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Abstract
This study presents a calibration method based on machine learning techniques to identify parameters of hardening law of 
aluminum alloy sheets in complex manufacturing processes. A V-shape test is designed to characterize material behavior 
during an incremental sheet forming (ISF) process. A series of virtual materials is first generated using three physical fea-
tures observed in a standard uniaxial tensile test: initial yield stress, maximum uniform plastic strain, and yield-to-strength 
ratio. These virtual materials are then employed in simulating the designed V-shape tests to numerically collect the material 
responses, such as forming forces, displacements, or their combinations. Several feed-forward neural networks (FFNNs) are 
developed and trained to relate the collected material responses to the relevant virtual materials. Then, the trained FFNNs 
were used to estimate the flow curve of AA5052-H32 sheets up to a plastic strain value of 1.0 using the experimentally 
measured response from the V-shape test during ISF. The FFNN-based flow curves appear to capture well the stress–strain 
data obtained from the uniaxial tensile test with the coefficients of determination up to 0.98. The identified flow curves are 
also employed to simulate the uniaxial tensile and ISF truncated cone tests. The simulated uniaxial tensile forces are in good 
agreement with the experimentally measured results. A maximum difference of 5% is observed in the comparison between 
the simulated and measured ISF loading forces in the steady-state deformations. The comparisons demonstrate the efficiency 
of the proposed method to characterize the plastic flow of metal.

Keywords Aluminum sheets · Strain hardening behavior · Incremental sheet forming · Artificial neural networks · Finite 
element analysis

1 Introduction

For decades, incremental sheet forming (ISF) processes have 
received considerable attention due to their high flexibility in 
shaping a blank sheet into parts with complex geometries. In 
these manufacturing processes, small rigid tools move along 
a prescribed path to deform a blank sheet incrementally to 
form the desired shapes. These methods are suitable in mak-
ing parts for rapid prototyping, small batch productions, and 
customized and personalized products. Understanding the 
deformation mechanics in the ISF processes and determin-
ing the optimal process parameters are keys to improving the 
quality of the formed parts. To achieve the goals, the finite 
element (FE) method is an essential tool as an alternative to 
expensive trial and error experiments. However, accurate 
material models for sheet metals during ISF processes are 
mandatory to secure accurate FE simulations.
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Phenomenological constitutive models are often used 
in ISF simulations owing to their efficiency [1–3]. In these 
models, a hardening law describing the relationship between 
the flow stress and the equivalent plastic strain is coupled 
with a yield surface that governs the plastic deformation 
under multi-axial stress states. Previous studies have pointed 
out that the material planar anisotropy exhibits a minor effect 
on the deformations of several aluminum alloy sheets sub-
jected to ISF processes [2, 4–6]. Therefore, an isotropic yield 
function is often assumed, and an isotropic hardening law 
needs to be calibrated before conducting an ISF simulation.

Many calibration methods for identifying the hardening 
laws of sheet metals in ISF processes have been proposed in 
the literature. Ai et al. [7] employed a curve fitting method 
to identify the parameters of Hollomon’s power laws from 
the stress–strain data obtained from uniaxial tensile tests of 
AA1100 and AA5052 sheets up to fracture strains of 8% and 
18%, respectively. To characterize the hardening behavior 
of sheet metal in a more extensive strain range, Liu et al. 
[8] applied the digital image correlation (DIC) technique 
to measure the strain evolution of a local area located on 
the surface of an AA7075-O uniaxial tension coupon. The 
measured stress–strain curve was reported up to a strain of 
50%, from which a Hollomon’s hardening law could be iden-
tified. A similar approach was applied in [9] for AA7075-O 
sheets with different thicknesses, in which Swift’s harden-
ing laws were identified. Haque and Yoon [10] compared 
the applications of Swift’s and Voce’s models in capturing 
the hardening behavior of AA6022-T4E32 sheets, showing 
that the Swift model provides a better result. Alternatively, 
Dejardin et al. [11] conducted a bugle test to determine 
Swift’s law parameters for AA1050 sheets, which was subse-
quently applied to analyze the springback effects and shape 
distortions during the ISF process. In another study, a finite 
element update method (FEMU) was applied to calibrate 
the parameters of a Voce’s hardening law for a copper foil 
[12]. This calibrated hardening law was then employed to 
simulate a micro-ISF deformation process for a pyramidal 
shape. Moreover, this study demonstrated that the defor-
mation observed in the ISF process is very large (> 200%) 
and significantly exceeds the values observed in the uniaxial 
tensile test (< 30%). This high strain level was also observed 
in the benchmark results reported for AA7075-O sheets in 
Elford et al. [13]. Moser et al. [14] utilized a Voce’s harden-
ing law to describe the hardening behavior of AA5754-O 
sheets. The calibrated hardening law was then considered in 
simulating a double-side ISF process. Although the principal 
strains predicted by the simulations are in good agreement 
with the experimental measurements, the resulting loading 
force is significantly higher than the measured data. Other-
wise, the hybrid numerical-experimental method, which is 
widely used to calibrate hardening law parameters for ductile 

metals [15, 16], was adopted in the work of Chang and Chen 
[17]. The calibrated hardening laws were coupled with a 
modified Gurson-Tvergaard-Needleman damage model to 
evaluate the void evolution during the forming of conical 
and pyramidal samples of AA6024 and AA6061 sheets.

The above publications reveal the importance of calibrat-
ing the plastic flow of sheet metals up to large strains for 
the FE simulation of ISF processes. The before-mentioned 
methods can still be used but they require high experimental 
costs in preparing the specimen and setting up the equip-
ment [18, 19]. Furthermore, the appearance of damage sup-
pression in the ISF processes leads to extreme deformations 
compared to traditional forming processes such as stamp-
ing, rolling, and deep drawing [20–24]. Even though these 
methods are successful in the determination of the hardening 
laws in a traditional forming process, their applications in 
ISF simulations have not been extensively studied. Thus, 
calibration of a hardening law up to large strain ranges for 
ISF simulations remains a challenge.

Recently, machine learning (ML) techniques have been 
used to calibrate the plastic flow curves of sheet metals. 
In an early work of Rao and Prasad [25], several artificial 
neural networks (ANNs) have been trained to reproduce 
the strain-rate and temperature-dependent flow curves 
of medium-carbon steels. Later, Phaniraj and Lahiri [26] 
extended this approach to take the percentage of carbon in 
the steels into account. Similar approaches have been applied 
to identify the flow stresses of different materials, such as 
stainless steels [27], casted titanium alloys [28], aluminum 
alloys [29], pressure-cast polypropylene [30], and advanced 
high strength steels [31]. Although these approaches pro-
vide promising results, a huge number of experimental tests 
should be conducted to obtain a sufficient number of experi-
mental stress–strain curves used to train the networks. How-
ever, performing many experiments to generate data for ML 
models is costly and exhausting. Therefore, replacing the 
experimentally measured data with numerically simulated 
data would be a solution for this drawback.

Haj-Ali et al. [32] developed a system of two-dimensional 
(2D) and three-dimensional (3D) FE models to simulate nano-
indentation. Several ANNs have been trained to approximate 
the relationship between the inputs consisting of the mate-
rial properties (i.e., Young’s modulus, Poisson’s ratio, and 
the Ramberg–Osgood’s stress–strain relationship) and the 
indentation depth, and the indentation force as an output. 
The trained ANNs showed good predictions for the indenta-
tion force–displacement curves of different materials. How-
ever, the application of these ANNs to determine the material 
properties from the experimental force–displacement curves 
exhibits a large discrepancy from the measured stress–strain 
data obtained from the uniaxial tensile test. Similarly, Li et al. 
[33] used the ANN technique to build a surrogate model that 
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estimates the indentation force from the inputs of Young’s 
modulus, Swift’s hardening law parameters, and the indenta-
tion depth. Lu et al. [34] proposed combinations of several 
ANNs to identify material parameters from single and dual/
multiple indentations. In such a case, different datasets with 
different fidelity levels arising from different sources (experi-
ment or computation) can be combined to train a multi-fidelity 
neural network, improving the accuracy as well as the training 
efficiency. Compared to the experimental data, the trained net-
works give accurate predictions for the flow curves of several 
aluminum alloys and printed titanium alloys.

The previous studies demonstrate the potential of neu-
ral networks in regenerating the link between the mate-
rial response characterized by an indentation test and 
the related material properties such as the plastic flow 
stresses. In a more general case, it is suggested that the 
relation between the material response and the material 
properties can be reproduced by using an arbitrary test or 
even a combination of different tests. Accordingly, dif-
ferent kinds of material property can be identified, for 
example, kinematic hardening behavior and yield sur-
face. To provide evidence supporting this suggestion, 
this study develops an ML-based calibration method to 
identify the flow curve of aluminum alloy sheets during 
ISF processes. The proposed method aims to simultane-
ously meet three requirements for industrial applications:

• The calibrated flow curve should be comparable to the 
stress–strain data obtained from a standard uniaxial 
tensile test to ensure its accuracy.

• The derived results should be reliable up to a large 
strain range (i.e., ε = 1.0) for their usefulness in ISF 
simulations.

• The proposed method can be used to estimate the flow 
curve of different materials.

The paper is organized as follows. “Sect. 2” presents in 
detail the experimental tests conducted for AA5052-H32 
sheets to obtain the necessary data to calibrate the flow 
curves and to validate the obtained results. In “Sect. 3,” 
a general ML-based calibration method is proposed for 
a generic material model using the data obtained from 
FE simulations of a generic test. “Sect. 4” presents an 
application of the proposed framework in calibrating the 
plastic flow curve for aluminum alloy sheets using an ISF 
V-shape test. The trained neural networks are then used 
to predict the flow curve of AA5052-H32 sheets as an 
application of the proposed methodology. “Sect. 4.2.3” 
provides thorough validations of the calibrated flow curve 
of AA5052-H32 sheets. “Sect. 4.3” summarizes the work 
and discusses the perspectives and limitations of the pro-
posed framework.

2  Experiments

In this study, standard uniaxial tensile tests are first carried 
out to investigate the hardening behavior and planar anisot-
ropy of AA5052-H32 sheets. Then, an ISF experiment to 
form a V-shape specimen is performed to determine the flow 
curve of the tested material using the proposed calibration 
method. Finally, a truncated cone is made by ISF to derive 
necessary data for validating the calibrated flow curves.

2.1  Uniaxial tensile test

Uniaxial tensile tests are conducted for AA5052-H32 sheets 
with a thickness of 1.0 mm. Specimens were prepared in 
three orientations, including the rolling direction (RD), 
diagonal direction (DD), and transversal direction (TD) 
following the Korean standard KS B0810 13B [35]. Fig-
ure 1 reports the engineering stress–strain curves obtained 
with these three orientations. According to this figure, the 
maximum uniform strains are approximated to 0.1, which 
is significantly smaller than the deformation observed in a 
typical ISF process [36]. In addition, a minor anisotropy 
effect is observed in the stress–strain curves prior to the sof-
tening. Table 1 presents the mechanical properties of the 
investigated material directly obtained from these tests. The 
true stress–strain data of the RD specimen will be compared 
with the feed-forward neural network (FFNN) predictions 
in “Sect. 4.2.3”.

2.2  Incremental sheet forming of V‑shape specimen

An ISF experiment, in which the blank sheet was formed 
into a V-shape, is performed to characterize the material’s 
behavior. In this test, a blank sheet with a 150 mm × 100 mm 
dimension is clamped between a rigid die and a rigid blank 
holder. A semi-spherical tool with a diameter of 12 mm 
is programmed to follow a V-shape tool path to deform 
the sheet, as shown in Fig. 2. At the beginning of the pro-
cess, the initial position of the tool is at point A, which is 
higher than the upper surface of the blank by an amount of 
c = 0.3 mm (see Fig. 2b). The clearance between the tool 
and the blank sheet is determined to ensure a zero loading 
force at the beginning of every loading cycle. The slide-way 
oil with an ISO viscosity grade of 68 was used to reduce 
the friction between the tool and sheet. When the process 
starts, the tool moves with a constant speed of 100 mm/min 
along linear paths from point A to point  O1 and then point B 
to complete the first loading cycle. Point B is located at the 
same vertical coordinate and at a distance of 60 mm away 
from point A. In the second loading cycle, the tool moves 
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in a sequence of B—>  O2—> A to continuously deform the 
sheet. The process is repeated to deform the sheet until a 
crack is visualized on the outer surface of the V-shape speci-
men. It is worth noting that points A, B, and  On are located 
in the vertical surface, and the increment of the forming 
depth (Δz) is set to be equal in each cycle, i.e., Δz = 0.5 mm.

Since the deformation is observed at a narrow area 
in the center of the blank sheet, a groove with a size of 
100 mm × 50 mm has been made on the die to reduce unnec-
essary elastic vibration (Fig. 2c). According to Fig. 2d, the 
fracture is visualized at a pole accommodated with the tool 
position at point  On shown in Fig. 2b. During the test, reac-
tion forces acting on the tool are measured by a load cell.

Figure 3 presents a comparison between the recorded 
forces obtained from two testing times. It is seen that the 
measured forces show good repeatability where the two 

curves are almost identical. The peak of the loading force 
is always observed at the middle of the cycle within every 
loading cycle. In other words, the loading force always 
reaches the maximum when the tool position is at the point 
 On. Therefore, the peak force of each cycle is recorded 
according to the number of loading cycles. In addition, the 
relative error of these peak forces is calculated as follows:

where F1 and F2 are the maximum forces of the considering 
cycle obtained from tests 1 and 2, respectively.

Figure 4 shows the evolution of the peak forces and their 
RE with respect to the number of loading cycles. It is seen 
that the RE tends to stay below 0.05, except for its value 
observed in the first cycle. The averages of the peak forces 
with respect to the number of loading cycles obtained from 
the two tests are used to identify the hardening behavior of 
the investigated material, which is discussed in “Sect. 4.2.3”.

2.3  Incremental sheet forming of a truncated cone

An ISF experiment is performed to deform the blank sheet 
into a truncated cone. The dimension of the initial blank 
sheet is 150 mm × 150 mm. Similar to the ISF V-shape 
specimen, the sheet is clamped around its contour by a die 
and a holder. Process parameters used to deform the sheet, 

(1)RE =
||||
1 −

F1

F2

||||

Fig. 1  Stress–strain curves 
obtained from uniaxial tensile 
tests

Table 1  Mechanical properties of AA5052-H32 sheets obtained from 
uniaxial tensile tests

Orientation RD DD TD

Young’s modulus (GPa) 70 67 70
Initial yield stress, σ0 (MPa) 166 161 160
Ultimate tensile strength, UTS (MPa) 221 221 220
Yield-to-strength ratio, σ*/σ0 1.45 1.55 1.50
Maximum uniform strain, ε* 0.088 0.118 0.850
Elongation (%) 11.2 14.4 12.1
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including tool diameter, tool speed, and lubrication, are 
identical to those used in the ISF V-shape specimen reported 
in “Sect. 2.2”. Fig. 5 shows the tool paths used to deform 
the blank sheet, consisting of a series of circular movements 
combined with in-plane downward straight movements. 
After every circumferential path, the tool moved horizon-
tally, followed by a vertical step to penetrate the sheet and 
then proceeded to the next circular path. Figure 5b shows a 
deformed specimen obtained from the ISF of the truncated 
cone.

Two specimens were formed with the prescribed tool 
paths. During the tests, loading forces are recorded and 
plotted in Fig. 6 to show their repeatability. In addition, the 
average value of the measured loading forces within each 
cycle is calculated and plotted in this figure. As shown 
in the figure, there exist fluctuations during the test. A 
detailed explanation of the force fluctuation during the 
ISF truncated cone test can be found in [37, 38]. In the 
early loading cycles, the force is significantly increased 
when the tool dented to the upper surface of the testing 
specimen. Then, within a circular tool path, the force was 
increased gradually, followed by a decrease. After several 

cycles, the average loading force approaches a saturated 
value (Fs), indicating a steady-state situation in which the 
average forces are mostly unchanged. Within a given test-
ing condition, the value of Fs characterizes the hardening 
behavior of the tested material, particularly at large strains 
[5, 39, 40]. The difference between the saturated forces 
of the two tests is approximately 20 N, which is smaller 
than 2% of the saturated values. The average forces will be 
compared with the FE predictions in “Sect. 4.2.3” aiming 
to validate the accuracy of the identified hardening laws.

3  Machine learning–based calibration 
method

This section introduces an ML-based calibration method 
based on the FFNN to identify the plastic flow of the mate-
rial subjected to large strain. In the following, the theory 
of the FFNN is first summarized. Then, the different steps 
involving the proposed framework are detailed.

Fig. 2  The designed incremental sheet forming process of a V-shape specimen  (a) Concept of incremental sheet forming; (b) Tool path; (c) 
Experiment setup; (d) Deformed specimen
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3.1  Feed‑forward neural network

An ANN contains numerous artificial neurons. As shown 
in Fig. 7a, each artificial neuron is a simple mathematical 
model consisting of three parts: (i) a set of weights w1 , …  wn 

corresponding to n inputs x1 , …, xn , (ii) a summation opera-
tor Σ which sums the inputs weighted by their corresponding 
weights and its bias b , and (iii) an activation function f  yield-
ing the output y from the weighted sum. Mathematically, an 
artificial neuron is described by the following equation:

Fig. 3  Measured loading force 
during the ISF of two V-shape 
specimens

Fig. 4  Maximum loading force 
according to the loading cycles 
during the ISF V-shape tests
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FFNN is the fundamental architecture composing several 
connected layers of artificial neurons, as shown in Fig. 7b. 
The FFNN can be viewed as a universal model of an n-input 
m-output function

(2)y = f
(
b +

∑
n
i=1

wixi

)
.

(3)Y = F(X;W),

where X =
[
x1x2 … xn

]T and  Y =
[
y1y2 … ym

]T are respec-
tively the input and output vectors and W is the matrix of 
the fitting parameters consisting of all weights and biases in 
the network. The FFNN is used in this study thanks to its 
simple implementation.

An important feature of the FFNN is its ability to learn 
the relationship between the provided inputs and outputs 
through a training process, in which the fitting parameters W 
can be found. Based on the training dataset consisting of NT 

Fig. 5  ISF truncated cone test (a) Tool path; (b) Deformed specimen

Fig. 6  Measured loading force 
obtained from ISF of truncated 
cone
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pairs of observations (Xi
, Ŷ

i
) , a loss function can be defined 

to measure the discrepancy between the observations and 
the corresponding outputs of the FFNN for each input as

where ||.|| denotes the squared norm of a vector. The training 
process is carried out by back propagation in which the value 
of W is iteratively updated in order to minimize the value of 
MSE . In this work, this training process is performed in the 
TensorFlow library.

3.2  Proposed framework

In general, a mechanical testing method is specified by its 
geometry, material, and prescribed boundary conditions. 
Such a test can be modeled using the FE framework, of 
which the geometry and boundary conditions are known a 
priori. However, a computational material model must be 
identified to minimize the discrepancy between the numeri-
cal and experimental observations. This study proposes a 
data-driven framework to infer the material model from 
experimental observations. As shown in Fig. 8, the proposed 
method consists of three steps:

Step 1: Data acquisition 

An FE model of a selected testing method is first built 
to simulate the test. Then a series of virtual material 

(4)MSE(W) =
1

NT

∑
NT

k=1
||Yk − Ŷ

k
||,

models is generated by varying randomly the material 
model parameters. With each individual virtual mate-
rial in this generated dataset, the corresponding FE 
simulation is performed, and the corresponding struc-
ture response is obtained. As a result, a dataset is con-
structed, of which each datum includes a pair of the 
virtual structure response and the corresponding virtual  
material models.

Step 2: Development of FFNN 

Once the dataset is collected, an FFNN-based mapping is 
built through a training process to match the recorded virtual 
structure responses as inputs with the corresponding virtual 
material models as outputs.

Step3: Identification 

For any given investigated material, the trained FFNN can  
estimate the material model as soon as the experimental 
structure response of the given test is provided.

The proposed framework is general and can be used 
to determine the parameters of new material models 
using an appropriate experimental test. To illustrate the 
proposed methodology, the following section presents 
in detail the determination of the plastic flow curve of 
aluminum alloy 5052-H32 sheets using the ISF V-shape 
test.

Fig. 7  The architecture of the developed FFNNs (a) A single artificial neuron (b) A feed-forward neural network
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4  Calibration of plastic flow of aluminum 
alloy 5052‑H32 sheets

In this section, the ISF of the V-shape specimen reported 
in “Sect. 2.2” is considered to identify the flow curve of 
AA5052-H32 sheets using the framework proposed in 
“Sect. 3”. As reported in “Sect. 2.1”, the AA5052-H32 
sheets exhibit a minor anisotropy effect in the stress–strain 
response. Therefore, an isotropic von Mises elastoplas-
tic constitutive law governing the evolution of the yield 
surface is used in this study. Since the elastic properties 
consisting of Young’s modulus and Poisson’s ratio can be 
easily identified (see Table 1), only the flow curve needs 
to be identified.

For this purpose, a hardening law is used to generate 
virtual material models by varying its parameters. In this 
work, we employ the hardening law model proposed by 
Pham and Kim [41], in which a good capacity in extending 
the stress–strain relationship into the large strain ranges for 
aluminum alloy was demonstrated [42, 43]. This hardening 
model is expressed as follows:

where Y is the initial yield stress, K denotes a scaling param-
eter, t is a parameter relating to the pre-necking region in the 
uniaxial tension, and h is a parameter regarding the extrapo-
lation beyond the maximum uniform deformation.

(5)�
y
(
�
)
= Y + K

[
1 − exp(−t�)

](
� + 0.002

)h
,

4.1  Data acquisition

The FE simulation of the ISF of the V-shape specimen is 
performed in Abaqus/Explicit, version 2021. The maximum 
force obtained at each loading cycle is used as the structural 
response considered in the calibration framework reported 
in “Sect. 3”.

Figure 9 shows the full mesh of the V-shape ISF used 
in the FE simulation. The die is meshed by discrete rigid 
elements (R3D4) while the tool is modeled as a rigid ana-
lytical body. An initial study was carried out to decrease 
the blank sheet dimension, aiming to reduce the simulation 
time. Furthermore, since the deformation is concentrated at 
the center area of the blank sheet, the clamping area of the 
blank sheet can be removed from the FEM model. There-
fore, a central region of the blank sheet with a dimension 
of 120 mm × 70 mm is modeled. A review of recently pub-
lished papers relating to ISF simulations indicates that more 
than two-thirds of the publications adopted shell elements 
in their studies [2]. Therefore, the reducing 4-node finite-
strain shell elements (S4R) with nine integration points 
through the thickness are applied to model the sheet. The 
S4R element is used because it was developed based on the 
finite-strain theory, which is suitable for capturing the plastic 
deformation in ISF. For a small-strain simulation, small-
strain (S4RS) elements can be used to reduce computational 
time. In both finite-strain (S4R) or small-strain (S4RS) shell 

Fig. 8  Proposed framework 
for identification of material 
properties using feed-forward 
neural networks
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elements in Abaqus/Explicit, the through-thickness strain is 
calculated from Poisson’s ratio and the membrane section 
strains under the plane stress condition [44]. The central 
region of the blank sheet, where the deformation is con-
centrated, is meshed by square elements with an edge size 
of 0.5 mm. The element size is enlarged gradually from the 
central region to the boundary region, of which the element 
edge size is 4 mm.

During the FE simulation, the die is fixed while the 
displacement of the blank outer bounds is enclosed. A 
Mohr–Coulomb’s contact law with a constant coefficient of 
0.05 is employed to model all contact pairs. The process 
contains various tool moves in the XZ plane following the 
tool paths shown in Fig. 2. The physical time cannot be used 
in the dynamic explicit simulations because using such small 
time step leads to an enormous simulation time. In practical, 
determining a virtual simulation time is essential to guaran-
tee good agreement between the simulation and experiment 
results. Simultaneously, the virtual simulation time could 
not be too small so as to avoid introducing the non-physical 
dynamic effects into the derived simulation results. After 
several tries, the virtual simulation time is set to 0.4 s for the 
entire process. The imposed simulation time is equivalent to 
a tool moving speed of 1800 mm/s.

Regarding the sampling of the hardening law parameters, 
three physical parameters, the initial yield stress (σ0), the 
maximum uniform strain (ε*), and the yield-to-strength ratio 
(σ*/σ0), are used in this task. Consequently, parameters of 

the hardening law can be determined explicitly from these 
physical parameters as follows [43]:

The variation ranges for each parameter are carefully 
considered following previous studies [45, 46] to cover dif-
ferent types of aluminum alloys. These ranges are reported 
in Table 2.

According to Table 2, the design space is defined as 
D = [100, 250](MPa) × [0.1, 0.25] × [1.1, 2.5] . Theoreti-
cally, there exists an unlimited number of virtual materi-
als that can be generated within the space. However, only 
a limited number of simulations can be conducted due to 
the restriction of computational time and resources. Thus, 
considering a successful simulation of the ISF V-shape test 
takes almost 2 hours in this study, only a set of 100 individu-
ally virtual materials are generated. Subsequently, the cor-
responding simulations are conducted to collect the inputs  

(6)Y = �0

(7)h =
�∗∕�0

�∗∕�0 − 1
�
∗

(8)t =
5

�∗

(9)K =
�∗ − �0

�∗h

Fig. 9  FEM model for V-shape ISF simulation (a) Assembly (b) Mesh on the sheet
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and outputs. Several sampling methods could be used for the 
task, for example, full factorial sampling, Latin hypercube 
sampling (LHS), distributed hypercube sampling, and Latin 
centroidal Voronoi tessellation [47]. Previous studies com-
pared applications of the methods in different engineering  
problems and suggested using the LHS for the case study of 
size 100 each [48, 49]. Consequently, this study utilizes the 
LHS method for generating virtual materials.

Figure 10 shows a typical result obtained from the simula-
tion of the ISF V-shape specimen with a pre-defined virtual 
material. According to Fig. 10a, the deformation is concen-
trated on the central region where the fine mesh is designed. 
Moreover, a maximum equivalent plastic strain of 1.58 was 
observed in this figure, which is significantly larger than the 
maximum uniform strain observed in the uniaxial test shown 
in Fig. 1. In addition, Fig. 10b shows the numerical predic-
tion of loading forces, which exhibits a similar trend to that 
shown in the experiment. This good agreement confirms the 
reason for the use of the maximum loading force according 
to the number of loading cycles as the inputs for neural net-
work training, as discussed in the next section.

Figure  11 presents the recorded maximum loading 
forces according to the loading cycles for several virtual 
materials. In addition, the measured maximum forces 
obtained from the ISF of the V-shape specimen of the 
AA5052-H32 sheet are also illustrated in this figure for 

comparison purposes. It can be seen from the figure 
that all the experimental data are ranged intermediate to 
the upper and lower limits of the numerical data, which 
ensures avoiding extrapolation in the identification of a 
tested materials’ flow curve.

4.2  FFNN training

This work develops two strategies to calibrate the harden-
ing behavior of sheet metals. The first strategy identifies 
the hardening law parameters to reproduce sheet metal flow 
curves. The second approach calibrates a list of discrete 
stress–strain data to illustrate the flow curve. Both strategies 
show advantages and disadvantages that will be discussed 
in detail.

The entire achieved dataset is randomly divided into 
training, validation, and test datasets whose ratios are 70%, 
15%, and 15%, respectively. After training, the coefficient of 
determination (R2) is calculated on the test dataset to evalu-
ate the performance of FFNN on the unseen data. The for-
mulation of R2 is expressed as follows:

(10)R2 = 1 −

∑Ne

i=1

�
yi − ŷi

�2

∑Ne

i=1

�
yi − y

�2

Table 2  The variation range of 
physical parameters observed 
during a uniaxial tensile test for 
aluminum alloy sheets

Parameter σ0 (MPa) ε* σ*/σ0

Physical meaning Initial yield stress Maximum uniform strain obtained 
from uniaxial tensile test

Yield-to-
strength 
ratio

Range [100, 250] [0.10, 0.25] [1.1, 2.5]

Fig. 10  A typical simulation result of an ISF V-shape test with an imposed pertinent parameter set: σ0 = 200  MPa, ε* = 0.15, σ*/σ0 = 1.5  (a) 
PEEQ; (b) Predicted loading force
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where Ne denotes the number of observations; and y denotes 
the average value of the output data of these observations.

4.2.1  FFNN1: identification of hardening law parameters

The output layer of FFNN1 includes four hardening law 
parameters: Y, K, t, and h (see Eq. 5), while the input layer 
includes the maximum loading force observed in several 
loading cycles during the ISF V-shape test. However, only 
the last seventeen loading cycles were used as the input for 
FFNN1 because their deformations are dominated by plastic 
deformation. Meanwhile, the elastic deformation involves 
significantly the material responses observed in the first 
three cycles, which were not used for training. In addition, 
to reduce the number of possible network architectures, all 
hidden layers of the FFNN consist of the same number of 
hidden nodes, denoted by p.

Since the material responses observed from the first three 
loading cycles were not involved in the FFNN1 input, the 
information of the first three loading cycles was removed 
from the dataset. Therefore, the accuracy of the model pre-
diction may be insufficient, especially in the early stages 
of plastic deformation. Thus, an alternative to FFNN1, 
named FFNN1*, is also developed, taking the initial yield 
stress as one of the inputs. As a result, the output layer of 
FFNN1* contains three hardening parameters: K, t, and h. 
It is worth noting that the initial yield stress can be deter-
mined experimentally by standard testing methods, such as 

uniaxial tensile test, small punch test, indentation test, and 
hardness test. However, discussion on the means used to 
determine the initial yield stress is beyond the scope of this 
study; the interested reader can find the detail in the refer-
ences [50, 51].

Architecture selection Previous studies clarified the impor-
tance of model selection through determining hyperparam-
eters: the number of hidden layers q and the number of nodes 
in each layer p [52, 53]. In parametric studies, several values 
of q were considered, i.e., q = 2, 3, 4, 5, 6, 7 layers. For a 
given value of q, several values of p were examined, i.e., 
p = 30, 40, 50, 60, 70 nodes. The weights and biases are 
randomly initiated before training, which causes poor repeat-
ability of the trained models [54]. For each given construc-
tion (q, p), the FFNNs are trained ten times with random 
initialization of weights and biases, and the average of their 
losses is used to evaluate their performance and reported in 
Fig. 12.

The results shown in Fig. 12a indicate an advantage 
in using multiple hidden layers. Considering the training 
errors of FFNN1, deeper networks generally show better 
performance. However, the performances of the networks 
with q = 6, 7 appear to be more or less equivalent. There-
fore, a network structured with six hidden layers q = 6 
is selected for the FFNN1. Furthermore, comparing the 
validation losses of the networks with q = 6 suggests the 

Fig. 11  Maximum loading 
forces evaluations obtained 
from the experiment of 
AA5052-H32 sheets and the 
simulations of three virtual 
materials
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use of 40 nodes per hidden layer to balance the training 
accuracy with the computational time.

A similar observation is noted for FFNN1* in Fig. 12b 
where the deeper networks (q = 5, 6, 7) perform better than 
the others (q = 3, 4) in terms of training and validation 
losses. The obtained results suggest the same architecture 
of q = 6 and p = 40 for FFNN1*.

Training and validation losses of the selected architec-
ture The selected model structure (q = 6 and p = 40) has 
been trained with 100 individual runs; and weights and 
biases are recorded accordingly. To avoid overfitting, an 
early stopping criterion is used to terminate the training pro-
cess when the MSE of the validation dataset starts increas-
ing. Furthermore, a stochastic gradient descent training is 

adopted in this application to increase the training stability 
and generalization performance [55]. In addition, a model 
checkpoint function is imposed to save weights and biases 
at the instance of the best validation loss.

Figure 13 presents the distribution of the MSE evaluated 
on the test dataset for all pre-trained models of FFNN1 and 
FFNN1*. It is seen that the performance of the FFNN1* 
on the testing dataset seems to be better than the FFNN1, 
statistically. In detail, the mean and standard deviation of the 
errors of FFNN1* are 1.63 ×  10−3 and 6.45 ×  10−4, whereas 
those of FFNN1 are 3.13 ×  10−3 and 6.81 ×  10−4, respec-
tively. Among these models, the best performance models 
are focused, and their predictions for each output are com-
pared with the corresponding target values, as illustrated in 
Fig. 14.

Fig. 12  Hyperparameter selection for (a) FFNN1 and (b) FFNN1*
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The training process for the selected FFNN1 achieves an 
MSE of 4.92 ×  10−4 on the training dataset and an MSE of 
3.26 ×  10−3 on the validation dataset, which indicates that the 
model was well generalized. As a result, a significant rela-
tionship between the predicted and target values is exhibited 
in Fig. 14b. In detail, the R2 coefficients are more significant 
than 0.98, except those of parameter t, which is approxi-
mately 0.95. A similar result is observed in FFNN1*, which 
confirms the reliability of the training approach.

4.2.2  FFNN2: identification of discrete data of the flow 
curve

The input of FFNN2 contains a node of the effective plas-
tic strain besides the seventeen nodes of maximum loading 
forces. As a result, the output layer involves only a single 
node of the corresponding effective stress. Similar to the 
before-mentioned FFNN1*, the initial yield stress is intro-
duced in the input layer of FFNN2*, which is an alternative 
to the FFNN2. Consequently, the target of FFNN2* contains 
the subsequent strain-induced flow stress, which is defined 
as follows:

In the FFNN1 models, the training data size is embed-
ded regarding the number of generated virtual materials. 
In contrast, the size of the FFNN2 training data is arbitrary 

(11)Ŷ = �
y − �0

according to the number of the additional effective plastic 
strains. Since this study aims to estimate the plastic flow 
stresses up to a large strain range, i.e., � = 1.0 , a fixed 101 
values of strain in the interval [0, 1] with an increment of 
0.01 belonging with 50 other random values are imposed in 
the input layer. Thus, the size of the training and validation 
datasets is 12,835 samples.

The same algorithm described in the previous subsection 
is applied to determine the hyperparameters of FFNN2 and 
FFNN2* and to train the selected architecture. Overall, an 
architecture of five hidden layers (q = 5) with 50 nodes per 
each layer (p = 50) is selected for both two networks. The 
training processes for the selected architectures were con-
verged well with the training and validation errors of around 
 10−6. Additionally, the performance of the trained networks 
on the test dataset exhibits a good evaluation (R2 > 0.99996). 
The details of the training process and the validation of the 
FFNN models are described in Appendix 9..

4.2.3  Discussions

For easy tracking of network configurations and their per-
formances on the unseen dataset, Table 3 summarizes the  
training and validation losses and the R2 score of the four 
selected FFNNs. Overall, four suggested FFNNs associ-
ated with the training algorithms demonstrate excellent 

Fig. 13  MSE distribution of 100 
training runs of FFNN1 and 
FFNN1* calculated on the test 
dataset ( 

m
 , mean value; S.D., 

standard deviation)
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approximation ability on the entire dataset generated by FE 
simulations of the ISF V-shape test.

Both of the two modeling strategies for the flow curve 
of aluminum alloy sheets, associated with FFNN1 and 
FFNN2, were trained and validated successfully. The first 
approach identifies parameters of a hardening law. That 
allows the use of the law in special-purpose FE simula-
tions requiring the implementation of a user-defined sub-
routine to describe the constitutive equations. However, 
the strong sensitivity of the calibrated hardening law to its 
parameters, which are the targets of the network’s outputs, 
raises difficulties in the training processes. In other words, 
the difference between the best and the worst networks 

reported in Fig. 13a, b is approximately 4 ×  10−3, although 
the same network architecture was applied. Therefore, the 
network showing the best performance on the test dataset 
is recommended for practical applications.

In the second approach, the calibrated flow curve is 
less sensitive to the model outputs than the first one, dem-
onstrating the difference between the best and the worst 
networks, as shown in Fig. 19a, b in Appendix 9.. Conse-
quently, the average of the FFNN2 outputs of 100 train-
ing runs could be used in the application to provide more 
stable predictions. In addition, the FFNN2 outputs as a 
list of stress–strain data can be used in general-purpose  
FE simulations following the Plasticity option in Abaqus 

Fig. 14  Evaluation of the pre-trained FFNN1 and FFNN1* (a) Training progressive of FFNN1; (b) Correlation of FFNN1 predictions and the 
targe values (test dataset); (c) Training progressive of FFNN1*; (d) Correlation of FFNN1* predictions and the target values (test dataset)
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format. Unlike the first approach, the training and vali-
dation dataset size in the second approach is unlimited, 
which strongly influences the computational time. With 
the reported data samples, the training time of the FFNN2 
is approximately triple as those of the FFNN1.

4.3  Identification for plastic flow curve 
of AA5052‑H32 sheets

This section presents an application of the trained FFNNs 
to predict the hardening behavior of AA5052-H32 sheets 
with a thickness of 1.0  mm. The measured maximum 
loading forces reported in “Sect. 2.2” and the initial yield 
stress determined from the uniaxial tensile test for the RD 

specimen (see Table 1) are fed into the input layer of these 
FFNNs to estimate the outputs.

Figure 15 presents the FFNN predictions for the plastic 
flow curves of the tested material in a wide strain range, i.e., 
� = 1.0 . A previous study used the average of the outputs 
of multiple training runs to reproduce the predicted flow 
curve [52]. As discussed before, the network showing the 
best performance on the test dataset is recommended in the 
cases of FFNN1 and FFNN1*. Therefore, the results of two 
extracting methods are reported in Fig. 15a, b as “Model A” 
and “Model B,” respectively. It is seen that the FFNN predic-
tions are close to each other, except in the case of the Model 
A of FFNN1 which is higher than the others. The validations 
of these models are presented in the next section.

Table 3  Training results of the developed FFNNs

FFNN1 FFNN1* FFNN2 FFNN2*

Input layer X =
[
F1, ..,F17

]T
X =

[
F1, ..,F17, �0

]T
X =

[
F1, ..,F17, ε

]T
X =

[
F1, ..,F17, ε, �0

]T

Target output Ŷ = [Y ,K, t, h]T Ŷ = [K, t, h]T Ŷ =
[
�y(�)

]
Ŷ =

[
�y(�) − �0

]

Architecture 6 hidden layers, 40 nodes 
per each

6 hidden layers, 40 
nodes per each

5 hidden layers, 50 nodes 
per each

5 hidden layers, 50 nodes per 
each

Epoch 450 224 910 697
Training loss MSE = 4.92 ×  10−4 MSE = 3.62 ×  10−4 MSE = 9.91 ×  10−7 MSE = 2.55 ×  10−6

Validation loss MSE = 3.26 ×  10−3 MSE = 2.16 ×  10−3 MSE = 1.15 ×  10−6 MSE = 1.76 ×  10−6

Test dataset evaluation R2 = 0.9968 R2 = 0.9854 R2 > 0.9999 R2 > 0.9999
Time for each training run 10 min 10 min 32 min 32 min
CPU CPU i7-970, 3.00 GHz, 32G RAM, Windows 10 Pro
Application recommenda-

tion
Special-purpose FE simuation with Abaqus user’s 

subroutine
General-purpose FE simuation with Abaqus/CAE execute

Fig. 15  Identification of plastic flow curve of AA5052-H32 sheets based on different FFNNs (a) Model A: the network showing the best perfor-
mance on the test dataset; (b) Model B: the average of all networks' outputs
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5  Validation

In this section, the FFNN-based flow curves are first com-
pared to the experimental data obtained from the uniaxial 
tensile test, which is widely used to determine experimen-
tally the flow curve of sheet metals. Then, the identified flow 
curves are employed to simulate the uniaxial tensile and ISF 
truncated cone tests.

5.1  Comparison between the FFNN‑calibrated flow 
curves and the uniaxial tension data

Figure 16 compares FFNN predictions of the plastic flow  
stresses with the experimental data obtained from the 
uniaxial tensile test of the RD specimen. According to 
Fig. 16a, both predictions of FFNN1 deviate significantly 
from the experimental data. In contrast, FFNN1* provides 
more accurate predictions owing to the introduction of 
the initial yield stress in the model’s input, as shown in 

Fig. 16b. With an R2 coefficient of nearly 0.98, it is con-
cluded that the FFNN1* predictions are in good agree-
ment with the experimental data. In comparing the results 
shown in Fig. 16c, d, a similar conclusion can be explored 
where the FFNN2* provides significantly better predic-
tions than those of FFNN2. The observation is due to the 
lack of material responses regarding early plastic defor-
mation contained in the input layer of the FFNN1 and 
FFNN2. It is therefore recommended to include the initial 
yield stress as an additional input for network training to 
improve the accuracy of the FFNN model.

According to Fig. 16c, d, the Model A of FFNN2 and 
FFNN2* yield unsmooth predictions of the flow curves. 
The observation is a pure numerical issue, which is sur-
mounted by using the average results of 100 runs. In 
addition, the standard deviation of these outputs is of 
approximately 3 MPa, which assures the robustness of the 
predictions. The comparison demonstrates the accuracy 
of FFNN1* and FFNN2* predictions, which agree well 

Fig. 16  Comparison between the flow stresses predicted by four 
FFNNs and the experimental data obtained from the uniaxial ten-
sion test. Model A: the network showing the best performance on the 

test dataset, and Model B: the average of all networks’ outputs  (a) 
FFNN1; (b) FFNN1*; (c) FFNN2; (d) FFNN2*
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with the experimental data. Therefore, further evaluation is 
needed to clarify their accuracy in larger strain ranges. The 
flow curves based on the Model A of FFNN1* and Model B  
of FFNN2* are considered in the subsequent simulations.

5.2  Comparison between the FFNN‑calibrated 
flow curves and the result of an inverse finite 
element method

Several methods can be used to identify the hardening sheet 
metals’ behavior in large strain ranges. Here, the FEMU 
method is adopted to identify the parameters of the harden-
ing law expressed in Eq. 5 for AA5052-H32 sheets. Details 
regarding the implementation of the FEMU method are 
described in the references [18, 56, 57].

Values of the hardening law parameters determined from 
different methods are reported in Table 4. Moreover, Fig. 17 
compares the FFNNs’ predictions for plastic flow curves 
with those determined by the FEMU method. In addition, 
Fig. 17b presents the applications of these curves in FE 
simulation of the uniaxial tensile test. It is seen that the flow 

curve predicted by FFNN1* is agreed well with the FEMU 
result in the small-strain range, e.g., 𝜀 < 0.1 . However, its 
extension to a more extensive strain range (e.g., 𝜀 < 0.3 ) is 
higher than the reference curve. As a result, the tensile force 
prediction of the FFNN1* is in agreement with the experi-
mental data, except for a slight misalignment is observed 
at the tails of the measured curve. Besides, the FFNN2* 
seems to overestimate the tensile forces since its prediction 
for the plastic flow curves is slightly higher than the oth-
ers. Remarkably, the differences between these examined 
flow curves estimated at � = 0.3 are less than 5%, which 
demonstrates the accuracy of FFNNs’ predictions. How-
ever, the validation is useful in this particular strain range, 
i.e., 𝜀 < 0.3 , because the maximum effective plastic strain 
observed during the uniaxial tensile simulation is less than 
0.22, as shown in Fig. 17b.

5.3  Application of the FFNN‑calibrated flow curves 
in the ISF simulation of a truncated cone

An FE model is developed to simulate the ISF truncated 
cone test for AA5052-H32 sheets to verify the capabilities 
of FFNN-based flow curves in practice. For the sake of sim-
plicity, the detail of the developed FE model is described in 
Appendix 10..

Figure 18a compares the force predictions of the FE 
simulations based on the identified flow curves with the 
experimental measurements. According to this figure, sig-
nificant vibrations are observed in both the experimental and 
numerical results. It is noted that the vibrations are unavoid-
able due to the nature of the experimental processes and 

Table 4  Calibrated hardening law parameters of AA5052-H32 sheets 
based on different methods

Calibration method Y
[MPa]

K
[MPa]

t h

FEMU 157.0 143.99 64.03 0.228
FFNN1 181.80 140.90 58.50 0.362
FFNN1* - 142.49 57.31 0.354

Fig. 17  Comparison between the FFNNs’ predictions and the hardening laws determined by the FEMU method (a) Calibrated flow curves; (b) 
Their applications in simulation of the uniaxial tensile test
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computational scheme. Therefore, the averages of the meas-
ured and predicted loading forces are calculated for every 
loading cycle and plotted in Fig. 18b to simplify the visu-
alization. The measured forces are significantly higher than 
those obtained from FEM simulations within the first five 
loading cycles. However, the deviations are observed at the 
middle of each loading cycle, although the force increments 
after every cycle being in good agreement. This deviation 
relates to the effect of the unexpected elastic vibration in the 
flattened regions in several early loading cycles. After that, 
the forces approach their saturations in steady-state defor-
mations in the ISF process [9, 39]. Thus, the good agree-
ment between the measured and predicted saturated forces 
demonstrates the accuracy of the identified flow curves at 
large strains.

According to Fig. 18b, the identified FFNN-based flow 
curves yield similar predictions of the loading forces dur-
ing the ISF truncated cone test simulations. Furthermore, 
these predictions are higher than the measured forces by 
about 5%. This amount of error is agreed well with those 
errors reported in a previous ISF benchmark test conducted 
for AA7075-O sheets [13]. In addition, the maximum effec-
tive plastic strain observed at the end of the FE simulation, 
which was imposed the FFNN1*-based hardening law, is 
approximated to one, i.e., � ≈ 1.0 . This remark shows that 
the calibrated flow curves can be used at extensive strain 
ranges. The comparison clarifies the potential of the trained 
FFNNs in predicting the plastic flow curve of sheet metals 
subjected to an ISF process.

6  Discussion and conclusion

6.1  Discussion

This work aims to calibrate the plastic flow curve of alu-
minum alloy sheets using an ISF process. The trained 
FFNNs can predict the hardening behavior even up to 
� = 1.0 for different aluminum alloy sheets with the same 
thickness of 1.0 mm. In future works, sheet thickness would 
be considered as an input for training the FFNNs for differ-
ent practical applications.

In this study, the measured maximum loading forces are 
used to characterize the material response during an ISF 
V-shape specimen test. Due to the limitations of the cur-
rent experimental facilities, information regarding the dis-
placement fields does not include in the training processes. 
In addition to these forces, further studies would consider 
the maximum strains observed in each loading cycle as the 
material response to enrich the training inputs. Such strain 
fields could be obtained using advanced optical measure-
ment methods.

The number of FE simulations of the ISF V-shape test 
and the accuracy of each individual are essential to derive 
a training dataset with high quality. In this work, only 100 
simulations are performed due to the limitation of compu-
tational resources. In this regard, applying the parallel com-
puting technique should be used to obtain a larger training 
dataset. Moreover, instead of using shell elements, solid 
elements can be used to increase the accuracy [2, 6, 7, 58]. 

Fig. 18  Comparison between experimental measurement and numerical prediction for loading forces observed during the ISF truncated cone 
test (a) Loading forces according to the forming depth; (b) Average forces according to the loading cycles
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However, a balance between the time-consumption and 
the accuracy is always an issue of ISF simulations. Several 
methods reported in the literature could be considered in 
coping with this task [5, 59].

The proposed framework presented in Fig.  8 can be 
straightforwardly applied to calibrate other material mod-
els. For instance, a bending/reverse-bending test can be 
used to characterize the parameters of a kinematic harden-
ing model [60]. However, the application of the calibrated 
material model in another test should be provided to validate 
the FFNN predictions.

6.2  Conclusion

This study developed an ML-based calibration method for 
hardening law parameters of aluminum alloy sheets using 
the material response experimentally characterized by an 
ISF V-shape test. The developed method was then applied 
to determine the flow curve of AA5052-H32 sheets up to 
large strains, i.e., � = 1.0 . The calibrated flow curves were 
compared with experimental data obtained from a uniaxial 
tensile test and a reference hardening law determined by the 
FEMU method. Finally, these curves were validated through 
an ISF simulation of a truncated cone.

The following conclusions can be made from this study:

1. Four FFNNs were developed to estimate the flow curve 
of aluminum alloy sheets, which could be represented 
by hardening laws or a series of discrete points. The 
FFNNs are trained and used to estimate the flow curves 
of AA5052-H32 sheets up to a strain value of 1.0 using 
the experimental data obtained from the ISF V-shape 
test.

2. Compared to the experimental data obtained from 
a uniaxial tensile test of AA5052-H32 sheets, the 
FFNN-based flow curves seem to overestimate the flow 
stresses at small strains. The introduction of the initial 
yield stress in the training inputs allows improving the 
FFNNs’ predictions in the entire strain range observed 
in the uniaxial tensile test with an R2 coefficient of 0.98. 
The observation suggests that the material response used 
to train the FFNNs could be characterized not only by a 
single test but also by combination of different tests.

3. The calibrated flow curves based on FFNN1* and 
FFNN2* for AA5052-H32 sheets are compared to a 

hardening law calibrated by the FEMU method. In addi-
tion, these curves are employed to simulate the uniaxial 
tensile and ISF truncated cone tests, which deform the 
investigated material in extensive strain ranges [36, 61]. 
The simulated tensile forces are in good agreement with 
the experimentally measured results, while a maximum 
difference of 5% is observed in the comparison between 
the simulated and measured loading forces in the steady-
state deformations of the ISF truncated cone test.

Appendix 1

This section provides the details of the architecture selec-
tion and training processes of FFNN2 and FFNN2*. Vari-
ous architectures have been trained using the algorithm 
described in “Sect. 4.2.1” in the main text. Figure 19 shows 
the results used for the evaluation. In both models, introduc-
ing deeper hidden layers does not significantly improve the 
training losses, which are mainly ranged from 2 ×  10−5 to 
4 ×  10−5. Therefore, according to this figure, an architecture 
of five hidden layers (q = 5) coupling with 50 nodes per each 
(p = 5) is selected for both two models.

The selected architecture has been trained for 100 runs 
with individual random seeds. The same training algorithm 
used to train the FFNN1 and FFNN1* is adopted here, 
except a change of the batch size to M = 64 due to the change 
of the training data size [55]. Figure 20 presents the MSE 
distribution of 100 training runs evaluated on the test data-
set. It is seen that the mean value and standard deviation 
of both two models are closed to 1.1 ×  10−5 and 2.0 ×  10−5, 
respectively.

Figure 21 shows the training progress of the selected 
FFNN2 and FFNN2*, which show the lowest error esti-
mated on the test dataset. Specifically, after 910 training 
epochs, the selected FFNN2 obtains the lowest MSE of 
9.91 ×  10−7 and 1.15 ×  10−6 on the training and validation 
dataset, respectively. Figure 21b depicts the link between 
the target values and their corresponding approximations 
made by the FFNN2 on the test set. According to this fig-
ure, with an R2 of 0.99996, the approximations are well 
aligned with their goals. A similar result is observed in the 
case of FFNN2* after 697 epochs with errors of 2.54 ×  10−6 
and 1.76 ×  10−6 measured on the training and validation 
datasets.
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Fig. 19  Hyperparameters selection for (a) FFNN2 and (b) FFNN2*
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Fig. 20  MSE distribution of 100 
training runs of FFNN2 and 
FFNN2* calculated on the test 
dataset ( m , mean value; S.D., 
standard deviation)
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Appendix 2

This appendix describes more detail in FE simulation of 
the ISF truncated cone test. Similar to the ISF V-shape 
test simulation, the blank sheet is modeled by S4R ele-
ments with nine integration points. The die and tool are 
modeled by analytical rigid bodies, whereas the holder is 
described by discrete rigid elements (R3D4). Figure 22 
shows the developed FE model used for ISF truncated cone 
test simulation. Fine mesh is designed in the wall region, 
where the deformation is focused. In detail, a mesh with 

384 elements in the circumferential direction is generated 
with an increment of 0.5 mm in the radial direction. The 
forming process is modeled within two steps. In the first 
step, the blank holder is moved downward an amount of 
0.02 mm and then kept its position to clamp the sheet. The 
tool moves following the tool path shown in Fig. 5 in the 
main text to form the sheet to the designated shape in the 
second step. Similar to the ISF V-shape test simulation, a 
virtual tool speed of 1800 mm/s is employed in this simu-
lation to speed up the calculation.

Fig. 21  Evaluation of the pre-trained FFNN2 and FFNN2* (a) Training progressive of FFNN2; (b) Correlation of FFNN2 predictions and the 
targe values (test dataset); (c) Training progressive of FFNN2*; (d) Correlation of FFNN2* predictions and the target values (test dataset)
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