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Abstract
Designing customized products for customer needs is a key characteristic of machine and plant manufacturers. Their manu-
facturing process typically consists of a design phase followed by planning and executing a production process of components 
required in the subsequent assembly. Production delays can lead to a delayed start of the assembly. Predicting potentially 
delayed components—we call those components assembly start delayers—in early phases of the manufacturing process can 
support an on-time assembly. In recent research, prediction models typically include information about the orders, worksta-
tions, and the status of the manufacturing system, but information about the design of the component is not used. Since the 
components of machine and plant manufacturers are designed specifically for the customer needs, we assumed that material 
data influence the quality of a model predicting assembly start delayers. To analyze our hypothesis, we followed the estab-
lished CRISP-DM method to set up 12 prediction models at an exemplary chosen machine and plant manufacturer utilizing 
a binary classification approach. These 12 models differentiated in the utilization of material data—including or excluding 
material data—and in the utilized machine learning algorithm—six algorithms per data case. Evaluating the different models 
revealed a positive impact of the material data on the model quality. With the achieved results, our study validates the benefit 
of using material data in models predicting assembly start delayers. Thus, we identified that considering data sources, which 
are commonly not used in prediction models, such as material data, increases the model quality.

Keywords Production control · Assembly · Prediction methods · Lead time reduction · Machine learning · Supervised 
Learning · Classification algorithms · Data analysis

1 Introduction

Manufacturing companies are challenged to succeed in 
dynamic international markets requesting high-quality 
products, flexibility, on-time delivery, and a reasonable 
cost structure [1–3]. Here, short delivery times and adher-
ence to delivery dates is a key factor to differentiate from 
competitors. A typical example of this is the machine and 
plant manufacturing industry producing complex products 
consisting of numerous components [4, 5]. Many of these 
components are customized enabling tailor-made solutions 
for the customers’ requirements. In general, the manufactur-
ing process of machine and plant manufacturers starts with 

the design of the product and components, followed by the 
production planning, the purchasing of raw materials, and the 
production process to manufacture the individual components 
needed in the subsequent assembly process. In parallel to the 
production process, the components required in the assembly 
are also purchased from suppliers. The task of the assembly is 
to assemble a product of higher complexity with predefined 
functions with a certain quantity of components in a partly 
multi-stage process in a given time [6] Furthermore, in the 
assembly many material flows converge, leading to a high 
potential of delays [7]. Thus, an essential factor for meeting 
the delivery date is the start of the assembly on time and a 
prior timely supply of the components needed for assem-
bly. Subsequently, components produced in the processes 
upstream of the assembly have a direct influence on the per-
formance of the assembly process. Assuming that all compo-
nents are required to start the assembly process, even a single 
component supplied behind schedule will lead to a delayed 
start of assembly [8]. To meet delivery dates, it would be 
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helpful to predict these delayed individual components (we 
call them assembly start delayers) in the early stages of the 
manufacturing process. Based on an early prediction, meas-
ures such as close communication with the supplier, extra 
shifts to temporarily increase production capacity, or utilizing 
a different workstation can be derived to speed up the manu-
facturing process and thus, prevent assembly start delays.

With the increasing development of machine learning 
(ML) and the availability of big data, ML-based prediction 
models are becoming more and more established in the field 
of production planning and control. ML models have already 
been successfully applied to predict lead times of manufac-
turing processes [9] and to predict assembly start delayers 
[10]. Our previous research already showed that predicting 
assembly start delayers utilizing a binary classification is the 
recommended approach and outperforming approaches utiliz-
ing a lead time prediction to identify assembly start delayers 
[10]. Furthermore, when setting up and training a prediction 
model, the used data model has a central influence on the 
model quality of the prediction model [11, 12]. For example, 
Burggraef et al. [9] have already discovered that material data 
defining all characteristics of the product to be manufactured 
such as geometric specification, weights, or the material itself 
are rarely used in ML-models to predict lead times.

Looking at the business process of a machine and plant man-
ufacturer in contrast to the usage of material data in prediction 
models, it is noticeable, that the products of machine and plant 
manufacturers are typically tailor-made for each customer need 
[13, 14]. As the product’s characteristics strongly influence the 
needed processes for its manufacturing [15], the design phase 
of machine and plant manufacturers including the material data 
specified within the design phase also has a non-negligible influ-
ence on the manufacturing process. Consequently, we assume 
that the usage of material data in a model predicting assembly 
start delayers has an impact on its model quality. Nevertheless, 
material data are currently only rarely used in prediction mod-
els. But, so far, a validation that the material data influence the 
respective model quality has not yet been performed.

Thus, our manuscript aims to set up an ML-based model 
for the prediction of assembly start delayers and to analyze 
and systematize the influence of material master data on the 
model quality. As a research method, we apply a case study 
at a machine and plant manufacturer. With the achieved 
results, our paper provides two main contributions:

• We developed a model to predict assembly start delayers 
utilizing a machine learning classification approach.

• We identified that material data influence the model qual-
ity of a model predicting assembly start delayers. How-
ever, there was only a slight influence.

Our paper is structured as follows. Section 2 first introduces 
the product structure and manufacturing processes in an 

engineer-to-order environment as well as available approaches 
to identify and predict assembly start delayers. Section 3 elabo-
rates on our approach to quantify the impact of material data on 
the model quality predicting assembly start delayers utilizing 
ML. In Sect. 4, the results are presented and discussed. Section 5 
critically reviews the limitations of our approach and the results 
obtained. Furthermore, the implications for further research are 
derived. Finally, a summary is given in the last section.

2  State of the art

The products of machine and plant manufacturers typically 
consist of several hundred to several thousand components. 
These are procured from suppliers or manufactured in the 
company’s production facilities. Purchased components 
can be procured on an order-anonymous basis, such as for 
standard components, and an order-specific basis, such as 
for special and drawing components. The procurement of 
components from suppliers as well as the manufacturing of 
components in the in-house production belong to processes 
upstream of the assembly [16]. Since the assembly is a con-
vergence point where several material flows converge, the 
risk of delays due to missing components is increased [17].

One established model to analyze converging material flows 
is the assembly flow element developed by Schmidt [18] with 
further developments and applications in the assembly flow 
diagram and supply diagram [16, 18]. In all models, the so-
called completer is the last inflow to an assembly order and is 
therefore the component that was supplied last by the processes 
upstream of the assembly. A completer can be completed on 
time—before the planned start date of the assembly, or late—
after the planned start of the assembly. A late finalization of a 
completer, therefore, leads to a delay in the start of assembly. 
In this manuscript, we define such components as “assembly 
start delayers” (see also Chapter 1). Assuming that all compo-
nents are necessary to start the assembly, the schedule variance 
of the assembly start delayer determines the earliest possible 
start date of the assembly. Accordingly, a temporal acceleration 
of the manufacturing and/or procurement process of an assem-
bly start delayer has the biggest potential to push a delayed 
assembly start back to the target date. However, the supply dia-
gram is primarily designed to analyze data relating to the past 
and to identify general issues such as an overall bad assembly 
supply situation in individual assembly areas. To derive case-
specific countermeasures to accelerate individual production 
orders, further analysis is needed.

In production, typically scheduling techniques are used to 
derive order sequences and to calculate lead times of work 
orders used to determine the start dates and end dates of the 
respective orders and subsequently to determine the assembly 
start delayers [19]. The order sequence is defined according to 
certain rules considering for example the available production 
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capacities, the technical requirements, the demand dates, and 
the system status [8, 20, 21]. Further, especially for remanufac-
turing systems, also environmental objectives are considered 
[22, 23]. To optimize the lead time of an order, the determina-
tion of its waiting time depending on the machine’s utiliza-
tion is essential [24]. Here, performance curves considering 
functional relationships between logistic parameters such as 
lead times, throughput, and stock play a key role [24, 25]. Nev-
ertheless, deviations from the schedule may occur leading to 
an inaccurate determination of the assembly start delayers. 
Besides determining the assembly start delayers based on cal-
culated lead times utilizing scheduling techniques, it is also 
possible to predict lead time directly. By predicting the lead 
times, completion dates can be determined early and devia-
tions from the schedule can be detected [26]. In the past, many 
approaches for the prediction of lead times have been estab-
lished. For example, Cheng and Gupta [27] investigated meth-
ods from the field of operations research (OR) such as Con-
stant (CON), Random (RAN), or Total-Work (TWK). With the 
increasing development of ML, new methods for predicting 
lead times have emerged (see, for example, [28–31]).

A systematic literature review conducted by Burggraef et al. 
[9] has analyzed existing approaches focusing on the predic-
tion of lead times in the research fields of ML and OR and 
classified them according to the three criteria data class, data 
origin, and used method/algorithm. Looking at the data class, 
the authors identified that the majority of publications exam-
ined use order data and information about the system status of 
the production system. In detail, 95 % of their 42 publications 
examined use order data, and 62 % use information about the 
system status. Jia, Zhang et al. [32], Berlec and Govekar [33] 
or Gramdi [34] for example use order data such as start and 
end dates of orders or order-specific processing times for the 
prediction of lead times, whereas the authors in [28] and [35], 
for instance, use a combination of order data and informa-
tion about the system status such as the machine utilization, 
processing times or the queue length. In contrast to the order 
data and information about the system, with 24 % of the 42 
publications examined, machine data are slightly less used. For 
example, the authors in [36] include the machine ID and the 
authors in [37] include the so-called ’equipment data’ contain-
ing information about machines and tools in their prediction 
models. Further, Burggraef et al. [9] identified Gyulai, Pfeiffer 
et al. [38] and Karagolan and Karademir [39] with a portion of 
only 5 % of the 42 publications examined as the only authors 
who include material data such as dimensions or specifica-
tions of the product in their prediction models. These findings 
highlight that material data were rarely used compared to order 
data, information about the system status, and machine data.

That being said, the business process of a machine and 
plant manufacturer typically hinges on tailor-made products 
for each customer need [13, 14]. Thus, the design phase in the 
business process and the associated documents herein can be 

said to have a non-negligible influence on the desired product. 
Furthermore, the product design is also the basis for the pro-
duction planning determining the process to manufacture the 
respective components [15]. Accordingly, the material data 
specified in the design phase are also influencing the manu-
facturing process. Consequently, we assume that the usage of 
material data in a model predicting assembly start delayers has 
an impact on its model quality. Nevertheless, material data are 
currently only rarely used in prediction models.

Utilizing the findings of the systemic literature review in 
[9], the authors in [10] applied different ML algorithms on 
a total of 24 different prediction models on four different 
levels of detail to identify the modeling approach with the 
highest model quality in predicting assembly start delay-
ers. Their models on the coarsest level of detail predicted 
assembly start delayers utilizing a binary classification. 
Their models on the three finer levels of detail predicted 
assembly start delayers via a prediction of different lead 
times (component lead times, order lead times, and opera-
tion lead times) utilizing a regression approach and sub-
sequent postprocessing operations to identify the assembly 
start delayers. After training the 24 prediction models based 
on a real data set of a machine and plant manufacturer and 
evaluating their model quality, they identified the coars-
est level of detail utilizing the binary classification as the 
best modeling approach. Thus, one of their findings was, 
that performing a binary classification to predict assembly 
start delayers outperformed the prediction of assembly start 
delayers based on a prior prediction of lead times utilizing a 
regression model. Accordingly, for our approach, applying 
a binary classification is recommended to predict assembly 
start delayers. Furthermore, the authors in [10] already used 
material data in all of their 24 prediction models leading to 
good results. Nevertheless, as they did not systematically 
analyze the impact of material on the model quality, there 
is still no analysis available proofing that material data have 
an impact on the quality of models predicting lead times.

In summary, there are models available for the prediction 
of lead times, but they are not explicitly used for the predic-
tion of assembly start delayers. Currently, there is only one 
approach available focusing on the prediction of assembly 
start delayers in the field of machine and plant manufacturers 
comparing a direct prediction of assembly start delayers with 
an indirect prediction based on a previous lead-time predic-
tion. But still, there is no analysis performed on the impact of 
material data on the quality of models predicting lead times.

Consequently, in this work, we will focus on investigat-
ing the influence of material data on the quality of models 
predicting assembly start delayers. This systemic analysis 
is completely novel compared to recent research. For this 
purpose, the following research question is posed, con-
sidering the previous explanations: “What effect does the 
use of material data have on the model quality of a model 
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predicting assembly start delayers?” Following our argu-
mentation that the products of machine and plant manufac-
turers are typically designed tailor-made to meet the spe-
cific customer needs and that the material data, therefore, 
characterize a product, we formulate the following working 
hypothesis: “The model quality for the prediction of assem-
bly start delayers increases when utilizing material data.”

3  Modelling approach

Examining an exemplary use case is an established approach 
in the field of machine learning, especially in lead-time pre-
diction (see, for example, [37, 39–41] and assembly start 
delayer prediction (see, for example, [10]). One motivation 
for examining an exemplary use case is to gain insights for 
real needs, such as the need of a manufacturing company, 
rather than to develop theories without practical relevance 
[42]. Accordingly, investigating an exemplary use case 
to answer our research question and to study our working 
hypothesis is an appropriate and established approach and 
thus, was our approach of choice. Furthermore, as this work 
extends our previous research in the prediction of assembly 
start delayers [10], we investigated the same case at the previ-
ously chosen representative machine and plant manufacturer.

The methodology used in this manuscript is following 
the established Cross Industry Standard Process for Data 
Mining (CRISP-DM) [43, 44] consisting of the six phases 
Business Understanding, Data Understanding, Data Prepara-
tion, Modeling, Evaluation, and Deployment.

3.1  Business understanding

In the Business Understanding phase, we derived objectives 
and requirements from a business perspective and converted 
them into a data mining problem. The objective from a busi-
ness perspective was to prevent delays due to missing compo-
nents in the final assembly so that the predefined due date of 
a customer order can be met. Early detection of components 
that have a higher tendency of late finishing in their preproc-
essing stages would be helpful to prevent a subsequent delay 
in the final assembly, as the production planer can acceler-
ate the order in the preprocessing stages. The company under 
observation develops machines for steel production, which 
are made up of several hundred components. These compo-
nents are both procured from suppliers and are manufactured 
in-house. An analysis carried out in the company beforehand 
showed that approx. 95 % of the assembly start delayers are 
components produced in the company’s production. Thus, the 
scope of our prediction model was constrained to the compo-
nents manufactured in-house. In the process upstream of the 
assembly, these in-house components are processed by vari-
ous machines for mechanical and welding operations.

In the prediction model, the components were classified as 
“assembly start delayer” (ASD) or “no-assembly start delayer” 
(NASD) which was identified as a suitable modeling approach 
in our previous research [10]. For this classification, a slightly 
modified version of the definition of the assembly start delayers 
given in chapter 2 is applied: Instead of considering only one 
single assembly start delayer as a date determining factor for the 
assembly start according to the definition of Beck and Schmidt 
[16, 18] and thus, assigning the highest potential for improvement 
to this component, several assembly start delayers were consid-
ered for each assembly order. This extension is recommended, 
since considering only one assembly start delayer is not revealing 
whether this single one is an outlier or whether a large portion 
of the components is completed at a similar time. The modified 
assembly start delayer classification was defined as follows: If 
the schedule variance of a component is larger than or equal to 
80 % of the maximum schedule variance of all components of 
an assembly order, which is the schedule variance of the actual 
assembly start delayer, then this component is considered as an 
assembly start delayer. In detail, we utilized the formula

to assign one of the two classes ASD or NASD to every com-
ponent i, where SVi,j is the schedule variance of component i 
of assembly order j, calculated by

where CDi,j is the completion date of component i of assem-
bly order j and TSDj is the target start date of assembly orderj, 
and SVj,max the maximum schedule variance of all compo-
nents of assembly orderj, calculated by

where CDj,max is the latest completion date of all components 
of assembly order j (the completion date of the respective 
completer).

The time of application of the prediction models (predic-
tion time) and thus, the time of gaining knowledge about 
potential assembly start delayers should be as early as pos-
sible within the production process, as the production planer 
can accelerate the order in the manufacturing processes 
upstream of assembly stages. For the prediction models 
within this study, we set the date of order creation and thus, 
the completion of order planning as prediction time. At this 
point, all necessary information, such as bill of materials, 
operations, and machine assignments, are available.

Summarized, we converted the business objective to a binary 
classification problem. Subsequently, to answer the research 
question, and with our hypothesis that the model quality for the 
prediction of assembly start delayers increases when utilizing 

(1)Classi =

{

ASD SVi,j ≥ 0.8 ∗ SVj,max ∧ SVi,j > 0

NASD SVi,j ≥ 0.8 ∗ SVj,max ∨ SVj,max < 0

(2)SVi,j = CDi,j − TSDj

(3)SVj,max = CDj,max − TSDj
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material data, we derived our data mining approach: We com-
pared ML-based binary classification models using a data set 
including material data with ML-based binary classification 
models using the same data set but excluding the material 
data (cf. Fig. 1). For both cases, “including material data” and 
“excluding material data,” we applied several ML-algorithms 
such as tree-based classifiers, support vector machines, or neu-
ral networks utilizing the Scikit-learn library or Keras library 
in Python (further details about the ML-algorithms used are 
explained in chapter 3 D). In total, 12 models were created, 
six per case utilizing different ML algorithms. Thus, with our 
approach we compared the performance of the different ML 
algorithms in both cases to identify the impact of material data 
on the model quality and the best performing ML algorithm 
by evaluating the achieved model qualities. Such a systemic 
analysis of the impact of material data on the model quality is 
completely new in recent research (see Chapter 2).

To evaluate the different achieved model qualities, we 
applied a confusion matrix, since the output of all ML mod-
els is the binary classification “assembly start delayer / no 
assembly start delayer.” The evaluation of the model quality 
with a confusion matrix is an established method and has 

already been demonstrated in other studies (see, for exam-
ple, [45, 46]). Based on the confusion matrix, we calculated 
Matthew’s correlation coefficient (MCC) and the F-score as 
established evaluation metrics to compare the performance 
of the different ML algorithms on both data sets. As recom-
mended by the authors in [10, 47], the MCC considers the bal-
anced ratios of all four confusion matrix categories and thus, 
is the most informative metric to evaluate a confusion matrix. 
Considering the MCC also ensured that our model was not 
just predicting the majority class in our data set, which is 
“no assembly start delayer.” Furthermore, as recommended 
by the authors in [10] we considered the F-score as an evalu-
ation metric since it is focusing on the prediction of positives 
(assembly start delayers) only, which is the most important 
category in our case of interest. For the F-score, we used the 
 F2-score in detail considering the recall two times as impor-
tant as precision. This weighting is based on the assumption 
that it seems more important to identify as many of the actual 
assembly start delayers as possible, in case of doubt even 
more than exist, and to define acceleration measures for them, 
than not to identify individual assembly start delayers at all. 
By evaluating each ML model with these metrics, the impact 

Fig. 1  Modeling architecture to quantify the impact of material data on the model quality
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of material data on the quality of a model predicting assem-
bly start delayers can be determined. Furthermore, with the 
MCC and  F2-score, we use the same metrics as in our previous 
research [10] and thus ensure comparability.

3.2  Data understanding

In the data understanding phase, according to the authors 
in [44], we collected and analyzed the data to identify data 
quality problems and to develop a solid understanding of 
the dataset. The data were collected from the Enterprise 
Resource Planning (ERP) and Advanced Planning and Sched-
uling System (APS) of the plant and machine manufacturer 
under observation with a period under review of one year. In 
detail, we collected data from the four data classes order data, 
machine data, material data, and system status, and thus fol-
low the recommendation of the authors in [9]. The data export 
consisted of several separate CSV files containing assembly 
orders, the corresponding production orders and operation as 
well as information on the material and the systems status. To 
better join the different files, we set up an entity-relationship 
diagram (see Fig. 2) enabling us to identify the primary keys, 
which are the prerequisite for their connection.

The complete dataset consisted of 356 assembly orders 
comprising 1,506 components supplied by the in-house pro-
duction and thus, is equal to our previous research [10]. These 
1,506 in-house components are manufactured by a total of 
3,187 production orders comprising 15,772 operations. With 
our modified definition of an assembly start delayer, we had 
a total of 24 % “assembly start delayers” and 76 % “non-
assembly start delayers” of all in-house components.

Further, as recommended by the authors in [44] we focused 
on gaining a better understanding of the data and developing 
first ideas of relevant data fields for the prediction of assembly 
start delayers by performing an exploratory data analysis. In 
detail, we utilized several graphical techniques such as box-
plots, scatter plots, or Pareto charts. For example, we analyzed 
the distribution of the total number of operations needed to 
manufacture ASDs and NASDs (cf. Fig. 3a) showing a slight 
deviation between both classes. Components manufactured in 
more operations have a slightly higher tendency of becoming 
an ASD. As another example, we plotted the distribution of 
the gross weight of ASDs and NASDs as an initial study of 
the impact of material data (cf. Fig. 3b). ASDs have a slightly 
higher mean and median gross weight than NASDs. Heavier 
components may need extra handling effort and transport time 
and therefore have a higher tendency of becoming an ASD.

3.3  Data preparation

With the gathered understanding of the data, we continued 
with preparing the final dataset for training the models by 
transforming and cleaning the initial raw data. In detail, we 

continued to identify the relevant data field for the prediction 
models by performing a correlation analysis as recommended 
by the authors in [48]. Subsequently, after further data pre-
processing operations such as discretization, decomposition, 
normalization, and aggregation (see, for details, [49, 50]), we 
defined the features for our data model resulting in 17 features, 
although not all features are applied in all models (see Table 1).

Since tree-based classifiers from the Scikit-learn library 
and neural networks from Keras library can only be trained on 
numerical variables in Python [51], the categorical variables 
such as “component name”, “dispatcher” and “priority” were 
converted to Boolean values by performing One-Hot-Encoding. 
The number of features increases to a total of 375 features. Due 
to the One-Hot-Encoding, our data set was transformed into 
a sparse matrix containing equal information but in a higher 
dimensional room. This sparse matrix could for example hinder 
the optimization of a neural network, due to a not neglecta-
ble number of zeros as input of the model. Furthermore, the 
encoded features could have a dependency on each other. To 
investigate the correlations between the features, we created 
a 375 × 375 correlation matrix in form of a lower triangular 
leading to 71,631 individual correlation coefficients which 
were assigned to five bins of different correlation strengths 
(cf. Table 2) according to the established rules recommended 
by the authors in [52, 53]. Initially, 1.4 % of all feature-pairs 
showed at least a moderate correlation a correlation coefficient 
higher than 0.5 and 1.5% of features pairs have low correlation 
(Tables 1–5). This indicates an existing dependency between 
our features. Thus, a Principal Component Analysis (PCA) was 
performed to avoid a sparse matrix and to reduce the depend-
encies between the features to ensure a good model quality. 
The improvement of the model quality by using a PCA has 
already been demonstrated in other studies (see, for example, 
[54]). By performing PCA, the 379 features were transformed 
into 46 principal components, which explain most of the vari-
ance of the original features. After performing PCA, we again 
performed a correlation analysis and assigned all correlation 
coefficients to the equal five bins (cf. Table 2), showing that all 
principal component pairs have a negligible correlation.

For training and evaluating the models, the dataset was 
divided into training and test sets with a ratio of 80 % training 
data to 20 % test data. In selecting the ratio, we followed estab-
lished ratios. These are approx. 75 % - 80 % training data to 25 
% - 20 % test data [55].

3.4  Modeling

The subsequent modeling phase covered the develop-
ment of ML models and the calibration of the hyperpa-
rameters to optimal values [44]. All ML models predict 
assembly start delayers using a binary classification, which 
was identified as the best modeling approach in our pre-
vious research [10]. Thus, components are classified as 
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“assembly start delayer” or as “no assembly start delayer.” 
To ensure the comparability of all ML models, we chose 
the same set of ML algorithms on both data sets. In detail, 
we compared the performance of a Support Vector clas-
sifier (SVC), a Decision Tree (DT) classifier, a Random 
Forest (RF) classifier, an Adaptive Boosting (AdaBoost) 
classifier utilizing a DT-classifier as a base estimator, a 
Gradient Boosting (GB) classifier and a Multilayer Per-
ceptron (MLP), since they are established approaches for 
binary classifications [56–58]. For the MLP, specifically, a 

double hidden layer feedforward net with stochastic gradi-
ent descent (SGD) optimizer was applied. The number of 
nodes was 46 nodes on the input layer to cover all input 
features after performing One-Hot-Encoding and PCA, 50 
nodes on each hidden layer, and one node on the output 
layer for the binary classification. The number of hidden 
layers, the number of nodes on the hidden layers, and the 
activation function on the hidden layers were defined by 
continuous optimization of the model quality. In detail, we 
compared different network architectures ranging from one 

Fig. 2  Entity-relationship diagram with an excerpt of available features per data table
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to ten hidden layers with 1 to 100 nodes per hidden layer. 
The best network structure was the above-mentioned dou-
ble hidden layer net. As activation function for the output 
layer, a sigmoid function was chosen, which is particularly 
suitable for binary classifications [59]. For the hidden lay-
ers, we applied a ReLU function as activation function 
after comparing it with the sigmoid function, tanh func-
tion and He function regarding the reached model quali-
ties. All classification models were implemented in Python 
3.7 utilizing the Scikit-learn library and Keras library. An 
overview of the optimized hyperparameters used in each 
of the classification models is given in the appendix in 
Tables 4 and 5.

In summary, we created 12 different prediction models 
to classify components as ASD or NASD. These 12 models 
differentiated in the utilization of material data—including or 
excluding material data - and in the utilized ML algorithm—
six algorithms per material data case. The target was to quan-
tify the effect of utilizing material data on the quality of a 
model predicting assembly start delayers while comparing 
different ML algorithms, which is a novel approach compared 
to recent literature. As metrics to evaluate the model quality, 
we used the MCC and F-Score based on a confusion matrix.

4  Evaluation of model application

In the evaluation phase, the applied models were thoroughly 
evaluated to check whether they meet the targets of our data 
mining approach [44]: Quantifying the impact of material 
data on the quality of a model predicting assembly start 
delayers. Thus, we split the two data sets—including and 
excluding material data—into two separate train and test 
data sets. Subsequently, we trained and tuned all ML algo-
rithms based on the train data sets and then evaluated the 
achieved model qualities based on the two test data sets. The 
results are documented in Table 3.

Upon evaluating the metrics, it is particularly noticeable 
that the models trained on the data set including material data 
achieved the best results. Furthermore, the best results per 
data set were both achieved by the GB classifier. With an 
MCC of 0.67 and an  F2-score of 77 %, the GB classifier utiliz-
ing material data outperformed the GB classifier not utilizing 
material data with an MCC of 0.62 and an  F2-score of 71 %. 
Thus, comparing the best ML model per data set already indi-
cates a dependence of the model quality on the material data.

Additionally, we created boxplots showing the spread in 
the  F2-score and MCC of all ML models utilizing the two 

Fig. 3  Excerpt of the exploratory data analysis: Impact of gross weight and number of operations on assembly start delayers
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different data sets (cf. Fig. 4). With the boxplots, the overall 
dependency of the model quality on the material data inde-
pendent of the considered ML algorithm was visualized. The 
distribution of the  F2-score and MCCs of the ML models 
trained on the dataset including material data differed from 
the respective distribution of the ML models trained on the 
dataset excluding material data. This indicated that, overall, 
the ML models trained on the dataset including material data 
performed better than those excluding material data. Thus, 
the comparison of the overall spread of the ML models 
emphasizes the indication that material data have an impact 
on the quality of models predicting assembly start delayers.

Finally, we performed a statistical test to validate our work-
ing hypothesis. In detail, we performed two paired-samples 
t-tests, also referred to as dependent sample t-tests, both for 
MCC and  F2-score. This paired-samples t-test is used to assess 
whether the population means of two related samples differ. 
Thus, with the two paired-samples t-tests, we compared the 

means of the two samples ’ML models including material data’ 
and ’ML-models excluding material data’ individual for MCC 
and  F2-score. Additionally, we considered that the applied ML 
algorithms in each of the two samples were equal. Applying 
both tests revealed a p-value for MCC of approx. 0.003 and 
for the  F2-score of approx. 0.005. Consequently, since both 
p-values were less than 0.05, the difference between the two 
samples in both the MCC and  F2-score was statically signifi-
cant. Accordingly, the impact of our considered material data 
on the model quality was statistically significant as well.

Consequently, the working hypothesis could be confirmed. 
The model quality significantly increased when material data 
were considered. However, in our case, there was only a slight 
increase in the MCC with an average of 0.04 and the F-score 
with an average of 3 %. Thus, we further analyzed possible 
explanations for this small impact only and hypothesized 
prospects to further increase the benefit of utilizing material 
data. The reason for the small impact of material data observed 
could be that the considered material data—gross weight and 
component name—contain too little information to describe 
the characteristics of the components. Other information of 
the component such as dimensions, volume or number, and 
specification of features in the component’s CAD model like 
drill holes, shaft shoulders, radii, or surface roughness could 
further increase the impact of material data. For example, the 
transportation, stocking, and handling effort of a component 
do not solely depend on its weight, but also other character-
istics like dimensions and volume. For instance, the dimen-
sions of a component determine whether the component can 
be easily transported by a forklift or crane, and thus, indicates 
an impact on an increase in transport times. Furthermore, the 
number and specification of a component’s features indicate its 
complexity and need for special processing operation influenc-
ing the processing time. Thus, considering additional material 
data could increase the model quality.

In summary, we could answer our research question with our 
main contribution that the model quality of an ML-based model 
predicting assembly start delayers is significantly increasing 
when using material data. Thus, our study proved that models 
predicting assembly start delayers benefit from utilizing mate-
rial data. In our exemplary case, we included the material data 
gross weight and component name in our prediction model 
significantly increasing the model quality. With these results, 
our approach is the first to systematically analyze the influence 

Table 1  Features used in the prediction model

Data class Feature Including 
material 
data

Excluding 
material 
data

Order data Target lead time X X
Total number of orders X X
Total number of operations X X
Target processing time X X
Target setup time X X
Order creation-delay X X
Priority X X
Operation type X X
Dispatcher X X
Number of production 

areas a component/order 
passes through

X X

System status Number of orders in 
system

X X

Material data Gross weight X
Component name X

Machine data Production area X X
Workstation type X X
Workstation number X X
Workstation capacity X X

Table 2  Correlation between 
features before and after PCA 
following the bin sizes of [52, 
53]

Bin Correlation Coefficient Before PCA After PCA

Very high correlation 1.0 to 0.9 (−1.0 to −0.9) 0.3% 0.0%
High correlation 0.9 to 0.7 (−0.9 to −0.7) 0.6% 0.0 %
Moderate correlation 0.7 to 0.5 (−0.7 to −0.5) 1.5% 0.0%
Low correlation 0.5 to 0.3 (−0.5 to −0.3) 6.5% 0.0%
Negligible correlation 0.3 to 0.0 (−0.3 to −0.0) 91.1% 100.0%
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of material data on model quality in predicting assembly start 
delayers.

5  Limitations and implications for further 
research

In this work, we only considered one single machine and plant 
manufacturer as an exemplary case. Although a case-based  
approach is common in the field of machine learning (see, 
for example, [10, 37, 39–41]), the findings might remain 
case-specific and might not be generalizable. Accordingly, 
future research should validate the achieved findings consid-
ering additional machine and plant manufacturers in further 
case studies.

Nevertheless, in our work, we were able to show that 
material data have a positive influence on model quality for 

predicting assembly start delayers. However, the verifiable 
influence of the material data on the model quality was only 
small. We suspected the small range of data fields from the 
material data as a possible reason for this. Further material 
data could improve the model quality and thus strengthen the 
influence of the material data. Accordingly, future research 
should set up a model to predict assembly start delayers with 
additional material data.

The addition of further material data could also improve 
the generally low model quality. With a maximum MCC of 
0.67 and a maximum  F2-score of 77 %, the model quality is 
still too low for a successful practical application of the model, 
as there are still many false positive and false negative predic-
tions. In general, the model quality depends on the input data, 
the utilized ML algorithm, and the complexity of the mod-
eling approach [11, 60–62]. Together with our previous study 
[10], we already analyzed several different ML algorithms 

Table 3  Reached model 
qualities of all prediction 
models

Model Including material data Excluding material data Deviation

MCC F2-score MCC F2-score MCC F2-score

SVM 0.55 72% 0.47 67% 0.08 5%
DT 0.56 68 % 0.52 66 % 0.04 2 %
RF 0.52 70 % 0.50 68 % 0.02 2 %
GB 0.67 77 % 0.62 71 % 0.05 6 %
AB 0.60 72 % 0.56 68 % 0.04 3 %
MLP 0.59 73 % 0.56 71 % 0.02 2 %

Fig. 4  Boxplot of MCC and F-Score for all prediction models on each of the four levels of details
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and modeling approaches. Thus, we infer that neither further 
optimization of the ML algorithm nor the modeling approach 
used is likely to lead to a significant improvement of the model 
quality. Instead, we infer that an enhancement of the input 
data could further improve the overall model quality, as the 
database also has an essential influence on the model quality 
[11, 12]. In our study, we already proved that material data 
influence the model quality. Consequently, we encourage fur-
ther studies to consider additional data fields from the area of 
material data when setting up a model predicting assembly 
start delayers to further optimize the model.

Together with our previous work in the same research field 
[10], our findings observed are a good starting point in the 
prediction of assembly start delayers and the influence of 
material data on the model quality. As we could easily access 
the considered material data and integrate it into our data set, 
we added value to our model without much additional effort 
for data acquisition. Consequently, we have shown that it is 
worth also considering data, which might not have any influ-
ence on the model quality at first glance, and consequently is 
not commonly used. For future research in the field of applied 
machine learning, the elaboration of the database should be 
extended to other easily accessible data sources, even if they 
are not typically considered for the respective use case.

6  Conclusion

At machine and plant manufacturers, the manufacturing 
process typically begins with the design of the product and 
its components before planning and executing the produc-
tion process to manufacture the individual components 
needed in the subsequent assembly process. An essential 
factor for meeting a delivery date is the start of the assem-
bly on time and a prior timely supply of the components 
needed for assembly. Subsequently, components produced 
in the processes upstream of the assembly have a direct 
influence on the performance of the assembly process. To 
meet delivery dates, we set up a supervised learning model 
to predict potentially delayed individual components (we 
call them assembly start delayers) in the early stages of the 
manufacturing process. Currently, machine learning models 
in the related area of lead time prediction typically include 
information about the system status, the machines, and the 
orders in their prediction model and do not consider mate-
rial data [9]. As the design of a product is a central process 
for machine and plant manufacturers and the components 
are typically tailor-made to meet the customer’s needs, 
we assumed that material data influence the model qual-
ity. Thus, we formulated the following working hypothesis: 
“The model quality for the prediction of assembly start 
delayers increases when utilizing material data.” To verify 

the working hypothesis, we applied the established CRISP-
DM procedure at an exemplary chosen machine and plant 
manufacturer. Here, we created 12 different prediction mod-
els to classify components as “assembly start delayer” or 
“no assembly start delayer.” These 12 models differentiated 
in the utilization of material data—including or excluding 
material data—and in the utilized ML algorithm—six algo-
rithms per material data case. The target was to quantify the 
effect of utilizing material data on the quality of a model 
predicting assembly start delayers while comparing different 
ML algorithms. As metrics to evaluate the model quality, 
we used the MCC and F-Score based on a confusion matrix.

Evaluating the different quality metrics of the 12 predic-
tion models revealed a positive impact of the material data 
on the model quality. Thus, the working hypothesis could 
be confirmed. However, in our case, there was only a slight 
increase in the MCC and F-score. As a possible explanation 
for the small impact on the model quality, we suspect the 
limited information about the material considered in our 
model—gross weight and component’s name only. Adding 
further information about the material such as dimensions, 
volume, or number and specification of features in the com-
ponent’s CAD model like drill holes, shaft shoulders, radii 
or surface roughness could further increase the impact of 
material data. Nevertheless, even with our limited consid-
eration of material data. We verified, that utilizing data, 
which is commonly not used in prediction models increases 
the model quality.

In total, we successfully analyzed the impact of mate-
rial data on the quality of models predicting assembly start 
delayers and gave insights into the performance of different 
modeling approaches. With our results, we achieved our two 
main contributions: First, we developed a model to predict 
assembly start delayers utilizing a machine learning clas-
sification approach. Second, we identified that material data 
influence the model quality of a model predicting assembly 
start delayers. However, there was only a slight influence. 
With our findings, for future machine learning approaches 
in the area of production planning and control, we recom-
mend considering data sources apart from typically used 
data sources as well. We were able to show that even atypical 
data sources can contribute to an improvement of the model.

Appendix

The hyperparameters used in the prediction models were 
optimized utilizing a grid search and cross-validation algo-
rithms (GridSearchCV) from scikit learn. Tables 4 and 5 
summarize the utilized hyperparameters in the different 
models on the four levels of detail.
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