WOAGWO algorithm, 
including the maximum number of iterations, the number 
of search agents, and the iteration range of K and α, and 
the parameters of the VMD algorithm also should be set.
Step 2: Initialize the search agents.

(23)

⎧⎪⎨⎪⎩

fitness = min

�
1

k

k∑
i=1

wpe(i)

�

s.t K = [2, 12], � = [200, 4000]

Algorithm 2 WOAGWO
Initialize WOAGWO population Xi where (i=1,2,3,……,n0)

Evaluate the fitness function for each search agent, X*= the best search agent

While (iteration < Max iterations ) 

For each search agent: update , A, C, L, and p for WOA, and update A1, C1, A2, C2, A3, C3 for GWO

If1 (p< 0.5)

If2 (| | 1) calculate new position of the present search agent by Eq.7

If3 ( f current < f previous )

Position=new-position

End if3
Else if2 | | 1)

Randomly choose search agent (Xrand) Change the position of the present search agent by Eq.(14)

If4 ( f current < f previous )

Position = new-position

End if4
End if2

Else if1 ( p 0.5) 

If5 (( A1>-1 ǀǀ A1 < 1) && (A2 >-1 ǀǀ A2 < && (A3>-1 ǀǀ A3<1))

Position of the current search agent update by Eq.(22)

End if5
End if1

End for
Return search agents to inside the search space if it goes beyond the search space fitness value for each search

agent is calculated.

Update X* if there is a better solution.

Iteration =iteration +1 

End while
Return X*.
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Step 3: Calculate the objective function of each search 
agent and choose the search agent with minimum objec-
tive function as the initial best search
Step 4: To update the best search agent execute an 
iteration loop within the maximum number of itera-
tions

– For each search agent update, the values of a, A, C, l, and 
p of WOA and A1, C1, A2, C2, A3, and C3 of GWO.

– Select the corresponding update formula to update the 
appropriate search agent to the different values of p and A.

– Calculate the updated objective function of each agent 
and select the best one to retain.

Step 5: At the end of iterations, the best search agent is the 
best parameter combination (K, α).

2.4  Simulation signal analysis

In order to validate the effectiveness of the WOAGWO-VMD 
algorithm proposed in this paper, it is applied to decompose 
the simulation signal mentioned in the literature [43]. The 
simulation signal is shown as follows:

The time domain waveform of the simulated signal y(t) and 
its four components ( y1(t) , y2(t) , y3(t) , and y4(t) ) are shown 
as follows:

(24)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

y1(t) = 5 × sin × (2� × 50 × t)

y2(t) = 4 × cos(2� × 100 × t)

y3(t)=

⎧⎪⎨⎪⎩

3 × sin(2� × 300 × t) t ∈ [[0,0.1], [0.3,0.4], [0.6,0.7], [0.9,1]]

0 t ∈ [[0.1,0.3], [0.4,0.6], [0.7,0.9]]

y(t)=y1(t)+y2(t)+y3(t)+y4(t)

Set the parameters of VMD

[k,α]

Decompose the signal using

VMD 

Calculate the weighted permutation

entropy (WPE) value of each IMF

Obtain the average weighted

permutation entropy (AWPE)

Fig. 1  Objective function of WOAGWO algorithm

Table 1  Parameter setting

Algorithm Parameter Value Reference

WOAGWO
WOA

a
b
l
r

2 to 0
1
[−1, 1]
[0, 1]

[24]

GWO a
r1,  r2

2 to 0
[0, 1]

[41]

MPA P
FADs

0.5
0.2

[50]

Set relevant parameters in

WOAGWO and VMD algorithms

Initialize search agents

Calculate the objective function 

value as shown in Fig. 2

Find the minimum objective value

and initialize the best search agents

t=t+1

Update the values a, A, C, L, P of WOA

and A1, C1, A2, C2, A3, C3  of  GWO

P< 0.5

| |< 1

Update position 

using equation (7)

Update position 

using equation (14)

Update position 

using equation (22)

Check if any search agent exceeds

the search space and amend it

Calculate the objective function 

value as shown in Fig. 2

Save the agent corresponding 

to the minimum AWPE

t > max number of iter

Get the best parameters 

of VMD

N

Y

Y

N

Fig. 2  Flowchart of WOAGWO-VMD
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Fig. 3  The time domain waveform of each component signal and simulation signal
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where y1(t) is the sine signal with amplitude 5 and fre-
quency 50; y2(t) is the cosine signal with amplitude 4 and 
frequency 100; y3(t) is high-frequency intermittent signal; 
y4(t) is Gaussian white noise and y(t) is the simulation sig-
nal. The time domain waveform of all these signals is shown 
in Fig. 3.

Firstly, WOAGWO is used to optimize the parameter 
combination [K, α] in the VMD algorithm. After that, 
the optimized VMD algorithm with the optimal combi-
nation [K, α] is used to decompose the simulation sig-
nal. The decomposition results of WOAGWO-VMD are 
shown in Fig. 4. Secondly, the EMD algorithm is used to 
decompose the same simulation signal. The decomposi-
tion results of EMD are shown in Fig. 5.

According to Fig. 4, it can be seen that the proposed 
method WOAGWO-VMD decomposed the simulation 
signal into 3 IMF components with 50 Hz, 100 Hz, and 
300  Hz successfully. Therefore, the effectiveness of 
WOAGWO-VMD algorithm can be obtained. As shown 
in Fig. 5, it can be seen that IMF1 and IMF3 extracted 
300-Hz and 50-Hz signals successfully, but mode-mixing 
still occurs in IMF2 and IMF3. From the results obtained, 
it can be concluded that the proposed WOAGWO-VMD 

algorithm can decompose the frequency components in 
the simulation signal successfully, and overcome the mode 
mixing phenomenon in EMD algorithm.

2.5  Selection of sensitive components

The selection of components containing the most infor-
mation is an important step in fault diagnosis, so for fault 
feature extraction a new method must be used to determine 
the sensitive components that have the largest contribu-
tion. Pearson correlation coefficient ( Pcc ) is an effective 
tool in the selection of IMF which contains the fault char-
acteristics [47], where the bigger value of Pcc denotes 
the greater impact features. The sparseness is a statistical 
index that effectively reflects the amplitude distribution of 
the vibration signal [42]. The largest value of sparseness 
denotes the stronger data sparsity. Given the superiority 
of both Pearson correlation coefficient and sparseness, a 
new index called sensitive indicator ( SI ) was formulated 
based on the product of Pearson correlation coefficient and 
sparseness to select adaptively the sensitive components. 
The mathematical expression of SI is defined as:

Fig. 4  WOAGWO-VMD decomposes the simulation signal
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where S is the sparseness of the signal x(n) , and N  is the 
length of the signal x(n) ; Pcc denotes the Pearson correlation 
coefficient between two signals ( x and y ), and E[.] represents 
the expectation operator.

(25)S =

�
1

N

∑N

n=1
x(n)2

1

N
∑N

n=1
�x(n)�

(26)Pcc =
E[
(
x − x

)(
y − y

)
]

E
[(
x − x

)2]
E[
(
y − y

)2
]

(27)SI = Pcc × S

2.6  Multi‑features

To extract bearing fault feature vectors, we propose a 
multi-feature feature extraction method based on DE, 
PE, and SVD.

2.6.1  Dispersion entropy

Dispersion entropy results from the integration of sym-
bolic dynamics with Shannon entropy for the development 
of an algorithm capable of characterizing the irregular-
ity of time series with a low computation time [48]. The 
calculation steps of dispersion entropy for the time series 
x =

{
xi, i = 1, 2,… ,N

}
 are as follows:
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Fig. 5  EMD decomposes the simulation signal
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1. Use normal cumulative distribution function to map the 
time series x to y =

{
y1, y2,… , yN

}
 from 0 to 1

where σ and � represent mean and standard deviations of 
time series x respectively.

2. Employ the linear algorithm to map yi into integer from 
1 to c and obtain a sequence zc

j

where c represents the number of classes after mapping, Zc
j
 

is the jth member of the classified time series, and round is 
the rounding function.

3. Calculate the embedding vector zm,c
j

 by exploiting the 
following formula:

where m and d represent the embedded dimension and the 
delay time respectively.

4. Calculate the dispersion entropy patterns �
v0,v1,…v

m−1,

(v = 1,2,… , c) of each vector Zm,c

i
 .  Zc

i
= v0, Z

c

i+d
=

v1,… , Zc

i+(m−1)d
= v

m−1.   cm is the number of possible 
patterns.

5. For each dispersion pattern, the relative frequency of 
potential dispersion patterns can be calculated as

where number �v0,v1,…vm−1
 represent the number of dispersion 

patterns. p
(
�v0,v1,…vm−1,

)
 equal to the number of  Zm,c

i
 mapped 

to �v0,v1,…vm−1
 divided by the number of elements in Zm,c

i
.

6. The dispersion entropy is calculated as:

2.6.2  Permutation entropy

Bandt and Pompe [49] proposed an approach called PE; this 
approach allows to analyze the complexity of the signal and 
detect dynamic changes in time series using the comparison 
of neighboring values. Its advantages are simplicity, robust-
ness, and stability in addition to good noise resistance. The 

(28)yj =
1

�
√
2�∫

xj

−∞

e
−(t−�)2

2�2 dt

(29)Zc
j
= round

(
c.yj + 0.5

)

(30)
Z
m,c

i
=
{
Zc
i
, Zc

i+d
,… , Zc

i+(m−1)d

}
, i = 1, 2,… ,N − (m − 1)d

(31)p
(
�v0,v1,…vm−1,

)
=

number(�v0,v1,…vm−1,
)

N − (m − 1)d

(32)DE(x,m, c, d) = −

cm∑
�=1

P(�v0,v1,…vm−1,
)ln(P(�v0,v1,…vm−1,

))

mathematical theory of PE is described briefly below. For a 
time series x =

{
x1, x2,… , xN

}
 , the m-dimensional embed-

ding vector is constructed as:

where m represents the embedding dimension and � is the 
time delay.

Each Xi can be rearranged in an increasing order as

If there exist two elements in Xi that have the same value, 
like:

Then their order can be denoted as:

For any Xi , it can be mapped onto a group of symbols as

where g = 1, 2,… , kandk ≤ m! .   m!  is the largest number of 
distinct symbols, and S(g) is the one of m!  symbol sequence. 
The probability distribution of each symbol sequence is cal-
culated as P1,P2 … ,Pk . The PE for the time series is defined 
as follows:

where 0 ≤ Hp(m) ≤ ln(m!) , Hp(m) reaches the maximum 
ln(m!) when Pj =

1

m!
 . Hp(m) can be further normalized as:

2.6.3  Singular value decomposition

SVD is a very important matrix decomposition technique 
in linear algebra proposed by Beltrami in 1873. It has been 
regularly used in feature extraction and signal processing. 
SVD of an m × n matrix A is given by:

where  U = (m × m) and V = (n × n) are the orthogonal 
matrix, and S = (m × n) being a matrix containing the sin-
gular values σi on the main diagonal and 0 elsewhere.

(33)
Xi = {x(i), x(i + �),… , x(i + (m − 1)�)}, i = 1, 2,… ,N − (m − 1)�

(34)
x(i + (j1 − 1)� ≤ x(i + (j2 − 1)� ≤ ⋯ ≤ x

(
i +

(
jm − 1

)
�
)

(35)x
(
i +

(
j1 − 1

)
�
)
= �

(
i +

(
j2 − 1

)
�
)

(36)x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) j1 < j2,

(37)S(g) =
(
j1, j2,… , jm

)

(38)Hp(m) = −

k∑
j=1

PjLnPj

(39)Hp =
Hp(m)

ln(m!)

(40)A = USVT =

P∑
i=1

Ai =

P∑
i=1

ui�iv
T
i

3869The International Journal of Advanced Manufacturing Technology (2022) 120:3859–3883



1 3

3  Fault feature classification using MPA‑LSSVM

3.1  Marine predators algorithm

The MPA is a nature-inspired heuristic optimization algo-
rithm proposed by A. Faramarzi [50]. The detailed steps of 
the algorithm are presented as follows:

3.1.1  Stage 1

This is the most important process in the initial iteration of 
improvement where exploration is important; at this point, 
when the movement of the predator is faster than the prey, 
the best strategy for the predator is to not move. So this stage 
is represented mathematically as follows:

while Iter < 1
3
 Max_Iter

where �⃗RB represents a random vector indicating Brownian 
motion. ⊗ is the entry-wise multiplications, and Prey and 
Elite are the prey locations and best predator, respectively. 
Moreover �⃗R is a vector of uniform random numbers in [0,1]. 
And P is a constant equal to 0.5. Max_iter is the maximum 
iteration and Iter represents the current iteration. This sce-
nario is mainly encountered in the first third of iterations 
when step size or movement velocity is high.

3.1.2  Stage 2

At this stage, predator and prey movements are at the same 
pace. This simulates that they are both searching for the prey. 
This situation occurs mainly in the middle of the improvement 
process as exploration is gradually replaced by exploitation. 
Therefore, the population is divided into two parts. The first part 
was chosen for exploration while the second part was chosen 
for exploitation, in another way. The prey is responsible for the 
exploitation process, while the predatory animal is responsible 
for the exploration process.

For the first half of the population

where �⃗RL is a vector including random numbers based on 
Lévy distribution. The multiplication of �⃗RL by Prey repre-
sents the simulation of the movement of prey in the manner 

(41)

{
�������������⃗stepsizei =

�⃗RB ⊗ ( �������⃗Elitei −
�⃗RB ⊗ �������⃗Preyi) i = 1,… n

�������⃗Preyi = �������⃗Preyi + P. �⃗R⊗ �������������⃗stepsizei

While
1

3
MaxIter < Iter <

2

3
Max_iter

(42)

{
�������������⃗stepsizei =

�⃗RL ⊗ ( �������⃗Elitei −
�⃗RL ⊗ �������⃗Preyi) i = 1,… n∕2

�������⃗Preyi = ��������⃗Preyi + P. �⃗R⊗ �������������⃗stepsizei

of Luff. Since the step size of the Lev distribution is usually 
smaller, this will aid in exploration. The rule applied to the 
second half of the populations can be written as

where  CF represents the adaptive parameter to control the 
step size for predator. The multiplication of �⃗RB by the Elite 
represents the simulation movement of predator in Brown-
ian, where the position of the prey is updated based on the 
movement of predator.

3.1.3  Stage 3

At this stage (low velocity ratio), the predator’s movement is 
faster than the prey. This phenomenon occurs in the last stage of 
the optimization process when the utilization capacity is high. 
Additionally, levy movement is the predator’s best strategy. The 
mathematical model of the last stage is represented as follows:

3.1.4  Stage 4

Eddy formation or fish aggregation devices (FADs) are  
an example of environmental issues affecting the behav-
ior of marine predators as FADs represent local optima 
in the field of exploration. The mathematical model that 
describes the effects of FAD is formulated as follows:

where FAD = 0.2, and U is a binary solution with values 0 
or 1; r1 and r2 are the indices of the prey, and Xmax and Xmin 
represent the upper and lower bounds, respectively.

3.1.5  Stage 5

Predators have a good and detailed memory of successful 
foraging sites. This ability is simulated using MPA, and 

(43)

{
�������������⃗stepsizei =

�⃗RB ⊗ ( �⃗RB ⊗
�������⃗Elitei −

�������⃗Preyi) i = n∕2,… n

�������⃗Preyi =
�������⃗Elitei + P.CF ⊗ �������������⃗stepsizei

CF = (1 −
Iter

MaxIter
)
(2

Iter

MaxIter
)

while Iter >
2

3
Max_Iter

(44)

{
�������������⃗stepsizei =

�⃗RL ⊗ ( �⃗RL ⊗
�������⃗Elitei −

�������⃗Preyi) i = 1,… n

�������⃗Preyi =
�������⃗Elitei + P.CF ⊗ �������������⃗stepsizei

(45)

�������⃗Preyi =

⎧⎪⎨⎪⎩

�������⃗Preyi + CF
�
�⃗Xmin +

�⃗R⊗
�
�⃗Xmax −

�⃗Xmin

��
⊗ ��⃗U if r < FADs

�������⃗Preyi +
�
FADs(1 − r) + r

��
�������⃗Preyr1 − �������⃗Preyr2

�
if r > FADs
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the matrix fitness can be evaluated to refresh Elite after 
updating the Prey and the FADs. The fit value of each 
solution is compared with the previous value, so the opti-
mum solution is saved in memory. Computational com-
plexity of MPA algorithm is O(t(nd + cof × n)), where cof 
is the evaluation function, t is the iteration number, d is 
the optimization problem dimension, and n is the number 
of populations. The pseudo-codes of MPA is shown as 
follows:

3.2  LSSVM algorithm

SVM is a machine learning method that can be used for 
data classification or regression. It is based on statisti-
cal learning and the minimization of structural risks [34]. 
Its main role is to create an optimal hyperplane to maxi-
mize the separation margin between the two classes. The 
LSSVM is an improved algorithm based on SVM, where it 
converts the inequality constraints in SVM to equality and 
utilizes the least square linear formula as the loss function 
rather than the quadratic programming method used in 
SVM. The optimization objective function of LSSVM is 
defined as follows:

where � is the weight vector, ∅(x) represents nonlinear map-
ping function, and b is deviation vector, the final optimiza-
tion problem becomes

(46)f (x) = sgn{�.∅(x) + b}

(47)

⎧⎪⎨⎪⎩

minJ(�, �) =
1

2
‖�‖2 + �

N∑
i=1

�2
i

s.t.yi
�
�T�

�
xi
�
+ b

�
= 1 − �i

i = 1, 2,… ,N.

J is the optimized objective function, ξ is the error vari-
able, and γ represents the penalty factor. To solve the prob-
lem of optimization and obtain a better classification model, 
the Lagrange multiplier αi was introduced and the Lagrange 
function was constructed as follows: (48).

By using the constraints on the Karush–Kuhn–Tucker 
(KKT) condition, at the extreme points sought, the related 
parameters of the Lagrange function are independently sub-
jected to a partial derivative operation, with the result being 
0. The linear matrix expression that results is as follows:

where E = [1, 1… ., 1]T  , E, y = [y1, y2,… ..yn]
T  , � = [�1,

�2,…… , �
n
]T , and � = [�

(
x1
)
,�

(
x2
)
,…… ..,�(xn)]

T . In 
the LSSVM algorithm, the decision function for classifica-
tion is given as follows

where k(x, xi) is the kernel function satisfying the mercer 
condition.

3.2.1  MPA‑LSSVM

The LSSVM is an improved algorithm based on a SVM, which 
can be widely used in the mechanical fault diagnosis domain 

(48)

L
(
�, b, �, �i

)
= J

(
�, �i

)
−

N∑
i=1

�i
{
yi
[
�T�

(
xi
)
+ b

]
− 1 + �i

}

(49)
[
O

E

ET

��T + E.�−1

][
b

�

]
=

[
O

y

]

(50)f (x) = sgn

[
n∑
i=1

�iK
(
x, xi

)
+ b

]

Pseudo-code of the MPA algorithm

Initialize search agent (Prey) populations i=1,2,…,n

While termination criteria are not met 

Calculate the fitness, construct the Elite matrix and accomplish memory saving

If Iter Max_Iter/3

Update prey according to Eq.41

Else if Max_Iter/3 Iter 2* Max_Iter/3

For the first half of the populations (i=1,…,n/2) 

Update prey according to Eq.42

For the other half of the populations (i=n/2,…,n)

Update prey according to Eq.43

Else if Iter 2*Max_Iter/3 

Update prey according to Eq.44

End if
Accomplish memory saving and Elite update

Applying FADs effect and update based on Eq.45

End while
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to solve classification and regression problems. However, the 
classification performance of LSSVM is mostly affected by 
the selection of parameters c and g [51]. To improve the clas-
sification feasibility of LSSVM, an algorithm should be used to 
optimize the parameters (c and g). MPA is a new optimization 
algorithm that was illustrated through benchmark functions 
and practical engineering problems. The results have demon-
strated that MPA can obtain the optimal solution with a lower 
numerical cost compared to available optimization algorithms 
[50]. These comparison results encouraged us to use the MPA 
algorithm to optimize LSSVM parameters. The fitness func-
tion of MPA-LSSVM algorithm is shown in Eq. (51). In this 
study, the range of parameters c and g is [0, 1000] chosen 
according to Refs. [21] and [52]; the populations size = 20 and 
max iterations = 100 based in [55] and the initial parameter set-
tings of MPA algorithm are shown in Table 1. The flowchart of 
the MPA-LSSVM proposed is shown in Fig. 6, and the specific 
steps of this proposed method are as follows:

Step 1: Input the training set and test set normalized to 
the interval [0, 1].
Step 2: Initialize the MPA and LSSVM parameters. Set 
the number of populations to 20, maximum number of 
iterations to 100. Then setting the range of (c, g), where 
the lower and upper bounds of c and g are 0 and 1000, 
respectively.

The position of each predator is defined as (c, g).

Step 3: Use the following equation as fitness function of 
MPA-LSSVM.

where Nt and Nf  represent the number of true and false clas-
sification, respectively.

Evidently, a lower fitness value recorded a higher classifi-
cation accuracy. The aim of the LSSVM parameter optimiza-
tion problem is to minimize the fitness function.

Step 4: Update the predators and preys position according 
to Eqs. (41)–(45) in Sect. 3.1.
Step 5: Fitness evaluations:

– Updating the prey position.

The effect of updating the prey position on the fitness 
value can be evaluated using the FADs effects reported in 
stage 5 (Sect. 3.1). If the fitness value of the new prey posi-
tion is lower compared to the previous position, then the new 
prey position replaces the previous one.

Step 6: Export the optimal values of (cbest, gbest) once 
the maximum number of iterations is reached and trained 
LSSVM model.
Step 7: The trained model is used to identify and classify 
the test dataset.

4  Fault diagnosis method based 
on WOAGWO‑VMD and MPA‑LSSVM

In order to improve the bearing fault identification accuracy, 
a novel intelligent fault diagnosis method is proposed in this 
paper. The structural framework of the proposed method is 
illustrated in Fig. 7. The specific steps of this method are 
summarized as follows:

Step 1: The bearing vibration acceleration signals in vari-
ous states (i.e., normal, ball fault, inner race fault and 
outer race fault) are collected using the acceleration sen-
sors.
Step 2: The hybrid algorithm (WOAGWO) is used to 
search the optimal parameters combination [K0, α0] of 
VMD.
Step 3: Utilize VMD with optimal parameter combina-
tion [K0, α0] to decompose the vibration signal into sev-
eral IMFs.
Step 4: Analyze the correlation between each IMF com-
ponent and the original signal by calculating the sensitive 
indicator (SI) of each IMF component and the original 
signal.

(51)f itness = 1 −
Nt

Nt + Nf

Start

Initialize the parameters  

Update c and g using

MPA algorithm   

Fitness evaluations  

Maximum iteration?

Optimal parameter combination 

(c, g)  

Input data set 

Data normalization  

Test set   Training set  

Train the LSSVM   

Fault Identification 

Classification    

End

Yes

No

Fig. 6  Flowchart of MPA-LSSVM model
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Step 5: Select four IMF components with greater correla-
tion with the original signal, and calculate DE, PE, and 
SVD of each IMFs, then construct the multiple features 
vector.
Step 6: Normalize the sample feature value to [0, 1], 
using function mapminmax in matlab.

Step 7: The obtained feature vectors normalized are ran-
domly divided into two groups, a training sample set and 
a testing sample set.
Step 8: The training samples is used as input to the MPA-
LSSVM classifier, for obtaining the best LSSVM predic-
tion model, while the testing samples is included in the 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-0.05

0

0.05

IM
F1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-0.05
0

0.05

IM
F2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-0.05
0

0.05

IM
F3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-0.05
0

0.05

IM
F4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-0.2

0

0.2

IM
F5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-0.02

0

0.02

IM
F6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Temps t/s

-0.02
0

0.02

IM
F7

p

1 2 3 4 5 6 7

IMF component

0

0.5

1

1.5

2

2.5

3

3.5

Co
rre

la
tio

n 
wi

th
 o

rig
in

al
 s

ig
na

l

0 50 100 150 200 250 300 350 400

Bearing-data

0

2

4

6

8

10

12

14

16

Be
rin

g-
la

be
l

Actual classification and prediction classification ( Accuracy :99.00 % )

the desired output

The actual output

Start

Vibration signals of different faults

WOAGWO-VMD modal to get
optimal parameter [k, a] of VMD

Decompose the signal into several IMFs

by VMD using the optimal parameter

Calculate the sensitive indicator (SI) for
each IMFs

Extract dispersion 
entropy features

(DE)

Extract permutation
entropy features

(PE)

Select 4 IMF components with

greater correlation

Extract singular
value features

(SVD)

Multi-features

Train LSSVM with

optimal parameters (c, g)

Classification

results

using MPA to search the optimal

parameters of LSSVM

Training sampleTesting sample

3 5

Four components with
greater correlation

Fig. 7  Fault diagnosis method based on WOAGWO-VMD and MPA-LSSVM

3873The International Journal of Advanced Manufacturing Technology (2022) 120:3859–3883



1 3

prediction model to recognize and classifier different fault 
types.

5  Experimental verification and result analysis

The experimental data of rolling bearings used in our 
paper is provided by Case Western Reserve Univer- 
sity (CWRU) USA [53] in order to verify the validity 
of the suggested method in diagnosing rolling bearing 

faults. The test stand of the rolling bearing experiment 
is shown in Fig. 8. It consists mainly of a 2 HP motor 
(left), a torque sensor (middle), a dynamometer (right), 
and control electronics. The rolling bearing used in the 
experiment is a SKF6205 deep groove ball bearing. The 
vibration acceleration signal of the bearing is obtained 
from the driving end under the condition of a rotation 
speed of 1730 r/min, a load of 3HP, and a sampling fre-
quency of 12 kHz. The bearing vibration signals are first 
classified into four categories, namely ordinary rolling 

Fig. 8  The bearing test stand (a), 
and its Schematic diagram (b)

(a) (b)

Torque transducerFan end Drive end

Induction motor Load motor

Fin end

bearing

Drive and

bearing Torque transducer

Accelerometer

Induction

motor
Load motor

Fig. 9  Time domain waveform of the original bearing vibration
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bearings (normal) and rolling bearings with ball failure 
(B), outer ring failure (OR), and inner ring failure (IR). 
The faulty bearing is formed on the normal bearing by 

using electro-discharge machining (EDM). The diameter 
of the fault is 0.007, 0,014, 0.021, and 0.028 in. respec-
tively. The damage points of the bearing outer ring are 

Table 2  Detailed description of the considered bearing working conditions

Fault diameter (inch) health status Conditions damage point Number of Training 
Samples

Number of Test 
Samples

Assigned labels Category

0 Normal 30 20 NO 1
0.007 Inner race fault 30 20 IR_7 2

ball fault 30 20 B_7 3
outer race fault 3 o’clock position 30 20 OR_7_3 4

6 o’clock position 30 20 OR_7_6 5
12 o’clock position 30 20 OR_7_12 6

0.014 Inner race fault 30 20 IR_14 7
ball fault 30 20 B_14 8
outer race fault 30 20 OR_14 9

0.021 Inner race fault 30 20 IR_21 10
ball fault 30 20 B_21 11
outer race fault 3 o’clock position 30 20 OR_21_3 12

6 o’clock position 30 20 OR_21_6 13
12 o’clock position 30 20 OR_21_12 14

0.028 Inner race fault 30 20 IR_28 15
ball fault 30 20 B_28 16
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Fig. 10  Fitness value curve. Signal under different health conditions
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at 3 o’clock, 6 o’clock, and 12 o’clock respectively. The 
bearing vibration signal is classified into of 16 different 
types of failures. Each class has 50 samples with 4096 
points for a total of 800 samples. Four hundred eighty 
groups are randomly selected for the training set and 320 
groups are selected for the test sets. The time domain 
waveforms of vibration signal of rolling bearing are 
shown in Fig. 9. The detailed description of the class 
label is given in Table 2. This paper takes the ball fault 
signal with a fault severity of 0.028 in. as an example. The 
WOAGWO is utilized to optimize the parameters [K, α] 
of the VMD algorithm. The change curve of the minimum 
value of the average of the weighted permutation entropy 

with the number of iterations is shown in Fig. 10. It can be 
seen from Fig. 10 that the minimum value of the average 
of the weighted permutation entropy of 1.9280 appeared 
in the third iteration, which indicates that the optimization 
algorithm is quickly converging and has global optimiza-
tion capabilities, and is appropriate for searching for the 
best parameter combination of VMD. The corresponding 
optimal parameter combination [K, α] is [6, 3835]. This 
obtained parameters are entered into the parameter set-
tings of the VMD. Figure 11 shows the time domain dia-
gram and spectrum diagram of 6 IMF components after 
the decomposition of the inner ring fault signal by VMD.

For the vibration signals of 16 status, the best optimal 
combination [K0, α0] obtained by the hybrid optimization 
algorithm WOAGWO is shown in Table. 3

In order to demonstrate the superiority and efficacy 
of the multi-feature feature extraction method, the VMD 
method with the optimal parameter combination [K, α] 
obtained by WOAGWO-VMD algorithm is used to decom-
pose different bearing vibration signals. Four IMF com-
ponents with large correlation with the original signal 
are selected by the sensitive indicator (SI). For the IMF 
components selected, DE, PE, SVD, and multi-features 
are extracted from three perspectives of different fault 
types, different damage points, and different severity lev-
els. Dimensionality reduction visualization t-SNE is used 
to visualize and compare the effects of the four feature 
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Fig. 11  Waveform and spectrum of 6 IMF components. (a) Time domain, (b) FFT spectrum

Table 3  Optimal parameter combination [K, α]

Health status 
condition

[k, α] Health status condition [k, α]

Normal [5 3084] OR_14 [7 2543]
IR_7 [6 1503] IR_21 [6 3249]
B_7 [5 2164] B_21 [7 2455]
OR_7_3 [7 2668] OR_21_3 [7 1972]
OR_7_6 [8 3990] OR_21_6 [7 4000]
OR_7_12 [7 3875] OR_21_12 [7 3645]
IR_14 [6 2604] IR_28 [7 1154]
B_14 [7 1734] B_28 [6 3835]
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Fig. 12  Low-dimensional fault feature distribution. (a) Different fault types, (b) different severity, (c) different damage points
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extraction methods, such as shown in Fig. 12. Through 
t-SNE visual comparison in Fig. 12, it is shown that the 
multiple features have good intra-class aggregation and 
inter-class separation from three perspectives of different 
fault types, different damage points, and different severity 
levels, and exhibit the dispersion entropy feature, permu-
tation entropy feature, and singular value feature results 
solely. Using the t-SNE dimensionality reduction method, 
we can see the distribution of multi-features extracted 
from 16 different bearing vibration signals previously 
analyzed by the WOAGWO-VMD algorithm, as shown 
in Fig. 13.

It can be observed from Fig. 13 that the distinction of 16 
types of data features is clear and the aggregation of data 

features is accurate. In summary, from Figs. 12 and 13, we 
conclude that multi-features can characterize the fault infor-
mation of bearing signal accurately. To achieve the intel-
ligent bearing fault diagnosis, the matrix of multi-features 
vector obtained were input to the MPA-LSSVM classifier 
for fault classification and recognition. The optimal LSSVM 
parameters (cbest, gbest) are obtained using MPA which are 
67.12 and 72.64 respectively. To check the capacity of the 
proposed approach, it is compared with seven relevant meth-
ods. Fault diagnosis results of these methods are exhibited 
in Table 4. The recognition results and confusion matrix of 
the VMD-LSSVM method are illustrated in Fig. 14, while 
the recognition results and confusion matrix of the proposed 
method WOAGWO-VMD-MPA-LSSVM are illustrated in 
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Fig. 13  Low-dimensional feature distribution of 16 kinds of bearing signals

Table 4  Comparison data of the comprehensive performance using different methods

Fault diagnosis method Fitness value Training accuracy (%) Test accuracy (%)

VMD-LSSVM 95.21 89.75
WOAGWO-VMD-ELM
WOAGWO-VMD-SVM

96.31
97.25

93.53
94.75

WOAGWO-VMD-LSSVM 97.92 96.47
WOAGWO-VMD-PSO-LSSVM 0.0167 98.54 97.09
WOAGWO-VMD-GA-LSSVM 0.0104 98.96 97.92
WOAGWO-VMD-GWO-LSSVM 0.0042 99.58 98.75
WOAGWO-VMD-MPA-LSSVM 0.0020 100 99.00
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Fig. 15. We can notice from Figs. 14 and 15, and Table 4 
that:

1. The diagnosis effect of using the optimized VMD is bet-
ter than that of the unoptimized VMD method, which 
indicates the optimized VMD can more accurately 
extract the fault feature information of the rolling bear-
ing.

2. The proposed method achieved a higher classification 
accuracy in the diagnosis of various types of faults than 
the other methods. The classification accuracy of the 
proposed method reached 99%. In addition, compared 
with other optimization algorithms, MPA-LSSVM 
achieves higher classification accuracy, which proves 
the good performance of MPA algorithm in parameter 
optimization. Therefore, the validity and superiority of 
the proposed approach in bearing fault diagnosis are 
confirmed.

In order to further verify the effectiveness and supe-
riority of the proposed method for diagnosis of bearing 
faults, we verify the superiority of our method used for 
feature extraction (WOAGWO-VMD decomposition and 
multi-features) as first approach by using the fault classi-
fiers ELM, LSSVM, PSO-LSSVM, and PSO-SVM applied 
in the literature [54], [06], [21], and [25] respectively to 
diagnose and identify 16 bearing signals. The results are 
illustrated in Table 5. To ensure superiority of our fault 
classification method as well, it was compared with the 
classifiers also used in the previously mentioned literature 
as second approach. The results of the comparison are 
shown in Table 5. From the results table we can highlight 
the following:

1. When we use the same classifier mentioned in references 
[54], [6], [21], and [25], it turns out that our classifi-
cation accuracy is always better than the classification 
accuracy of each reference. The present findings confirm 
the superiority of our feature extraction method.

2. When comparing the classifier we used MPA-LSSVM 
with other classifiers (RCFOA-ELM, MACGSA-LSSVM, 
VNWOA-LSSVM, ANN) employed in the same previous 
literature, it became clear that the classification accuracy 
of our classifier is better than the other classifiers. The 
result now provides evidence to effectiveness and superi-
ority of the proposed fault classification method.

6  Conclusions

This paper presented a novel intelligent rolling bearing 
fault diagnosis method based on WOAGWO-VMD and 
MPA-LSSVM. In this method, the WOAGWO-VMD 
algorithm and multi-features were used for fault feature 
extraction, and the MPA-LSSVM algorithm for fault clas-
sification. In summary, this paper argued the following:

1. Through the simulated signal that was analyzed, the 
WOAGWO-VMD algorithm can extract the fault fea-
ture information of the signal more powerfully and sig-
nificantly compared to EMD, which is critical for the 
diagnosis of rolling bearing faults.

2. In the WOAGWO-VMD algorithm, picking the minimum 
value of the average weighted permutation entropy as the 
fitness function helped to obtain the optimal parameter 
combination [k, α] of VMD quickly and efficiently.

Table 5  Comparison of our proposed method with some related published literature for diagnosis of bearing faults

Literature Feature extraction Classification No. of classes Accuracy

[54] PSO-VMD + CMPE ELM
RCFOA-ELM

4
4

87.67%
98.34%

Our Work WOAGWO-VMD + multi-features ELM
MPA-LSSVM

16
16

93.53%
99.00%

[6] ESMD + CMWPE LSSVM
MACGSA-LSSVM

10
10

88.60%
95.80%

Our Work WOAGWO-VMD + multi-features LSSVM
MPA-LSSVM

16
16

96.47%
99.00%

[21] GA-VMD + Sample Entropy (SE) PSO-LSSVM
VNWOA-LSSVM

10
10

95.04%
97.00%

Our Work WOAGWO-VMD + multi-features PSO-LSSVM
MPA-LSSVM

16
16

97.09%
99.00%

[25] MIGA-VMD + multi-features PSO-SVM
ANN

16
16

95.31%
96.25%

Our Work WOAGWO-VMD + multi-features PSO-SVM
MPA-LSSVM

16
16

96.04%
99.00%
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3. Through the results obtained, the multi-features com-
posed of dispersion entropy feature, permutation 
entropy feature, and singular value feature can more 
accurately characterize the fault information of the 
bearing signal based on t-SNE dimensionality reduc-
tion visualization.

4. The proposed MPA-LSSVM adaptively selects the 
optimal parameters [c, g] for fault recognition of rolling 
bearings and demonstrates superior classification accu-
racy compared with the GWO-LSSVM, PSO-LSSVM, 
GA-LSSVM, SVM, and ELM.

5. The effectiveness and feasibility of the proposed method 
in this paper is verified by using experimental data of 
rolling bearing fault vibration signal. It can be also 
applied to the fault diagnosis of other mechanical parts 
for upcoming works.
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