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Abstract
This paper presents a methodology that uses the central composite design and the radial basis function neural networks in 
type-1 or in interval type-2 model to generate a network that evaluates quality features in an industrial image processing. 
The methodology includes a couple of radial basis functions as Huygen’s tractrix and triangular membership functions as 
complementary contributions that have not been reported in literature as radial basis functions. The advantage of using this 
proposal is that the training is not required to get an accurate result, also the generation of the IT2 RBFNN fuzzy rule base 
for evaluating quality characteristics is simplified by using the central composite design method and statistical indicators 
extracted from the product specification data. Experimental results show an error reduction of 90% when the interval type-2 
Mandami Radial basis function neural network was compared against its type-1 counterpart using the Gaussian member-
ship functions onto a radial basis function network. On the other hand, the implementation of the Huygen’s tractrix, found 
a reduction error of 50% in comparison to the Gaussian function.

Keywords  Radial basis function network · RBFNN · T1 RBFNN · Interval type-2 · IT2 · IT2 RBFNN · Image processing · 
Quality assurance · Fuzzy neural network

1  Introduction

While the Interval type-2 (IT2) systems arise as an alterna-
tive to manage uncertainties present in all industrial pro-
cesses, the type-1 (T1) models such as T1 singleton fuzzy 
logic or their equivalent radial basis function neural network 
(RBFNN), also called T1 RBFNN, both cannot manage 
uncertainties [1]. T1 models require several cycles, epochs 
or iterations of training, and adjustment to get an acceptable 
result or an adequate level of precision. For example in [2], 
1300 epochs of training were required to get an adequate 
result. Therefore, as mentioned by [3], the main problem to 
obtain better precision output relies on the modeling of the 
system. Most researchers base their modeling by intuition 
and as a thumb rule because there are not specific criteria 
for determining how many rules are needed to model this 
kind of systems.

Specialized literature shows a couple of techniques to 
model intelligent systems [4–11], but all of them are applied 
to T1 models. Only a pair of proposals was found that uses 
the IT2 [2, 11]. In [4, 5] has been proposed a model that 
uses linguistic labels as fuzzy sets, but in [5] the center label 
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is missing to create the universe of discourse (UOD) and 
with them the fuzzy rule base. In [4] the model is based in 
the Gaussian data distribution, but they do not consider the 
mean which means that the model is restricted to have odd 
input variables, while in [5] the model is restricted to even 
input variables.

In [6] a method that uses control charts to model the rule 
base was developed, but it was restricted to use a genetic 
algorithm in order to generate the membership functions 
(MF), the support or width of the fuzzy sets is non-uniform, 
and finally a combination of trapezoidal and triangular MFs 
is produced to get the UOD. In [7] a similar method pre-
sented in [6] was used, but it only uses triangular MFs and 
presents the presence of blank spaces in the UOD. In [8] 
five linguistic labels have been used which are restricted to 
a constant rule base that is inflexible and unadaptable with 
blank spaces in the UOD.

The statistical properties of the Gaussian distribution 
were used in [3] and [9] to model the fuzzy rule base. The 
central composite design (CCD) of the design of experi-
ments was used in [10, 11] to obtain a simplified and com-
pact rule base to assemble the UOD. In [10] a T1 RBFNN 
that needs to be trained was proposed. Finally, in [11] the 
technique of CCD was used to model an IT2 rule base that 
considers uncertainties.

In the classic approach of the RBFNN or T1 RBFNN, only 
two types of membership functions can be used, the logistic 
function, see Fig. 1, or the Gaussian function, see Fig. 2, that 
are defined as receptive fields or fuzzifiers [12] (which were 
presented by [3]).

1.1 � Related works

Using the phrase of Mendel [1], the IT2 RBFNN technol-
ogy is going through its infancy phase because it is a new 
technique developed in 2015 by Rubio-Solis and Panoutsos 
in [2], therefore, there are very few related works. Between 
the theoretical proposals for modeling and assembling IT2 
RBFNN network, it can be mentioned the framework pre-
sented in [2] to model an IT2 network for the first time, 
where the necessity of expert knowledge to assemble the IT2 
is mentioned. Nonetheless, in [1] is stated that “Rules may 
be provided by experts or can be extracted from numerical 
data”, which is demonstrated in [3, 4, 9–11].

Theoretical basis about IT2 was developed since 2015 in 
[2, 10, 13–16]; however, your application has barely been 
shown in works as [13–29]; this fact shows that this is an 
emerging and current technology. Among the works found 
in the current literature appears: a general IT2 network pre-
sented in [13], which is restricted to only one type of mem-
bership function, as a Gaussian function. A recurrent self-
evolving RBFNN is presented in [14] to adapt the neurons 
in the hidden layer of the network in a non-linear dynamical 
system. In [15] a model to convert the IT2 Mandami model 
into an IT2 Takagi–Sugeno model via genetic algorithms 
was proposed, Baklouti et al. [16] applied an IT2 RBFNN to 
type Takagi–Sugeno-Kang (TSK) in order to evaluate time 
series. From [17] could be obtained the basis of interval 
type-2 fuzzy logic systems that serves as basis to generate 
the IT2 RBFNN.

In [18], the use of an IT2 RBFNN to avoid the numerous 
arithmetic operations required by the interval type-2 fuzzy Fig. 1   Logistic function

Fig. 2   Gaussian function
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models, which reduce their complexities and their type of 
reduction process was proposed. In [16], a theoretical method 
called Beta Basis Function Interval type-2 fuzzy neural net-
work (BIT2FNN) in a TSK model to manage the uncertain-
ties and noise was proposed. In [19], a classifier using IT2 
RBFNN to recognize alphabets and manage the noise present 
in the upcoming signals was presented. The classifier uses the 
IT2 RBFNN to avoid the problem of the non-linearities and 
noise present in time series with a recurrent interval type-2 
fuzzy neural network or RIT2IFNN with a TSK model [20]. 
In [21], a multilayer type-2 extreme learning machine method 
for classifying and recognizing walking was presented. In 
[22], a method to forecast and adjust the neural network 
using backpropagation algorithm based on general type-2 
model was developed. In [23], the IT2 radial basis function 
network was used in a rail manufacturing process to clas-
sify. In [24], the IT2 RBFNN was used in a rotary steerable 
system and in directional drilling for oil and gas exploration 
in prospection. In [25], a classifier with IT2 RBFNN based 
on clustering was developed, it was used to deal with the 
uncertainties present in the data and adjust the connection 
of the weights. In [26], a recurrent IT2 RBFNN was used as 
an adaptive network for a micro-electro-mechanical system 
of a gyroscope to control the non-singular sliding control. 
In [27], the IT-2 RBFNN was used to overcome the control 
of ammonia flow in a selective catalytic reduction, the IT2 
RBFNN aided to modeling uncertainties and constrain the 
predictive control. In [28], the IT2 RBFNN was used to iden-
tify and online prediction of the glucose level on diabetes 
patients. In [29], the IT2 fuzzy radial basis function neural 
network (IT2 FRBFNN) was used to sliding mode controls 
of non-linear systems to approximate the sliding. Finally, in 
[30], a general type-2 radial basis function neural network 
(GT2 RBFNN) was developed to manage the trajectory of a 
remote operated underwater vehicle (ROV).

1.2 � Contributions

The main contribution of this paper is the presentation of 
a novel method for modeling IT2 RBFNN using the CCD 
technique that is part of a methodology used in the design of 
experiments to model a compact and simple fuzzy rule base. 
Other contribution is the implementation of an application 
of the IT2 RBFNN in a real industrial process using image 
processing to evaluate quality features, this combination of 
processes is not documented in the current literature. Addi-
tionally, the implementation of two membership functions 
from fuzzy logic: the Huygen’s tractrix or unnamed function 
(Fig. 3) and the triangular function (Fig. 4), called in this 
form in [17]. Both used for the first time as RBF in this work 
since, according to our knowledge, there is no evidence that 
they have been used in the literature as RBF.

2 � Theoretical foundations

2.1 � T1 Radial basis function neural networks

This kind of neural network is a type of interpolation focused 
on getting approximations based on a distance between a 
pattern and a sample [12] and is graphically depicted in 
Fig. 5. The T1 RBFNN is similar to the K-nearest neighbor’s 
(KNN) classifier.

Fig. 3   Huygen’s tractrix function

Fig. 4   Triangular function
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The T1 RBFNN operates with assigned weights in the 
inputs, each of them is placed in a multidimensional vector 
given by Eq. (1) and is based on a Gaussian distribution 
function Eq. (2) or by a logistic distribution function Eq. 
(3). The Gaussian distribution function is equivalent to a 
membership function in fuzzy models. The output of the 
T1 RBFNN model could be calculated in many forms Eqs. 
(4)–(7).

where ux is the mean in the radial basis function, x is the 
input of the function, and �x is the spread of the function.

(1)wi = Ri(x) = Ri

�
‖x − ux‖

ui

�x

�
∀x, u ∈ U

(2)R(x) = e
−

‖x−ux‖2
2�x
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1
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(4)d(x) =
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(5)d(x) =
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ciRi∀c,R ∈ x

(6)d(x) =

∑H

i=1
ciwi∑H

i=1
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where ci is the output in the dataset for the prediction and the 
final approximation is obtained by Eqs. (4, 5, 6 or 7) which 
can be reinterpreted as a center of gravity deffuzzifier in 
fuzzy model Eq. (8).

2.2 � IT2 fuzzy logic system

The IT2 arises from the union of two T1 fuzzy sets represented 
by Eq. (9) to generate an interval. An IT2 fuzzy set is given by 
Eq. (10) and is characterized by Ã with a membership func-
tion 𝜇Ã(x, u),

where A represents the set and �A is the grade of membership 
of some x′ in A.

The classic approach for the IT2 models is the Gaussian 
fuzzifier defined on Eq. (11), showing a difference against the 
T1 membership function that presents two means,

where mi
k
∈
[
mi

k1
,mi

k2

]
 is the uncertain mean, k = 1,2,…,p 

(p is the number of inputs) and = 1,2,..M (the number of M 
rules), and �i

k
 is the standard deviation.

2.3 � IT2 Radial basis function neural networks

IT2 RBFNN has been presented for the first time in 2015 by 
[2], since then it has evolved into new models such as the 
ones presented by Mandami [2], Takagi–Sugeno [14], and 
Takagi–Sugeno-Kang model [15].

The basis of this model is the extension of the model shown 
by [12] to obtain the left and right functions (Fig. 6). Basically 
the similitudes of the T1 fuzzy model are equivalent to the ones 
in T1 RBFNN, which are well known since 1993 in [16–18].

The IT2 RBFNN algorithm is generated with the adjust-
ment of T1 RBFNN. First, Eq. (2) is replaced by Eq. (11). Sec-
ond, Eqs. (4–7) are converted to Eqs. (12–15) to get the lower 
output and similarly Eqs. (16–19) to get the upper output.
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Fig. 5   Two input case topology of a T1 RBFNN
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where ci is the output in the database for the prediction and 
the low and high are obtained by applying Eqs. (20–21). 
The final approximation is obtained by Eq. (22) which can 
be reinterpreted as Eq. (23).
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Fig. 6   IT2 RBFNN topology, 
extracted from [2]
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A. Central composite design
The factorial design or CCD is a technique used to ana-

lyze the factors and their possible correlation. These fac-
tors present limits to define the universe, and their levels 
are called low and high. In order to establish the model, a 
combinatorial via permutations is needed to define a pattern 
where one of the variables must change, meanwhile the rest 
remain constant. The simplest model is called 2 k (Fig. 7).

In Fig. 7, each sing at a corner represents different levels of 
variables. For (1), both variables are on low level, for (a) the first 
variable is on high level, and the second one is on the low level, 
for (b) the first variable is on the low level and the second on 
the high level, and for (ab) both variables are on the high level.

3 � Revisited equivalence of the T1 FLS and T1 
RBFNN

In [2], a series of restrictions have been established to this 
equivalence as follows:

•	 The number of perceptive fields in the hidden layer is 
equal to the number of fuzzy rules.

First, a definition for the receptive field is required.

3.1 � Definition 1: a receptive field is a neuron 
in the network that represents a mathematical 
operation such as Eq. (2) or Eq. (3).

But this restriction needs to be enhanced, and Fig. 5 needs 
to be redrawn since the receptive field on this figure only 
represents a part of the fuzzy rule, e.g., in T1 model a fuzzy 
rule is defined by Eq. (24), every variable in the T1 RBFNN 
requires a receptive field represented mathematically by 
Eq. (2) or Eq. (3), then the number of receptive fields (rf) 
required is equal to the number of variables (V) multiplied 
by the number of rules (r), given by Eq. (25). The enhanced 
graphical representation is depicted in Fig. 8,

(24)Rulei ∶ IF × 1 is a and × 2 is b then y is G

where: × 1, × 2 are the inputs, and G is the output of the rule.

The IT2 RBFNN topology of [2] shown in Fig. 6 needs to 
be redrawn (Fig. 9) because Fig. 6 has additional receptive 
fields; this condition requires additional calculus and train-
ing to tuning precise output, also require additional recep-
tive fields to achieve a precise output. Then, the quantity 

(25)rf = V ∗ r

Fig. 7   2 k CCD model

Fig. 8   T1 RBFNN of T1 topology, two input case expanded

Fig. 9   IT2 RBFNN topology, two input case expanded
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of receptive fields is given by Eq. (26), and the topology is 
reorganized with the addition of the new receptive fields,

where: rf are the receptive fields, V is the number of vari-
ables and, r is the number of rules.

•	 The membership function within each rule is chosen as 
Gaussian.

But this fact requires testing because in [12] is mentioned 
that the logistic function is an alternative model of RBF that 
needs to be tested. Therefore, a definition of membership 
function is required in the neural network.

3.2 � Definition 2: The membership function 
for neural networks is a function that defines 
the weight for the input variable.

•	 The T-norm operator used to compute each rule’s firing 
strength is the multiplication.

The T-norm has been defined in [31] as the intersection 
of two sets. But the intersection in the case of T1 RBFNN 
is not used in the receptive fields as occurs with the fuzzy 
rules before fuzzification in the FLS.

4 � Proposal

A. Assemble and calculation of IT2 RBFNN parameters 
based on the CCD

In CCD and [11], the IT2 CCD is obtained and used to gener-
ate the fuzzy rule base that serves as input for the IT2 RBFNN.

The initial calculi of the rule base or the antecedents for the 
IT2 RBFNN are given by Eq. (27), as were proposed in [11], 
where 2 k is the matrix that conforms the CCD model, and 
every pair in the matrix is formed by the possible combina-
tions of the lower and upper limits of control for the variables. 
These parameters or receptive fields for the rules or the rf 
are obtained from the process control specifications, and their 
equivalences to the CCD 2 k model are presented in Table 1.

(26)rf = 2(V × r)

From Eq. (27), the inputs are obtained for the receptive 
fields on the IT2 RBFNN. The input for the first recep-
tive field in the T1 RBFNN is LCLa, and for calculating 
the receptive fields for the first variable in IT2 RBFNN, 
additional calculations are needed. Firstly, it is required the 
spread of the data specifications, which is given by Eq. (28),

The IT2 matrix is calculated using the matrix presented 
in Eq. (27) and �xi from Eq. (28). The lower limit of interval 
represented by L is given by Eq. (29), and the upper interval 
limit R is given by Eq. (30), and their respective solutions y 
upper and y lower are obtained by interpolation, which are 
given by Eqs. (31) and (32).

Equation (27) is converted into Eq. (33) to get data in the 
receptive field of the IT2 RBFNN,

where: Rf  represents the receptive field universe, a repre-
sents the lower limit of the IT2 for the variable a, and this 
variable (a) is the first receptive field or RF1 in the RBFNN. 
The same case is for the rest of the elements in the matrix 
Rf  . The interval for the output response is obtained from 
Yi
_

,Yi . Those values represent the lower and upper output or 

response for a specific receptive field of the inputs.
B. Enhancement and changes to the classic IT2 RBFNN
First, the RBF was changed from logistic to a Gaussian 

function form, see eq. (3).

(27)2k =

⎡
⎢⎢⎢⎣

LCLa LCLb

LCLa UCLB

UCLA LCLb

UCLA UCLB

⎤
⎥⎥⎥⎦

(28)�xi =

n∑
i=1

(
xi − xi

n

)

(29)L = xi−�xi

(30)R = xi + �xi

(31)y = yi − �yi

(32)y = yi+�yi

(33)Rf =

⎡
⎢⎢⎢⎢⎢⎢⎣

a

a

A

A
_

a

a

A

A

b

B
_

b

B
_

b

B

b

B

y1
_

yb
_

ya
_

yab
_

y1
yb

ya
yab

⎤⎥⎥⎥⎥⎥⎥⎦

For i = 1, a, b, ab

Table 1   Equivalences of CCD states and quality control limits

CCD symbolic 
representation

Treatment Quality control limits

ab = 1 Alow, Blow LCLa LCLb  
Ab = a Ahigh, Blow LCLa UCLB  
aB = b Alow, BHigh UCLA LCLb  
AB = ab Ahigh, BHigh UCLA UCLB  
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Second, the use of the CCD IT2 from [11] is adapted to 
model the IT2 RBFNN using Eqs. (25)–(31).

C. Improvements
The use of the Huygen’s tractrix (Fig. 3) given by Eq. (34) 

and the triangular radial basis function (Fig. 4) given by 
Eq. (35), as RBFs.

where: xi represents the mean of the variable, x′
i
 represents 

the input, and c represents the spread of the set.

where:xi represents the mean of the variable, A and C rep-
resent the lower and upper limits, respectively, and B repre-
sents the mean of the set.

D. Input–output data

(34)
�Xi=

1

1 +
|||
(xi−x

�
i
)

c

|||
2

(35)�
Xi=MAX((MIN

(
xi−A

B−A
,
C−xi

C−B

)
),0)

For generating the T1 RBFNN and the IT2 RBFNN, 19 
data pairs were used, see Table 2.

E. Conformation of the T1 RBFNN and IT2 RBFNN 
architectures

The basic architecture for the T1 RBFNN is assembled by 
three layers defined in the following way: input layer, hidden 
layer, and output layer, the conformation and the number of 
neurons needed on every layer can be seen in Table 3.

The architecture for the IT2 RBFNN is assembled by three 
layers defined in the following way: input layer, hidden layer, 
and output layer, the conformation and the number of neurons 
needed on every layer can be seen in Table 4. In this case, a 
four layer was added for the type reduction and the output.

5 � Results

The results of this proposal are organized as follows. First, 
the test for the logistic function as radial basis or receptive 
field in IT2 RBFNN without type reduction (Fig. 10) and IT2 
RBFNN with type reduction (Fig. 11) is presented. Second, 
the test for the Gaussian RBF as receptive field in IT2 RBFNN 
without type reduction (Fig. 12) and IT2 RBFNN with type 
reduction (Fig. 13) is shown. Third, the test of the Huygen’s 
tractrix without type reduction (Fig. 14) and with type reduc-
tion (Fig. 15) is presented. Fourth, the tests of the triangular 
RBF without type reduction (Fig. 16) and with type reduction 
(Fig. 17) are presented.

To calculate the accuracy and the enhancement of the pro-
posal the mean squared error was used to document the vari-
ations given by Eq. (36),

where: Ŷi is the goal or expected value, Yi is the obtained 
value by the model, and n is the total of samples tested. The 
values obtained in the experiments are shown in Table 5.

The use of the logistic RBF, as is shown in Table 5 and 
Fig. 10, demonstrates that this function produces a big error 
rate with an MSE value of 5.144 for T1 RBFNN and 9.278 

(36)MSE =

∑n

i=1
(Ŷi − Yi)

2

n

Table 2   Input–output data for 
tests

Sample X1 X2 Goal

1 139 208 0.6
2 141 214 3.6
3 135 218 1.2
4 142 218 5.4
5 142 210 3.0
6 144 210 4.2
7 141 209 2.1
8 145 203 2.7
9 137 205  − 1.5
10 143 218 6.0
11 141 206 1.2
12 146 211 5.7
13 147 211 6.3
14 143 208 3.0
15 135 208  − 1.8
16 145 207 3.9
17 144 213 5.1
18 132 200  − 6.0
19 135 210  − 1.2

Table 3   Description of T1 
RBFNN architecture

Layer Description Number of 
neurons

Description

1 Input layer 2 One neuron for every variable
2 Hidden layer 

(weights layer)
8 Two neurons for every rule, one per every variable

3 Output layer 9 Two neurons for every variable, each neuron 
contains the weight of input and their respective 
output

Remaining neuron produces overall output
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for IT2 RBFNN that increases the error using the IT2 model 
(see Fig. 11).

The goal values appear inside the interval (Fig. 12) and 
with the type reduction the values obtained as outputs of IT2 
RBFNN are equal or too close to the expected values of pre-
diction (Fig. 13). The classic Gaussian RBF provides good 

results for the IT2 model (Fig. 13), when it is compared to 
their counterpart of T1, in comparison to the logistic RBFNN 
(Fig. 11), in both types, the classic Gaussian RBF reduced de 
error in a proportion of 5.22 times for T1 and 47 times for IT2.

Huygen’s tractrix used as RBF shows a particular case, 
the obtained results appear inside the low and high values of 

Table 4   Description of IT2 RBFNN architecture

Layer Description Number of 
neurons

Description

1 Input layer 2 One neuron for every variable
2 Hidden layer (weights layer) 16 Four neurons for every rule, one for low value and one for high value per every 

variable
3 Type-2 Output layer 16 Four neurons for every variable, each neuron contains the weight of input and 

their respective output in low and high value
4 Type reduction layer and type-1 output 3 Two neurons produce the low and high value (The low and high value consti-

tutes type reduction with two neurons) and the overall output is produced with 
the remaining neuron

Fig. 10   IT2 RBFNN approximations with logistic RBFs without type 
reduction

Fig. 11   IT2 RBFNN approximations with logistic RBFs, with type 
reduction

Fig. 12   IT2 RBFNN approximations with Gaussian RBFs without type 
reduction

Fig. 13   IT2 RBFNN approximations with Gaussian RBFs, with type 
reduction
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the type-2 interval, similar to the results obtained using the 
Gaussian RBF (Fig. 12), as shown in (Fig. 14). This func-
tion never has been used in literature, but their results are 
excellent due to a reduction near to the 50% when contrasted 
with the Gaussian RBF in both types (type-1 and type-2 
RBFNN), as is shown in (Fig. 15).

The triangular RBF presents an interval of predictions 
above the expected value (Fig. 16), it can be said that this 
phenomenon occurs because the IT2 RBFNN system has a 
non-linear behavior in contrast to the triangular RBF predic-
tion values. Therefore, the error is increased in a linear way. 
The error rate achieved by the IT2 RBFNN system represents 
the third part of the obtained by the Logistic RBF and the 
double of the Gaussian RBF (see Table 5). The predictions are 
so similar in both models type-1 and type-2 (Fig. 17), nonethe-
less, T1 RBFNN achieves better results.

Fig. 14   IT2 RBFNN approximations with Huygen’s tractrix RBFs with-
out type reduction

Fig. 15   IT2 RBFNN approximations with Huygen’s tractrix RBFs, with 
type reduction

Fig. 16   IT2 RBFNN approximations with triangular RBFs, without 
type reduction

Fig. 17   IT2 RBFNN approximations with triangular RBFs, with type 
reduction

Table 5   MSE obtained in the experiments

Model MSE

T1 RBFNN (Logistic RBF) 5.144
T1 RBFNN (Gaussian RBF) 0.9853
T1 RBFNN (Huygen’s tractrix RBF) 0.5511
T1 RBFNN (Triangular RBF) 1.745
IT2 RBFNN (Logistic RBF) 9.278
IT2 RBFNN (Gaussian RBF) 0.1974
IT2 RBFNN (Huygen’s tractrix RBF) 0.1071
IT2 RBFNN (Triangular RBF) 3.335
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6 � Conclusion

The use of CCD provides a better method to assemble the 
fuzzy rule base in a simplified and compact manner with 
the advantage of a compact base with a few rules that 
provide precise approximations as outputs.

A simplified and compact rule base reduces the compu-
tational time expend in the calculations.

The use of the logistic RBF turned out not to be suitable 
for a network without training, and this is part of future 
work. The logistic function does not produce better results 
by their shape that is non-symmetrical, and these are 
future research for the application of this class of systems.

The adapted model of Fig. 9 provides an accurate result 
without training.

The classic Gaussian RBF provides good results for the 
IT2 model when it is compared to their counterpart of T1, 
achieving a prediction five times better.

The most important enhancement is the use of a RBFNN 
which does not need training and provides accurate results.

The results have shown a significant enhancement with 
the application of the Huygen’s tractrix as RBF, obtaining 
a 50% in error reduction in comparison to the Gaussian T1 
RBFNN and IT2 RBFNN.
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