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Abstract
A great percentage of breakdowns in the rotary machines are caused by faulty gears and bearings generating high costly 
downtime. The diagnosis of gears and bearings combined faults using conventional frequency methods is difficult because 
of the presence of a high level of noise in the signal or a disturbance emanating from other sources in/out of the machine. 
This manuscript develops an improved approach for gears and bearings simple/combined faults automated diagnosis using 
an optimized wavelet packet transform (OWPT), for signal denoising and fault features extraction, combined with pattern 
recognition neural networks (PRNN) for fault classification. We applied this improved approach on acceleration signals 
acquired from a test rig simulating an industrial rotary machine; then, these acquired signals were processed using OWPT, 
based on the best choice of the wavelet packet and the level of decomposition using minimum Shannon entropy and maximum 
energy to Shannon entropy ratio criteria. The results gave us the bi-orthogonal 3.1 (bior3.1) as the best mother wavelet among 
41 wavelet families being tested and the 6th level as the best decomposition level. These two found parameters are used for 
the extraction of time-domain features, which are used as input data to train neural networks after data normalization. The 
results showed that the proposed method could detect any type (simple/combined) and size (small “incipient,” mean and 
large) of gears and bearig faults in non-stationary operations with the presence of high noise. In addition, the automation of 
the classification process could be generalized to any kind of faults in the machine such as misalignment, electrical faults, 
and rotor damage.

Keywords  Maximum energy to Shannon entropy ratio · Optimized wavelet packet transform · Simple/combined fault 
classification · Rolling element bearings · Spur gears · Features extraction · Machine learning · Pattern recognition ANN

Abbreviations and nomenclature
ai  	� The output of the neuron
b  	� Bias
bior3.1	� Bi-orthogonal 3.1
Ci(n)  	� The ith wavelet coefficient of nth scale
CWT​	� Continuous Wavelet Transform
CE	� Cross Entropy Error
dj,n  	� Wavelet coefficients for jth level and n 

Sub-band. Integer: 1,2,3…j
DWT	� Discrete Wavelets Transform
EMD	� Empirical Mode Decomposition
f
(
ui
)
  	� Activation Function

FFT	� Fast Fourier transform
g(k)  	� Wavelet High-pass filter. Impulse 

responses of the quadrature mirror 
filters (QMF)

h(k)  	� Wavelet Low-pass filter. Impulse 
responses of the quadrature mirror 
filters (QMF)

j	� The level of decomposition. Integer: 
1,2,3…j

m	� Number of Wavelet Coefficients
OWPT	� Optimized wavelets packets transform
PRNN	� Pattern recognition neural networks
pi	� The energy probability distribution 

for the ith wavelet coefficient
STFT	� Short-time Fourier Transform
S(n)	� Time Signal
TF	� Time Features
ui  	� The weighted linear sum of the input 

vectors (xi)
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VSDmin and VSDmax  	� The minimum and maximum values 
of the normalization interval

wi  	� The synaptic weights
WRA​	� Wavelets Multiresolution Analysis
WPT	� Wavelets Packet Transform
xi 	� Inputs Vectors∑
xi  	� Summation Function

xND 	� The Normalized Data Value for the 
Extracted Feature

xSDmin and xSDmax 	� The Minimum and the Maximum 
Values in the Feature Vector in the 
Input Data Matrix

X1	� The Acquired Data from the 1st 
Accelerometer m/s2

X2	� The Acquired Data from the 2nd 
Accelerometer m/s2

X3	� The Acquired Data from the 3rd 
Accelerometer m/s2

�(n) 	� The Maximum Energy-to-Shannon 
Entropy ratio

1  Introduction

All industries need an efficient predictive maintenance  
plan with great performance in order to optimize the  
management of resources and improve the economy of the 
plant by reducing the extra costs and increasing the safety 
level and the plant process quality. Machine condition  
monitoring and fault diagnosis are the most important  
challenges in the manufacturing industry; based on them, we 
can reduce the maintenance costs by increasing machines’ 
availability and improving productivity and safety. Vibratory 
analysis, oil analysis, thermography, and acoustic analysis 
are the principal methods of industrial rotating machines 
monitoring, but the problem of which method we can  
use for any application is the main question. To answer  
this question, Zani [1] gave selection criteria between  
such methods or techniques and their field of application, 
including the advantages and limitations of each method.

Among the techniques of monitoring previously cited, the 
most important, reliable, and powerful method especially for 
chocks, machine vibration, and the phenomena of wear and 
fatigue is the vibratory analysis [2–5], the technique that had 
the largest field of applications.

The classification of vibration monitoring methods is 
done based on the existence of a mathematical model for 
the machine/equipment surveyed or not; for that, they are 
divided into two parts: model-based methods and non-
model-based methods. The model-based methods need an 
analytical model based on a deeper understanding of the 
internal process of the machine system, which should be 
built first. Any variation between the established model 

(model output) and the experimental results is a fault indi-
cator; this kind of method is also called the residual-based 
method [6].

On the other hand, we have three types of non-model-
based methods applied in the diagnosis of industrial sys-
tems, including artificial intelligence, statistical methods, 
and signal processing methods. Artificial intelligence and 
statistical methods play an important role in fault diagnosis, 
usually applied to constitute a pattern classifier for discrimi-
nating different types of faults. From those methods, we can 
rise artificial neural networks [7–10] and support vector 
machines [11–15]. For signal processing method, in the lit-
erature, there are many signal processing tools for vibration 
analysis, such as power spectrum or fast Fourier transform 
(FFT) and the Cestrum, time, and frequency domain averag-
ing, adaptive noise cancellation, demodulation technique, or 
envelope analysis and order analysis for stationary signals, 
and Winner-Ville and short-time Fourier transform (STFT), 
as well as empirical mode decomposition (EMD) and wave-
let transform in different forms and recently deal with non-
stationary signals. According to [16, 17], we can find differ-
ent versions of wavelets analysis like the continuous version 
(CWT) in this works [18, 19], as a discrete form (DWT) and 
its fast algorithm called Wavelets multiresolution analysis 
(WRA) in [20–22], and its generalized version named the 
wavelet packet transform (WPT) in [23, 24], which will be 
used in this study, allowing us to extract more features than 
the previous version of wavelets.

The big challenge to using the WPT is the wavelet family 
and decomposition level selection. Several approaches in the 
literature are treated in this subject, and they are divided into 
qualitative and quantitative criteria. For the qualitative cri-
teria, we have the variance criterion [25], where the sum of 
wavelet coefficient variance values is calculated and the base 
wavelet that maximizes this value will be the best choice. 
For the quantitative criteria, we have the cross-correlation 
coefficients [26], in the case where the base wavelet maxi-
mizes the correlation coefficients value and can be selected 
as the mother wavelet for the study. Another quantitative cri-
terion that will be used in this paper is the minimum Shannon 
entropy and the maximum energy [27] in which the wavelet 
family and the decomposition level that maximize the energy 
and minimize the Shannon entropy are the best choices for 
signal denoising. The maximum energy to Shannon entropy 
ratio is also a powerful tool for mother wavelet and best 
decomposition level selection [28, 29].

Automated classification of gears and bearings faults 
in the rotary machines using neural networks is an open 
domain for research. Many approaches are developed in 
this issue, but most of them are focused on gear [30] or 
bearing [31] faults and treated each component separately 
[32], without entering in the combination of both types of 
faults. Therefore, few papers have been published related 
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to the combined faults, including the size and type of fault 
[33, 34]. In our study, the wavelet packet transform is used 
for signal processing, optimized by the use of minimum 
Shannon entropy and maximum energy to Shannon entropy 
ratio of the wavelet coefficients, which is one of the main 
contributions in this work. For combined fault classification, 
we used the pattern recognition artificial neural network, 
which has become in recent decades the outstanding method 
exploiting their non-linear pattern classification properties, 
offering advantages for automatic detection and identifi-
cation of gearboxes failures including gears and bearings 
faults, without need for the behavior deep knowledge of the 
surveyed systems. In the first stage, acceleration signals were 
acquired using Pulse.18 system, from a test rig simulating 
an industrial rotary machine constructed in the LMS labora-
tory in the University of Guelma; then, these signals were 
pre-processed using an improved WPT called in this paper 
optimized wavelet packets transform “OWPT,” based on the 
wavelet family optimization using the minimum Shannon 
entropy and maximum energy to Shannon entropy The ratio 
for the choice of the best level of decomposition, which was 
used as input to train the neural networks to classify the dif-
ferent types (simple/combined) and sizes (small, mean and 
large) of gears and bearings faults.

This paper is organized as follows: Sect.  1 is an  
introduction to different research works on the same subject.  
Section 2 presents the proposed flow chart for gears and 
bearings combined faults diagnosis. Followed by three big 
part Sects. 3, 4, and 5, the theory part, the experimental 
parts, and the results and discussion part. In the theory 
part, we include the wavelets packets transform definition 
including the wavelet family choice and the decomposition 
level selection using the minimum Shannon entropy and the 
maximum energy to Shannon entropy ratio criteria, followed 
by a summary about the artificial neural networks and their 
application pattern recognition. In the experimental part, we 
include a description of the test rig used for different types 
of gears/bearings faults and their location, the equipment 
used for signal acquisition, and the experimental plan. In  
the results and discussion part, we include the application  
of the proposed approach on measured signals and a results 
validation with other test rigs from the INSA de Lion  
laboratory. Section 6 is reserved for general conclusions.

2 � Gears and bearings combined fault 
diagnosis proposed approach

Using spectral analysis for gears and bearings combined 
fault diagnosis has some limitations concerning time 
and frequency resolutions. This problem is solved using 
time–frequency analysis tools. Wavelet packet transforms 
(WPT) overcome these limitations, but it has a problem of 

spectral leakage, which is related to the choice of the wave-
let family and the mother wavelet used in the analysis. In 
order to minimize these errors, we proposed an approach to 
select the most suitable wavelet family, the mother wavelet, 
and the best decomposition level, using the Shannon entropy 
criterion and the maximum energy to Shannon entropy ratio.

The OWPT is used to extract different features that are 
used as input data for gears and bearings simple and/or com-
bined faults classification using pattern recognition neural 
networks.

The steps of faults classification proposed in this manu-
script are described below:

1.	 Signal acquisition and data preparation
2.	 Data processing using wavelet packet and the maximum 

energy to Shannon entropy ratio for WPT decomposition 
level choice (level, which has the maximum energy to 
Shannon entropy ratio, will be used as input in PRNN)

3.	 Feature extraction using Table 1
4.	 Input data value normalization
5.	 Feature selection
6.	 Fault classification and the output vector determination: 

The output vector is a matrix of total classification that 
represents the training target of a neural network, where 
each class is represented by one (1), which means the 
presence of a fault, and the other column by zero (0), 
which means the absence of a fault.

7.	 Performance function error calculation (cross-entropy 
error “CE”): We compare the output matrix with the tar-
get matrix, and we determine the classification process 
performance.

3 � Theory part

3.1 � Wavelet packet transform

3.1.1 � Wavelet packet transform definition

Wavelet transform is able to process stationary and non-
stationary signals in time and frequency domains simul-
taneously. Wavelet transform could be found in continu-
ous “CWT” and discrete “DWT” forms; the discrete form 
is faster and easier for application than continuous form, 
so DWT has been widely applied in the field of condi-
tion monitoring using its fast algorithm called wavelets 
multiresolution analysis. A general form for this trans-
form is called wavelet packet transform “WPT.” Kumar 
et  al. in [35] have used the multiscale slope feature 
extraction method to compare the two transforms DWT 
and WPT, and they concluded that WPT is more effec-
tive in bearing condition classification when compared to 
DWT and it’s considered superior to DWT in classifying 
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bearing vibration signals for different conditions. WPT 
is a generalization of wavelet decomposition that offers 
more possibilities of reconstructing the signal from the 
decomposition tree. The transformation can be achieved by 
implementing a pair of wavelet filters, h (k) low-pass filter, 
and g(k) = (−1)kh(1 − k) high-pass filters. These high-pass 
wavelet filters are constructed using the wavelet function 
�(t) and its corresponding scaling function �(t) . Wang 
et al. in [36] have well-described WPT calculations and 
used equations for more details. The schematic of WPT 
decomposition has been shown in (Fig. 1).

In this study, the row signal will be decomposed at the 
sixth level (j = 6), where 64 coefficients were obtained.

3.1.2 � Wavelet packet transform optimization

Several criteria for mother wavelet and decomposition level 
selection are mentioned in Sect. 1; the best of them and the most 
widely used for mother wavelet selection is the minimum Shannon 
entropy and the maximum energy, in which the wavelet family that 
minimizes the Shannon entropy and maximizes the energy will be 
the best for the signal decomposition process (Fig. 2).

The energy of the “m” number of wavelet coefficients Ci(n) 
at each resolution scale “n” of the signal is written as:

Ci(n) is the ith wavelet coefficient of nth scale.
Shannon entropy that measures the uncertainty of sig-

nal wavelet coefficients is defined by:

(1)Energy(n) =

m∑

i=1

|Ci(n)|2

(2)Shannon Entropy(n) = −

m∑

i=1

pi log pi

where pi is the distribution of the energy probability for each 
wavelet coefficient with 

m∑
i=1

pi = 1 , and in the case of, pi = 1 

for some i the value of pilogpi is taken as zero, given by:

There are some situations when the wavelet family 
will not satisfy both criteria. To resolve such conflict, 
the maximum energy to Shannon entropy ratio �(n) will 
be used [37, 38].

The best wavelet family is selected in this case that has 
the maximum energy to Shannon entropy ratio. It has the 
same principle for decomposition level selection.

3.2 � Time domain features extraction

In order to characterize the time information of gears 
and bearings defects signals, we propose to use the time 
domain statistical features because of their simplicity of 
implementation and the computational time reduction.

3.3 � Input data normalization

Input data value normalization between [0, 1] using the lin-
ear mapping improves the learning speed and the sensitivity 
of the neural network. In most cases, the input data values 
mapped were between − 1 and 1 for the hyperbolic tangent 
function and between 0 and 1 for the Sigmoid function using 
the following linear mapping generalized formula:

(3)pi =
|Ci(n)|2

Energy(n)

(4)�(n) =
Energy(n)

Shannon Entropy(n)

Fig. 1   Wavelet packet decompo-
sition tree: Schematic for signal 
decomposition/reconstruction
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' xND is the normalized data value for the extracted feature, 
VSDmin = 0 or -1 and VSDmax = 1 are the minimum and maxi-
mum values of the normalization interval. xSDmax and xSDmin 
are respectively the minimum and the maximum values in 
the feature vector in the input data matrix. The sigmoid func-
tion is most useful for training a set of data that is saturated 
between 0 and 1.

(5)xND =
(xSD − xSDmin)(VSDmax − VSDmin)

(XSDmax − XSDmin)
+ VSDmin

The last step before classification is feature selection 
which is the most important task to get a high-performance 
intelligent fault diagnosis system; after the feature extrac-
tion step, we will have a large input vector or matrix with 
irrelevant and redundant information and this too many fea-
tures can result in a long time calculation caused by a large 
dimensionality due to the fact that the number of training 
samples increases exponentially with the number of features 
in order to have an accurate training of the neural network 
model. Several kinds of research took into consideration this 

Table 1   Time domain feature extraction
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issue and proposed many procedures for feature selection, 
such as the genetic algorithms (GAs) [39], decision tree [40], 
Fisher discriminant analysis (FDA) [41], and the principal 
component analysis (PCA) [42] to optimize and reduce the 
dimension of the input data. For this study, the process of 
features selection is carried out manually, and the basis for 
the selection is the neural network performance using the 
method of elimination. This means that we eliminate an 
indicator and we will notice its effect on the network per-
formance. The features selection process is done manually, 
due to its minor effect on the network’s outputs. Therefore, 
we used all the 19 features in Table 1.

Automatic classification (or discrimination) is an area 
of application of neural networks based on the specific 
(selected) features; therefore, the last step is fault classifica-
tion using artificial neural networks, which will be illustrated 
in the next section.

3.4 � Pattern recognition neural networks

The main idea of using artificial neural network ANN which  
is a subset of artificial intelligence in condition-based main- 

tenance is to create an expert system to simulate a simple 
model of the human brain with maintenance field experience  
in order to use it as a monitoring system for mechanical 
faults diagnosis. ANN is a high-value and low-cost tool in 
modeling, simulation, automation, condition monitoring, 
and fault diagnosis of different systems including all types 
of rotating machinery. ANNs have a variety of applications 
such as prediction and validation, clustering and optimiza-
tion, classification and pattern recognition, function approxi-
mation, and time series analysis.

The basic element of neural networks is the artificial neu-
ron (nodes), as presented in Fig. 2 [43].

In Fig. 2, each neuron consists of two functions: net func-
tion 

∑
(xi) and activation function f (ui).

The net function provides the weighted linear sum of 
the input vectors ( xi ∶ 1 ≤ i ≤ N  ), with an additional con-
stant term called bias and noted (b) (or threshold) its con-
nection weighted by one (1). It is mathematically given 
[44, 45] by:

Fig. 2   Biological neuron versus 
McCulloch and Pitts’ artificial 
neuron model

Fig. 3   The artificial neural 
network typical architecture
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wi ∶ 1 ≤ i ≤ N  : The synaptic weights represented the 
effects of the synapses.

The output of the neuron ai is related to the network input 
ui via a linear or nonlinear transformation noted f and called 
activation (transfer) function, mathematically given by:

Several activation functions (linear and non-linear) are 
used in the ANN applications, such as Sigmoid function, 
which is used in this study, hyperbolic tangent, inverse tan-
gent, threshold, Gaussian radial basis (exponential function), 
used for radial basis neural network, and the linear function.

As shown in Fig. 3, ANN basic or the linear architecture 
consists of 03 layers of neurons: input, hidden, and output 
layers. A great variety of network topologies can be imag-
ined, under the sole constraint that the graph of connections 
is acyclic. However, the vast majority of neural network 
applications implement multilayer networks.

4 � Experimental part

4.1 � Experimental setup and data acquisition

We presented in this part the test rig configuration, the 
experimental setup for data acquisition and collection, and 
the number and the details of all the experiments carried out 

(6)ui =

N∑

i=1

wixi + b

(7)ai = f (ui) = f

(
N∑

i=1

wixi + b

)

on the test rig. All data used in this work are collected from 
a test rig (Fig. 4), constructed in the laboratory of mechanics 
and structures LMS, in the University 8 May 1945 Guelma. 
The test rig is composed of an electrical motor controlled 
by a speed regulator which allows the choice of rotational 
frequency/speed of the engine (Fig. 5); this regulator can 
order engines of various powers until 4 Kw/50 Hz, and the 
rotational motion has been transmitted to the gearbox drive 
shaft using a flexible coupling. The gearbox by its turn is 
composed of 04 spur gears mounted on three shafts (drive/
middle/driven), guided in rotation by 06 housing bearing 
type 6002, fixed by bolts on a steel box, a structure made up 
of steel plates. The top face is made up of Plexiglas allowing 
us to create the gears’ faults even we can change the gears 
and put their lubrication (lubricant oil). In order to apply a 
load on the gearbox’s transmission, an electromagnetic brake 
connected to the third shaft in the gearbox by a geared belt 
is used to generate a torque which is considered a load. The 
four gears (1–2-3–4) that composed the gearboxes have a 
mechanical module of 2 mm and have respectively 42, 50, 
65, and 46 teeth. Gears 2 and 4 are the tested wheels.

The vibration data were acquired under the same load 
which is generated by the brake and two different motor 
speeds 900 and 1500 r/min. The sampling frequency is 
32768 Hz, and the number of data points in each sample 
was 16,384 Hz and time recordings of 1-s duration.

Twenty (20) sets of data were obtained from the experi-
mental setup; more details about the experiments will be 
presented in the next section.

All the experiments carried out in the following 
conditions:

Fig. 4   LMS laboratory test 
rig for gears and bearing fault 
simulation
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•	 Drive shaft rotational frequencies: 15 and 25 Hz;
•	 Frequency bandwidths: [0 – 6400 Hz] and [0 – 12800 

Hz];  
•	 Operation Mode: in the presence of load and grease.

We present in Table 2 the detailed experimental plan, 
including the following:

	 I -	 Gears and bearings simple faults
	 II -	 Gears and bearings combined faults

To create different gears and bearings defects, we have 
removed a part from the tooth contact surface (small defect: 
15% of tooth contact surface material was removed which 

Fig. 5   (a) Experiment’s test rig, (b) PULSE system for signal acqui-
sition, post-processing, and data analysis type Brüel & Kjӕr 18th 
version with four (04) inputs and two (02) output channels. All the 
experiments are carried out in the following conditions: Driveshaft 

rotational frequencies, 15 and 25  Hz; frequency bandwidths, [0 – 
6400  Hz] and [0 – 12,800  Hz]; operation mode: in the presence of 
load and grease

Table 2   Experiments plan

Number of experiments Gears and bearings faults combinations Code

I.Gears and bearings simple faults
1 Without faults WF
2 Bearing small fault on bearing 2 BSF2
3 Bearing mean fault on bearing 2 BMF2
4 Bearing large fault on bearing 2 BLF2
5 Gear small fault on gear 2 GSF2
6 Gear mean fault on gear 2 GMF2
7 Gear large fault on gear 2 GLF2
II.Gears and bearings combined faults
8 Gear Small Fault on gear 2

Combined with bearing small fault on bearing 2
GSF2 + BSF2

9 Gear small fault on gear 2
Combined with bearing mean fault on bearing 2

GSF2 + BMF2

10 Gear small fault on gear 2
Combined with bearing large fault on bearing 2

GSF2 + GLF2

11 Gear mean fault on gear 2
Combined with bearing small fault on bearing 2

GMF2 + BSF2

12 Gear mean fault on gear 2
Combined with bearing mean fault on bearing 2

GMF2 + BMF2

13 Gear mean fault on gear 2
Combined with bearing large fault on bearing 2

GMF2 + GLF2

14 Gear large fault on gear 2
Combined with bearing small fault on bearing 2

GLF2 + BSF2

15 Gear large fault on gear 2
Combined with bearing mean fault on bearing 2

GLF2 + BMF2

16 Gear large fault on gear 2
Combined with bearing large fault on bearing 2

GLF2 + GLF2
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is equivalent to 0.3 mm in the module, the same for mean 
defect: 30% = 0.6 mm and the large defect: 45% = 0.9 mm) 
depending on the experiment needed. The relationship and 
the difference between the artificial defects and the defects 
formed in the actual working conditions are explained next.

Bearing defects

•	 Bearing small fault (BSF) is a small groove (indenta-
tion) made through the ball’s raceway on the outer race 
of bearing 2, using a high-speed electric grinder, actually 
simulating small chipping.

•	 The same goes for bearing mean fault (BMF) and bearing 
large fault (BLF) respectively, just increasing the width 
of the groove (indentation).

Gears defects

•	 The gear small fault (GSF) is the tearing part of the mate-
rial all along the contact surface of a tooth of the gear 2 
using a high-speed electric grinder, simulating progres-
sive wear on the gear teeth.

•	 The same goes for the gear mean fault (GMF) and gear 
large fault (GLF) respectively, just increasing the amount 
of material torn from the gear tooth surface contact.

5 � Results and discussion part

In this section, we applied the proposed approach to the 
measured signals, following different steps described in 
Sect. 2. We started by wavelet packet transform optimiza-
tion and features extraction, followed by the classification 
process using pattern recognition neural networks; the lat-
ter is divided into 04 networks (ANN1, ANN2, ANN3, and 
ANN4) as shown in the algorithm in Fig. 7) in which ANN1 
is dedicated to whether the system components (gears and 
bearings) are faulty or healthy. ANN2 and ANN3 are used to 
classify gears or bearings simple faults after we confirm that 
one of the components (gears or bearings) is faulty using 
ANN1. ANN4 is used to classify gears and bearings com-
bined faults after we confirm that both gears and bearings 
are faulty using ANN2 and ANN3. Another network named 
ANN5 is used to generalize the classification process includ-
ing all previous networks for whole system classification.

5.1 � Wavelet family and decomposition level 
optimization

Energy to Shannon entropy ratio was used to select an appro-
priate mother wavelet, and the vibration signals in different 

conditions are decomposed at the sixth level using WPT 
where both total Shannon entropy and the ratio total energy 
to total Shannon entropy are calculated for each wavelet fam-
ily and decomposition level; then the level and the wavelet 
having maximum energy to Shannon entropy ratio are con-
sidered for gear and bearing fault diagnosis.

From Fig. 6a, we find that the wavelet � that has the max-
imum energy to Shannon entropy ratio is the “bior3.1,” and 
to confirm that we pass to the second (Fig. 6b), we remark 
that the wavelet which has the minimum entropy is the same 
wavelet family which is bior3.1. However, we conclude that 
the best mother wavelet � to be selected for decomposi-
tion process is the Bi-orthogonal (“bior3.1”), and the same 
for the level of decomposition from the third (Fig. 6c), we 
remark that the decomposition level that has the maximum 
energy to Shannon entropy ratio is the last one which is 
the 6th level; thus, the best decomposition level that will be 
selected is the sixth (6) level. For more accuracy, we applied 
the above criteria on all data that has been acquired from the 
03 sensors on the test rig for 6400 Hz as maximal frequency; 
thus X1, X2, and X3 are respectively the data acquired from 
the sensors or accelerometers 1, 2, and 3.

The feature vector is a matrix that contains all the 
extracted features. If the number of features extracted 
from one signal is 19 as mentioned in Table 1, and each 
signal will be decomposed at the 6 levels with “bior3.1” 
wavelet packet, and the chosen level is the 6th with 64 
coefficients, then the number of features, in this case, 
will be 19 × 64. If we have 10 signals in each class, the 
matrix dimension of these features will be 19 × 64 × 10, 
which will be 19 × 640 for each class, such as we took 40 
samples from each class for tests. In this next section, we 
present the results of classification process with differ-
ent faults classes in the case of simple and/or combined 
faults. As shown by the algorithm presented in Fig. 8, 
we generally have four (04) networks: ANN1, ANN2, 
and ANN3 with 03 classes for each, and ANN4 with 09 
classes, in addition to ANN5 that regroups all the previ-
ous networks. The details of each network will be pre-
sented next in Tables 3, 4, and 5.

5.2 � Gears and bearing fault classification process 
using PRNN

The classification process for all the networks was done 
using the Pattern Recognition Neural Network toolbox, in 
the MATLAB software environment. In Fig. 7, we represent 
the algorithm used for gears and bearings simple/combined 
fault classification and the detailed classes for each neural 
network.

The architecture of the artificial neural network is as fol-
lows: network type: forward neural network trained with 
feed-forward backpropagation; transfer function: Sigmoid 
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transfer function in hidden and output layer; training func-
tion: TRAINSCG (scaled conjugate gradient); adaption 
learning function: LEARNGDM; performance function: 
cross-entropy (CE); number of hidden layers: 02; and 10 
neurons in the hidden layer for ANN1, ANN2, and ANN3, 
and 30 neurons in the hidden layer for ANN4 and ANN5. 
All these pieces of information are summarized next in 
Table 6.

NB  The number of neurons in the hidden layer has been 
chosen manually based on the number of classes (input data) 
and the different ANN performance, which will be increased 
with the increase in the number of neurons in the hidden 
layer until 30; then, it will be decreased.

5.2.1 � Gears and bearing simple faults classification

ANN1, ANN2, and ANN3 are 03 networks that have the 
same architecture, which is presented in Fig. 8. ANN1 is  
used to check the status of the system whether it is healthy 
or with a faulty gear and/or bearing, without providing 
information on the type and/or size of the defect. The 

classes used in this network are (a) healthy gears and bear- 
ings (without faults) (WF), (b) faulty bearing (BMF2), and 
(c) faulty gear (GMF2). After confirming the presence of 
faulty gears or bearing using ANN1, we pass to ANN2 to 
classify the simple faults of bearing or ANN3 to classify 
the simple faults gears, with information on the fault sizes. 
The classes that have been used in these networks are (a) 
BSF2, (b) BMF2, and (c) BLF2 for ANN2 and (d) GSF2, 
(e) GMF2, and (f) GLF2 for ANN3.

As per default configuration in the pattern recognition 
neural network toolbox  9.0, the input data samples for 
ANN1, ANN2, and ANN3 are divided as below:

We have 1800 samples divided into the following:

•	 Training set with 1260 samples (70%) used by the net-
work during training, and the network is adjusted accord-
ing to its error.

•	 Testing set with 270 samples (15%) provide an independ-
ent measure of network performance during and after 
training.

Fig. 6   (a) Total energy to total Shannon entropy ratio of 41 wavelets 
families with the acquired data from the 03 sensors X1, X2, and X3. 
(b) Total Shannon entropy for 41 wavelets families. (c) Total energy 
to total Shannon entropy ratio for 06 decomposition level with the 
acquired data from the 03 accelerometers X1, X2, and X3

◂

Fig. 7   Flow chart for gears and bearings simple/combined faults detection using PRNN

Fig. 8   ANN1, ANN2, and ANN3 architecture
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•	 Validation set with 270 samples (15%) used to measure 
network generalization and to stop training when gener-
alization stops improving.

Figure 9 represents the classification process results for 
ANN1, ANN2, and ANN3. In Fig. 9a, b, and c, we find the 
confusion matrices for training, testing, and validation and 
their combination. From the combination of the confusion 
matrices, we can see that the performance of the 03 ANNs 
is quite high with, 99.9%, 99.7%, and 99.6% respectively for 
ANN1, ANN2, and ANN3, which could justify the accuracy 
of the classification process.

In Fig. 9d-f, we presented the receiver operating charac-
teristic (ROC) graphs of training, test, validation, and their 
combination for ANN1, ANN2, and ANN3.

We remark in the combination of all ROC graphs for all 03 
ANNs that all the classes are in the point (0, 1). This means 
(0 false-positive rate and 1 true-positive rate) that for all clas-
sification process, AUC = 1 represents perfect classification by 
almost 100% of the true-positive rate values of the 03 classes, 
which validate the results of the confusion matrices.

In Fig. 9g-i, we presented the ANN1, ANN2, and ANN3 
networks’ total performance plots, which are equal to 
0.0051022 at epoch 80 for ANN1, 0.0014445 at epoch 164 
for ANN2, and 0.0042581 at the epoch 144 for ANN3, and 
they are all converging to zero representing a very good per-
formance, due to the minority of the ANN’s errors.

In Fig. 9j-l, we presented the ANN1, ANN2, and ANN3  
networks’ error histogram, which provides accurate infor- 

mation about its error. The main data that can be extracted 
from the error histogram is the error value and the error 
frequency. The negative sign of an error means that the out-
puts are greater than their targets. As shown in the error 
histogram for the 03 ANNs, the training, test, and validation 
data sets, which represent respectively 70%, 15%, and 15% 
of all input data, their errors are almost zero for ANN1 and 
ANN3 or converged to zero and 20 bins for ANN2. This 
means they have a high classification accuracy and a high 
degree of generalizability.

5.2.2 � Gears and bearing combined fault classification

In this sub-section, we tried to classify only the combined 
faults to see the effect of the proposed approach on the clas-
sification process. We used ANN4 with the architecture 
presented in Fig. 10, to classify the 09 classes of gears and 
bearings combined faults.

We have 5400 samples divided into the following:

•	 Training set with 3780 samples (70%) used by the net-
work during training, and the network is adjusted accord-
ing to its error.

•	 Validation set with 810 samples (15%) used to measure 
network generalization and to stop training when gener-
alization stops improving.

•	 Testing set with 810 samples (15%) provide an independ-
ent measure of network performance during and after 
training.

In Table 4, ANN4 is used to find out the combined faults 
of gears and bearings, with information on the type and 
size of faults, and the classes used in this network are (a) 
BSF2 + GSF2, (b) BMF2 + GSF2, (c) BLF2 + GSF2, (e) 

Table 3   Classification for gears or bearing simple faults 

ANN1 to confirm the presence /absence of gear and bearing faults

Pattern number Faulty component Gears and bearing status Patterns names/name of classes

01 N/A Without faults (healthy gears and bearings) Class 1
02 Bearings With faults (faulty bearings) Class 2
03 Gears With faults (faulty gears) Class 3
ANN2 for bearing simple fault classification
Pattern Number Faulty component Size of bearing simple faults Patterns names/name of classes
01 Intermediate shaft bearing #2 Bearing small fault (BSF)/outer race fault Class 1
02 Intermediate shaft bearing #2 Bearing mean fault (BMF)/outer race fault Class 2
03 Intermediate shaft bearing #2 Bearing large fault (BLF)/outer race fault Class 3
ANN3 for gears simple faults classification
Pattern number Faulty component Size of gears simple faults Patterns names/name of classes
01 Intermediate shaft gear #2 Gear small fault on gear 2 (GSF2)/worn tooth Class 1
02 Intermediate shaft gear #2 Gear mean fault on gear 2 (GMF2) /worn tooth Class 2
03 Intermediate shaft gear #2 Gear large fault on gear 2 (GLF2) /worn tooth Class 3

Fig. 9   ANN1, ANN2, and ANN3 classification process results, 
respectively: (a), (b), and (c) Confusion matrix; (d), (e), and (f) 
Receiver operating characteristic or ROC plot; (g), (h), and i Perfor-
mance, and (j), (k), and (l) Error histogram

◂
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BSF2 + GMF2, (f) BMF2 + GMF2, (g) BLF2 + GMF2 (h) 
BSF2 + GLF2, (i) BMF2 + GLF2, and (j) BLF2 + GLF2.

ANN4 configuration which is presented in Fig. 10 shows 
three layers: the input layer with 19 features, the hidden layer 
with 30 neurons inside, and the output layer with 09 outputs.

Figure 11 represents the results of the 4th neural network ANN4 
with 30 neurons in the hidden layer (Fig. 11a). We find the con-
fusion matrix for the combination of training, testing, and valida-
tion matrices. The network outputs are very accurate with a high 

Fig. 10   ANN4 architecture
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performance of 99.6%. The total confusion matrix indicates that 
5379 samples from 5400 samples of the input data set have been 
correctly classified and only 21 samples from them are misclassi-
fied. That means the ANN4 is highly generalizable and can be used 
for different sizes of gears and bearings combined faults diagnosis 
and decision-making in the future. Figure 11b presents the receiver 
operating characteristics (ROC) graphs for 09 classes of the ANN4: 
training, test, validation, and their combination, which are useful for 
organizing classifiers and visualizing their performance. We remark 
in the combination of all ROC graphs that all the classes are almost 
in the point (0, 1) with AUC almost 1. That means 0 false-positive 
rates and 1 true-positive rate for all classification processes which 
represent perfect classification by almost 100% of the true positive 
rate values of the 09 classes, which validate the results of the confu-
sion matrices.

Figure 10c presents the ANN4 network’s total performance 
which is equal to 0.0054547 at epoch 162 and is converging to 
zero which represents a very good performance with a minor 
error. We remark that all plots are descending to epoch 162 
and converging to the 0.0054547 error. Figure 11d presents 
the ANN4 network’s error histogram, which evaluates the 
error distributions based on the ANN4 classification results. 
It is shown in the distribution of errors that it occurred near-
zero vertical line in the center and is gradually decreasing 
when moving away from it. This proves that ANN4 has a high 
classification accuracy and a high degree of generalizability.

5.2.3 � Generalization of the classification process 
on both simple and combined faults

The final step is to confirm if the proposed approach is able 
to classify the healthy case with simple and combined faults 
at the same time and with the same performance or not. As 
a general validation, we tried to classify the entire system 
conditions with the 16 classes, which are used before in 
ANN1…ANN4, in one neural network named ANN5 with 
the architecture presented in Fig. 12. For ANN5, we have 
9600 samples divided into the following:

•	 Training set with 6720 samples (70%) used by the net-
work during training, and the network is adjusted accord-
ing to its error.

•	 Validation set with 1440 samples (15%) used to measure 
network generalization and to stop training when gener-
alization stops improving.

Table 4   Classification for gear and bearing combined faults 

Pattern number Faulty component Type of gear and bearing combined fault Patterns 
names/name 
of classes

01 Intermediate shaft bearing #2,
Intermediate shaft gear #2

Bearing small fault (BSF2) + gear small fault (GSF2) Class 1

02 Intermediate shaft bearing #2,
Intermediate shaft gear #2

Bearing mean fault (BMF2) + gear small fault (GSF2) Class 2

03 Intermediate shaft bearing #2,
Intermediate shaft gear #22

Bearing large fault (BLF2) + gear small fault (GSF2) Class 3

04 Intermediate shaft bearing #2,
Intermediate shaft gear #2

Bearing small fault (BSF2) + gear mean fault (GMF2) Class 4

05 Intermediate shaft bearing #2,
Intermediate shaft gear #2

Bearing mean fault (BMF2) + gear mean fault (GMF2) Class 5

06 Intermediate shaft bearing #2,
Intermediate shaft gear #2

Bearing large fault (BLF2) + gear mean fault (GMF2) Class 6

07 Intermediate shaft bearing #2,
Intermediate shaft gear #2

Bearing small fault (BSF2) + gear large fault (GLF2) Class 7

08 Intermediate shaft bearing #2,
Intermediate shaft gear #2

Bearing mean fault (BMF2) + gear large fault (GLF2) Class 8

09 Intermediate shaft bearing #2,
Intermediate shaft gear #2

Bearing large fault (BLF2) + gear large fault (GLF2) Class 9

Fig. 12   ANN5 Architecture
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•	 Testing set with 1440 samples (15%) provide an inde-
pendent measure of network performance during and 
after training.

ANN5 have the same configuration presented in the sche-
matic in Fig. 12:

Table 5 represents the classes used in ANN5, which 
includes all previous classes used in ANN1, ANN2, ANN3 
and ANN4: (a) Without faults (WF), (b) BSF2, (c) BMF2, 
(d) BLF2, (e) GSF2, (f) GMF2, (g) GLF2, (h) BSF2 + GSF2, 
(i) BMF2 + GSF2, (j) BLF2 + GSF2, (k) BSF2 + GMF2, (l) 
BMF2 + GMF2, (m) BLF2 + GMF2, (n) BSF2 + GLF2, (o) 
BMF2 + GLF2, (p) BLF2 + GLF2.

Figure 13 represents the results of the 16 classes, the 5th 
network ANN5 which has 30 neurons on the hidden layer 
(Fig. 13a). We find the confusion matrix of the combination 
of all training, testing, and validation matrices. We remark 
that the network outputs are very accurate with a high per-
formance of 99.1%. The training matrix indicates that 9515 
samples from 9600 samples of input data set have been cor-
rectly classified and only 85 samples from them are misclas-
sified. That means the ANN5 is highly generalizable and can 
be used for any gears and bearings combined faults diagnosis 
and for faults detection and decision-making in the future.

In the same figure (Fig. 13b), the ROC graphs of the 
ANN5 are presented. We remark in the combination of all 
ROC graphs that all the classes are almost in the point (0, 1) 
for all classification processes which indicates perfect clas-
sification by almost 100% of the true positive rate values of 
the 16 classes, which validated the results of the confusion 
matrices. On the same figure (Fig. 13c), the ANN5 network’s 
total performance is presented, which is equal to 0.0040445 
at the epoch 373 and is converging to zero that represents a 
very good performance because the ANN5 error is minor. We 
remark that all plots are descending to epoch 373 and converg-
ing to the 0.0040445 error. In the same figure (Fig. 13d), the 
ANN5 network’s error histogram is presented, which provides 
accurate information about its error. As shown in the error 
histogram figure, the errors are in the center and almost zero. 

That means the ANN5 has a high classification accuracy and 
a high degree of generalizability.

* The choice of the number of neurons on the hidden layer 
was made according to the number of classes, the size of the 
input data, and the network performance, which means that we 
put 10 neurons for the classification of simple faults with 03 
classes, and 30 neurons for the combined faults with 09 classes, 
although we can fix the number of neurons on the hidden layer 
by 30 for all types of faults and all the networks, in order to avoid 
any problem during the classification process of the two types of 
faults (simple/combined) as we did in ANN5. We put 30 neurons 
on the hidden layer for the classification of the 16 classes includ-
ing simple and combined faults.

5.3 � Model generalization and approach validation

To validate our network performance and their classifica-
tion process accuracy, we used 02 signals (1st signal was 
for gear simple fault and the 2nd signal was for gears com-
bined faults) that were acquired from another test rig in 
the Laboratory of Vibration and Acoustic (LVA) of the 
institute of INSA Lyon- France, similar to the test rig used 
in our study with gear teeth numbers Z1 = 42, Z2 = 50, 
Z3 = 65, and Z4 = 46 respectively for gears 1, 2, 3, and 4. 
The gear fault frequencies corresponding to shafts rota-
tional speeds where the gears are mounted are as follows:

For LMS test rig: The gear simple faults (small, mean, 
and large) are simulated on gear 2 (11.78 Hz) and the gear 
combined faults on gear 2 (11.78 Hz) and gear 4 (16.93 Hz).

For LVA test rig: The simple faults (small, mean, and 
large) are simulated on gear 1 (14.45 Hz), and the gear com-
bined fault on gear 1 (14.45 Hz) and gear 2 (11.78 Hz).

Gearmesh frequencies: 588 Hz for the first Gearmesh fre-
quency of the reducer between gear 1 and gear 2 and 761 Hz 
for the multiplier, between gear 3 and gear 4.

The gear mean fault of the LVA test rig corresponds in 
size to gear large fault “GLF2” in our study and the gears 
combined fault (gear 1 small fault + gear 4 large fault) cor-
respond to the combination of gear large fault “GLF2” and 
mean bearing fault “BMF2” in our study.

Table 6   Classification 
performance  for the 05 
neural networks and their 
networks properties

ANN properties and number ANN 1 ANN 2 ANN 3 ANN 4 ANN 5

Neural network application Pattern recognition neural networks for classification
Neural network connection Static (feed-forward)
Neural network topology Multi-layer perceptron (MLP)
Learning/training method Supervised
Number of neurons on the hidden 

layer*
10 10 10 30 30

Number of hidden layers 1
Activation function Sigmoid
Performance error function Cross-entropy (CE)
Neural network performance 99.7% 99.9% 99.6% 99.7% 99.1%
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The two tested signals were classified in the corresponding 
class and the network classification performance was more 
than 97%. This result shows the efficiency and the robustness 
of the classification method that we have proposed.

6 � Conclusions

In this paper, gears and bearing isolate/combined faults have been 
investigated using automated diagnosis, in a time where almost 
researches focused on gear or bearing simple fault diagnosis only.

•	 The WPT optimization using minimum Shannon entropy 
and the maximum energy to Shannon entropy ratio crite-
ria gives us the bior3.1 as the best wavelet family among 
40 wavelets families, and the 6th level as the best decom-
position level with 64 vectors.

•	 Five (05) neural networks, ANN1, ANN2, ANN3, 
ANN4, and ANN5, are used in this study. From Table 6, 
the performance of the five networks is shown as very 
high, which could justify the accuracy of the classifica-
tion process; however, the use of pattern recognition neu-
ral network with the proposed optimization approach for 
gears and bearings combined fault automated diagnosis 
gave us encouraging results, validated by the results of 
INSA-LVA test rig.

•	 As a general conclusion, the model could be generalized 
to other types of faults in the rotary machine.

The following are the perspectives to this work:

•	 Frequency and time–frequency features will be included 
in the future, and the proposed approach will be applied 
to the acceleration signals acquired from a real machine 
in the manufacturing industry.

•	 Introduce deep learning (CNN) to combined faults auto-
mated diagnosis and develop an expert system in this subject.

Acknowledgements  This study was completed at the University of 
Guelma, Algeria, and with financial support from the Algerian Ministry 
of Higher Education and Scientific Research MHESR (MESRS) and 
the Delegated Ministry for Scientific Research (MDRS).

References

	 1.	 Zani ML (2003) ’’Mesures mécaniques: surveillance des machines 
tournantes’’, guide d’achat, Mesures N° 757, pp.77–84, 2003

	 2.	 McFadden PD, Smith JD (1984) Vibration monitoring of rolling element 
bearings by the high-frequency resonance technique — a review, Tri-
bology International, Volume 17(1):3–10, ISSN 0301–679X. https://​
doi.​org/​10.​1016/​0301-​679X(84)​90076-8, Elsevier Science Ltd

	 3.	 Wang W, Ismail F, Golnaraghi F (2001) “Assessment of gear dam-
age monitoring techniques using vibration measurements,”. Mech 
Syst Signal Process. 15:905–922. Elsevier Science Ltd.

	 4.	 McFadden PD (1985) Low frequency vibration generated by gear 
tooth impacts, NDT International. 18(5):279–282, October 1985, 
Butterworth & Co (Publishers) Ltd

	 5.	 Cempel, C. (1988). Vibroacoustical diagnostics of machinery: an out-
line. Mech Syst  Signal Process 2(2):135-151. Elsevier Science Ltd

	 6.	 Zheng Z, Petrone R, Péra MC, Hissel D, Béchérif M, Pianese 
C, Sorrentino M (2013) A review on non-model based diagnosis 
methodologies for PEM fuel cell stacks and systems. International 
J Hydrogen Energy 38(21):8914-8926

	 7.	 Samanta B, Al-Balushi KR (2003) “Artificial neural network based fault 
diagnostics of rolling element bearings using time-domain features,” 
Mech Syst Signal Process 17(2):317–328. Elsevier Science Ltd

	 8.	 Saravanan N, Ramachandran KI (2010) Incipient gear box fault 
diagnosis using discrete wavelet transform (DWT) for feature 
extraction and classification using artificial neural network 
(ANN). Expert Syst Appl 37:4168–4181. Elsevier Science Ltd

	 9.	 Paya BA, Esat II, Badi MNM (1997) Artifcial neural networks 
based fault diagnostics of rotating machinery using wavelet trans-
forms as a preprocessor. Mech Syst Signal Process 1:751–765. 
Elsevier Science Ltd

	10.	 Sorsa T, Koivo H (1993) Application of artificial neural networks 
in process fault diagnosis. Automatica 29:843–849

	11.	 Liu Z, Cao H, Chen X, He Z, Shen Z (2013) Multi-fault clas-
sification based on wavelet SVM with PSO algorithm to analyze 
vibration signals from rolling element bearings. Neurocomputing 
99:399–410, Elsevier Science Ltd

	12.	 Hossein Abadi HZ, Amirfattahi R, Nazari B, Mirdamadi HR, 
Atashipour SA (2014) GUW-based structural damage detection 
using WPT statistical features and multiclass SVM. Appl Acoust 
86:59–70. Elsevier Science Ltd.

	13.	 Li N, Zhou R, Hu Q. Liu X (2012) Mechanical fault diagnosis 
based on redundant second generation wavelet packet transform, 
neighborhood rough set and support vector machine. Mech Sys 
and Signal Process 28:608–621. Elsevier Science Ltd

	14.	 Yu Yang , Dejie Yu, Junsheng Cheng, A fault diagnosis approach 
for roller bearing based on IMF envelope spectrum and SVM, 
Measurement 40 (2007) 943–950. Elsevier Science Ltd.

	15.	 Changqing Shen, Dong Wang, Fanrang Kong, Peter W. Tse, Fault 
diagnosis of rotating machinery based on the statistical parameters 
of wavelet packet paving and a generic support vector regressive 
classifier, Measurement 46 (2013) 1551–1564, Elsevier Science Ltd.

	16.	 Junsheng C, Dejie Y, Yu Y (2007) Application of an impulse 
response wavelet to fault diagnosis of rolling bearings. Mech Syst 
Signal Process 21:920–929. Elsevier Science Ltd

	17.	 Yan R, Gao RX, Chen X (2014)Wavelets for fault diagnosis of 
rotary machines: a review with applications, Signal Process 96:1–
15. Elsevier Science Ltd

	18.	 Liu W, Tang B (2011) A hybrid time-frequency method based 
on improved Morlet wavelet and auto terms window. Expert Syst 
Appl 38:7575–7581. Elsevier Science Ltd

	19.	 Yang WX (2007) A natural way for improving the accuracy of the 
continuous wavelet transforms, J Sound Vibration 306:928–939. 
Elsevier Science Ltd

	20.	 Sanz J, Perera R, Huerta C (2012) Gear dynamics monitoring using 
discrete wavelet transformation and multi-layer perceptron neural 
networks, Appl Soft Comput 12:2867–2878. Elsevier Science Ltd

	21.	 Moumene I, Ouelaa N (2016) Application of the wavelets mul-
tiresolution analysis and the high-frequency resonance technique 
for gears and bearings faults diagnosis. Int J Adv Manuf Technol 
83:1315–1339. https://​doi.​org/​10.​1007/​s00170-​015-​7436-0

	22.	 Djebala A, Ouelaa N, Hamzaoui N (2008) Detection of roll-
ing bearing defects using discrete wavelet analysis. Meccanica 
43:339–348. https://​doi.​org/​10.​1007/​s11012-​007-​9098-y

	23.	 Hu Q, He Z, Zhang Z, Zi Y (2007) Fault diagnosis of rotating machin-
ery based on improved wavelet package transform and SVMs ensem-
ble, Mech Systs Signal Process 21:688–705, Elsevier Science Ltd

4353The International Journal of Advanced Manufacturing Technology (2022) 120:4335–4354

https://doi.org/10.1016/0301-679X(84)90076-8
https://doi.org/10.1016/0301-679X(84)90076-8
https://doi.org/10.1007/s00170-015-7436-0
https://doi.org/10.1007/s11012-007-9098-y


1 3

	24.	 Rajeswari C, Sathiyabhama B, Devendiran S, Manivannan K (2014) 
Bearing fault diagnosis using wavelet packet transform, hybrid PSO 
and support vector machine. Procedia Eng 97:1772–1783, ISSN 
1877–7058. https://​doi.​org/​10.​1016/j.​proeng.​2014.​12.​329

	25.	 Ngui WK, Leong MS, Hee LM, Abdelrhman AM (2013) Wavelet 
analysis: mother wavelet selection methods. Appl Mech Mater 
393:953-958

	26.	 Ji N, Zhou H, Guo K, Samuel OW, Huang Z, Xu L, Li G (2019) 
Appropriate mother wavelets for continuous gait event detection 
based on time-frequency analysis for hemiplegic and healthy indi-
viduals. Sensors 19(16):3462. https://​doi.​org/​10.​3390/​s1916​3462.

	27.	 Huang W, Kong F, Zhao X (2018) Spur bevel gearbox fault diag-
nosis using wavelet packet transform and rough set theory, J Intell 
Manuf Springer Science+Business Media New York

	28.	 Hashim MA, Nasef MH, Kabeel AE, Ghazaly NM (2020) Com-
bustion fault detection technique of spark ignition engine based 
on wavelet packet transform and artificial neural network. Alex-
andria Eng J, 59(5):3687–3697, ISSN 1110–0168. https://​doi.​org/​
10.​1016/j.​aej.​2020.​06.​023

	29.	 Rodrigues AP, D’Mello G, Srinivasa Pai P (2016) Selection of mother 
wavelet for wavelet analysis of vibration signals in machining. J Mech 
Eng Autom (5A):81–85. https://​doi.​org/​10.​5923/c.​jmea.​201601.​15

	30.	 Li H, Lian X, Guo C, Zhao P (2013) Investigation on early fault clas-
sification for rolling element bearing based on the optimal frequency 
band determination. J Intell Manuf. https://​doi.​org/​10.​1007/​s10845-​
013-​0772-​8,Sprin​gerSc​ience+​Busin​essMe​diaNe​wYork

	31.	 Akbari M, Homaei, H, Heidari, M (2014) An intelligent fault diagno-
sis approach for gears and bearings based on wavelet transform as a 
preprocessor and artificial neural networks. Int J Math Modell Comput 
4(4): 309–329. http://​ijm2c.​iauctb.​ac.​ir/​artic​le_​521870_​00.​html

	32.	 Dhamande L, Chaudhari M (2016) Detection of combined gear-
bearing fault in single stage spur gear box using artificial neural 
network. Procedia Engineering 144:759–766. https://​doi.​org/​10.​
1016/j.​proeng.​2016.​05.​082

	33.	 Medina R, Macancela JC, Lucero P et al (2020) Gear and bear-
ing fault classification under different load and speed by using 
Poincaré plot features and SVM. J Intell Manuf. https://​doi.​org/​
10.​1007/​s10845-​020-​01712-9

	34.	 Schlechtingen M, Santos IF (2011) Review : Comparative analy-
sis of neural network and regression based condition monitoring 

approaches for wind turbine fault detection. Mech Syst Signal 
Process 25:1849–1875. Elsevier Science Ltd

	35.	 Kumar HS, Srinivasa Pai P, Sriram NS, Vijay GS (2014) Selec-
tion of mother wavelet for effective wavelet transform of bearing 
vibration signals, Adv Mater Res

	36.	 Wang C, Gan M, Zhu CA (2019) A supervised sparsity-based 
wavelet feature for bearing fault diagnosis, J Intell Manuf Springer 
Science+Business Media New York

	37.	 Yang Yu (2006) YuDejie and Cheng Junsheng, A roller bearing 
fault diagnosis method based on EMD energy entropy and ANN. 
J Sound Vib 294:269–277

	38.	 Sloukia FE, Bybi A, Drissi H(2017) Selection of mother wave- 
lets for analyzing bearing vibration signals. 3rd International  
Conference on Electrical and Information Technologies 
ICEIT978–1–5386–1516–4/17/2017 IEEE

	39.	 Unal M, Onat M, Demetgul M, Kucuk H (2014) Fault diagnosis 
of rolling bearings using a genetic algorithm optimized neural 
network. Measurement 58:187–196

	40.	 Rafiee J, Tse PW, Harifi A, Sadeghi MH (2009) A novel technique 
for selecting mother wavelet function using an intelligent fault 
diagnosis system. Expert Syst Appl 36:4862–4875

	41.	 Li F, Wang J, Chyu MK, Tang B (2015) Weak fault diagnosis of 
rotating machinery based on feature reduction with Supervised 
Orthogonal Local Fisher Discriminant Analysis, Neurocomput-
ing Elsevier Science Ltd

	42.	 Shao R, Hu W, Wang Y, Qi X (2014) The fault feature extraction 
and classification of gear using principal component analysis and 
kernel principal component analysis based on the wavelet packet 
transform. Measurement 54 :118–132. Elsevier Science Ltd

	43.	 Chew L, Leung K. Learning Paradigms in Neural Networks, 
Medium, the Startup, website: https://​medium.​com/​swlh/​learn​ing-​
parad​igms-​in-​neural-​netwo​rks-​30854​975aa​8d.

	44.	 Gérard D (2005) Neural network: methodology and applications, 
Springer Book Springer-Verlag Berlin Heidelberg

	45.	 Worden K, Staszewski WJ, Hensman JJ (2011) Review: Natural 
computing for mechanical systems research: a tutorial overview, 
Mech Syst Signal Process 25:4 – 111

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

4354 The International Journal of Advanced Manufacturing Technology (2022) 120:4335–4354

https://doi.org/10.1016/j.proeng.2014.12.329
https://doi.org/10.3390/s19163462
https://doi.org/10.1016/j.aej.2020.06.023
https://doi.org/10.1016/j.aej.2020.06.023
https://doi.org/10.5923/c.jmea.201601.15
https://doi.org/10.1007/s10845-013-0772-8,SpringerScience+BusinessMediaNewYork
https://doi.org/10.1007/s10845-013-0772-8,SpringerScience+BusinessMediaNewYork
http://ijm2c.iauctb.ac.ir/article_521870_00.html
https://doi.org/10.1016/j.proeng.2016.05.082
https://doi.org/10.1016/j.proeng.2016.05.082
https://doi.org/10.1007/s10845-020-01712-9
https://doi.org/10.1007/s10845-020-01712-9
https://medium.com/swlh/learning-paradigms-in-neural-networks-30854975aa8d
https://medium.com/swlh/learning-paradigms-in-neural-networks-30854975aa8d

	Gears and bearings combined faults detection using optimized wavelet packet transform and pattern recognition neural networks
	Abstract
	1 Introduction
	2 Gears and bearings combined fault diagnosis proposed approach
	3 Theory part
	3.1 Wavelet packet transform
	3.1.1 Wavelet packet transform definition
	3.1.2 Wavelet packet transform optimization

	3.2 Time domain features extraction
	3.3 Input data normalization
	3.4 Pattern recognition neural networks

	4 Experimental part
	4.1 Experimental setup and data acquisition

	5 Results and discussion part
	5.1 Wavelet family and decomposition level optimization
	5.2 Gears and bearing fault classification process using PRNN
	5.2.1 Gears and bearing simple faults classification
	5.2.2 Gears and bearing combined fault classification
	5.2.3 Generalization of the classification process on both simple and combined faults

	5.3 Model generalization and approach validation

	6 Conclusions
	Acknowledgements 
	References


