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Abstract
A new technique to generate smooth motion trajectories for robot manipulators using multiquadric radial basis functions 
(MQ-RBFs) is presented in this paper. In order to get the optimal trajectory, two objective functions are minimized that are 
proportional to the execution time, the integral of the squared jerk (which denotes the time derivative of the acceleration) 
along the whole trajectory. Also, the proposed interpolation technique is introduced for solving the trajectory planning 
problem in the joint space, where the interpolation of via-points takes into account boundary conditions and also satisfies 
kinematics limits of velocity, acceleration, and jerk. Then, the proposed approach is compared with a set of classical inter-
polation techniques based on radial basis function models and cubic splines. Finally, the proposed technique has been tested 
for the six-joint PUMA 560 manipulator in two cases (minimum time and minimum time-jerk) and results are compared 
with those proposed of other important trajectory planning techniques. Numerical results show the competent performances 
of the proposed methodology to generate trajectories in short total transfer time and with high smooth profile.

Keywords  MQ-RBF · Trajectory generation · Execution time · Jerk · Robotic manipulator

1  Introduction

Robot manipulators are mechanisms composed of an assem-
bly of links and joints that is roughly analogous to the human 
arm; the end-effector is usually equipped with a gripping tool 
making it possible to manipulate objects. These robots are 
often intended for performing complex and repetitive tasks 

in large workspaces. In order to enhance the efficiency of a 
robotic manipulator when performing a given operation, it is 
necessary to determine the best trajectory to execute this task 
by the optimization of certain variables.

Generally, the robot manipulators execute two types of 
tasks, namely, continuous tasks (CT) and pick-and-place 
tasks (PPT). In CT, the robot end-effector is meant to attend 
a smooth and continuous trajectory. This appears in opera-
tions such as flame-cutting, arc-welding, and deburring. In 
PPT, only the first and last configurations should be respected 
in addition to the obstacles to be avoided. These two configu-
rations are connected with a free trajectory. This can be the 
case with placing components on circuit boards, point-to-
point welding, and tool changes in machine tools [1].

As the robot can be described in two types of tasks, con-
tinuous tasks, and pick-and-place tasks, it is the same for the 
trajectory. Usually, trajectory planning is performed in the 
operational space (OS) and the joint space (JS). In OS, the 
trajectory can be naturally described by the end-effectors, and 
it is easy to display and visualize the trajectory. On the other 
hand, it is difficult to guarantee that singularities do not occur. 
Trajectory planning in the JS will reach the points defined in 
the OS with better accuracy since errors due to the solution of 
the forward and reverse kinematic models are not introduced in 
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the system. However, in the majority of cases, the trajectory of 
the robots is planned in the joint space because, since the joints 
of the robot manipulators receive the action of the control, 
planning in the operational space requires a kinematic inver-
sion in order to derive the evolution of variables in the JS [2].

High operating speed is one of the essential requirements to 
minimize production cycle time in many automated production 
systems, especially in robotic units. Thus, the development of a 
method that obtains a fast movement of robots has been broadly 
studied in the subject of robot manipulators. However, consider-
ing the high non-linearity of the systems and coupling between 
joints and the gravity effects of rigid links, it is possible to get 
approximate solutions [3, 4]. In this area, the authors proposed 
an important phase plane method [5, 6]. However, the torque and 
acceleration profiles of these algorithms present a discontinuity, 
and this is due that the links that constitute the robot are perfectly 
rigid and to the fact that the actuator dynamics are neglected. 
Later, to overcome this kind of drawback, the authors in [7] 
introduced actuator jerk constraint limits. However, their method 
could not be precisely optimal over time, but the trajectories gen-
erated might be used for further innovative control approaches. 
Xiao et al. [8] recently obtained minimum traveling time and 
smooth trajectory for online operations, converting kinematic 
and dynamic constraints of joint space and the path of operating 
space into parameter space by using the cubic polynomial fitting 
technique. The optimization problem of time-optimal becomes 
non-convex by considering the viscous friction of the mecha-
nism. Other minimum time methods using genetic algorithms 
for kinematics and dynamics trajectory planning can be found 
in [9] and [10], respectively. Abu-Dakka et al. [11] established a 
new genetic algorithm method for optimal trajectory and without 
collision between the first and last configurations in complex 
environments as the robot moves.

Apart from optimization of traveling time, bounding or mini-
mizing the jerk is necessary because low-jerk trajectories may 
be achieved more smoothly and precisely. Furthermore, a high-
jerk value can heavily excite its resonance frequencies and wear 
out the robot structure; vibrations produced by non-smooth tra-
jectories can present significant errors and damage the actuators 
while the robot is completing tasks as trajectory tracking [12]. 
For the optimization of the jerk, the value of jerk in the objec-
tive function can appear in two principal approaches, one as 
the maximum absolute value of the jerk (minimax approach) 
in studies [13–17], while in [18–20] as the time integral of the 
squared jerk along the trajectory for a robot manipulator.

In the manufacturing process, the movements of industrial 
robots are habitually needed to be performed in a time-jerk 
optimal way. Trajectory planning approaches along with con-
tinuous tasks (CT) with time-jerk optimal have also been pro-
posed in scientific research [21–26]. Different optimization 
approaches were utilized to get the optimal trajectory by mini-
mizing the hybrid objective function composed of two terms 
proportional to the traveling time and the interval squared jerk; 

for example, studies in Refs. [23, 26, 27] used the sequential 
quadratic programming (SQP) technique, while in Ref. [24], a 
meta-heuristic approach, namely teaching learning based opti-
mization (TLBO), was employed for producing time-optimal 
smooth motion trajectories. Another hybrid method is that 
in Refs. [28, 29], where a time energy smoothness trajectory 
planning algorithm is presented. In this technique, the trajecto-
ries are generated in third-order spline form using general con-
strained nonlinear optimization, considering the joint physical 
limits and the actuator’s power consumption.

In robotics, trajectories are mostly described by algebraic 
splines (e.g., quintic splines [27], cubic splines [10, 30], quartic 
splines [31], B-splines [32–35], and trigonometric splines [18]), 
Bezier [36] and polynomial interpolation functions in [37, 38]. 
Sometimes a mix of them is established to produce the best 
reference trajectories. For example, in [39], the authors combine 
fourth- and fifth-order polynomials, while [40] combined 7th-
order polynomials and cubic splines to guarantee zero jerk at the 
joint movement’s limits. Ref. [41] proposed a smooth trajectory 
planning approach with the combination of septuple B-splines 
in JS and cubic splines in OS of robot manipulator.

In addition to these broad varieties of interpolation func-
tions, particularly we pay attention to radial basis functions 
(RBFs), which are an advanced technique for scattered data 
interpolation based on linear combinations of terms that include 
a single univariate function [42]. However, to our knowledge, 
there are not many publications in scientific research dealing 
with the trajectory planning problems by using RBF interpola-
tion methods for robotic systems. In this context, in Ref. [43] 
the authors presented a new approach for planning trajectory 
in pick-and-place operations using Gaussian RBF; the obtained 
trajectory is compared with those of other interpolation tech-
niques. Reference [44] offers a direct solution to optimal con-
trol problems. It is based on the interpolation of global radial 
basis functions (RBFs) on arbitrary collocation points. In their 
proposed approach, states and controls are parameterized with 
any arbitrary global RBF and the continuous-time optimal con-
trol problem is discretized using arbitrary collocation points to 
translate it into a nonlinear programming problem, while in 
Ref. [45] combining radial basis function (RBF) interpolation 
with Galerkin projection provides a new approach to effectively 
solve general optimal control problems. They develop a very 
flexible solution to optimal control problems, especially non-
smooth problems involving discontinuities, while simultane-
ously taking into account trajectory accuracy and computational 
efficiency, and Ref. [46] proposed to use radial basis functions 
with Gaussian kernels for generating smooth Cartesian paths 
for robot where the motion is defined by a sequence of interme-
diate knots through which the robot has to move.

This paper aims to propose an original trajectory planning 
technique using MQ-RBFs with the requirements of rapidity and 
high-precision operations for robotic systems. The practical inter-
est of this study is that MQ-RBF can simply be used for planning 
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smooth trajectories with continuous derivatives for any order and 
with specific boundary conditions. Indeed, a robot manipulator 
is basically a precision machine in which vibrations are regarded 
as an unwanted phenomenon. These vibrations are caused by 
the presence of structural elasticity in the mechanical system, 
and they can be induced if the actuation devices are subjected 
to trajectories with a discontinuous acceleration profile. Fur-
thermore, a considerable discontinuity in acceleration induces a 
rapid variation in the inertial forces applied to the robot structure, 
which will excite inherent structural elasticity. In consequence, 
this problem must be addressed during the trajectory planning 
process by selecting adequate profiles and imposing appropriate 
continuity and end conditions. Moreover, an important property 
of MQ-RBF is the existence of a shape parameter that signifi-
cantly affects the profile for the generated trajectories of robot 
manipulators. Performance of the proposed approach was tested 
and verified for different examples in continuous tasks/pick-and-
place tasks, with/without optimization and by using other inter-
polation functions in order to obtain an optimal trajectory.

The rest of the paper will be arranged as follows. Section 2 
defines the problem of trajectory optimization, namely the 
objective function to minimize using sequential quadratic pro-
gramming (SQP) techniques. In Sect. 3, multiquadric-RBF is 
adopted to model the joint trajectory, considering boundary 
conditions and the optimization process. Then, in Sect. 4, the 
proposed method is compared with a set of classical planning 
approaches. In Sect. 5, the proposed interpolation technique 
is tested to the PUMA 560 industrial robot with six revolute 
joints for two cases by minimizing: the first case is the transfer 
time and the second one is the bi-objective time-jerk index. 
Finally, the main conclusions are reported in Sect. 6.

2 � Problem statement

In this problem, the PUMA 560 robot manipulator with six 
degrees of freedom is considered. In industrial operations, the 
robot manipulators must pass through a sequence of intermedi-
ate knots in OS. However, as described in the previous section, 
the execution of trajectory planning in the task space is relatively 
complicated, and the via-points are converted into JS using kine-
matic inversion. Hence, a trajectory will be constructed based on 
the via-points in JS and then minimized for some cost functions.

The robot manipulator’s trajectory is required to take as 
little transfer time as possible to increase productivity and be 
smooth enough to avoid excessive mechanical vibrations by 
applying kinematic constraints.

Hence, the optimization problem is mathematically defined 
as follows. Minimize:

(1)Min

⎡⎢⎢⎣
KT

n−1�
i=1

hi + KJ

N�
j=1

T

∫
0

�
q⃛
j
(t)
�2

dt

⎤⎥⎥⎦

Subject to:

The meaning of the symbols mentioned above is explained 
in Table 1.

Noting that the two objectives have contradictory effects. 
Traveling time minimization would lead to faster but less 
smooth trajectories while reducing the jerk objective will lead to 
smoother but slower trajectories. This stated problem is solved 
with sequential quadratic programming (SQP) techniques avail-
able in MATLAB™. The trajectory solving of the above defined 
optimization problem must meet not only the continuity con-
straints appearing in Eq. (2) but also the interpolation conditions 
for all the knots, as well as the kinematic boundary conditions.

3 � Proposed method

3.1 � Definition of the trajectory by means 
of multiquadric radial basis functions

The interpolation functions are probably the most frequent 
operations used in many engineering and sciences problems 
such as the approximation of a function, a common idea 
implied by these functions to represent the approximate func-
tion as a linear combination of a set of points and a basis func-
tion which follows the interpolation condition [47].

A fundamental interpolation problem may be presented as 
follows:

Given a data set 
(
xi, yi

)
 , i = 1, ..., n with xi and yi being 

coordinates of a point that assumed to be all different from 
each other, find a continuous function f such that:

Indeed, to solve this interpolation problem, Hardy and 
Rolland [48, 49] introduced an original idea based on the 
MQ-RBF’s method for the function approximation, which 
were proved to be the best interpolation functions in more 
than thirty functions [50]. An RBF is a real-valued function 
whose value depends only on the radial distance from the ori-
gin of any specific reference point called as “center,” which 
is known as radial basis function (RBF) and has the form:

where � is the radial basis function, ‖ . ‖ denotes the Euclid-
ean distance, x coordinate of a point, and c is the RBF center. 
Any multivariate functions which can be expressed as uni-
variate functions of the Euclidean norm ‖ . ‖ are called radial 
basis functions.

(2)

⎧
⎪⎨⎪⎩

���q̇j(t)
��� ≤ q̇max

j
, j = 1, 2, ..., N

���q̈j(t)
��� ≤ q̈max

j
, j = 1, 2, ..., N

���q⃛j(t)
��� ≤ q⃛max

j
, j = 1, 2, ..., N

(3)f (xi) = yi, i = 1, ..., n

(4)�(x, c) = �(‖x − c‖)
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The RBF basis function could be piecewise infinitely 
smooth and may have the shape parameter σ in multiquad-
ric and Gaussian cases, or smooth and may not have it, for 
example, as in polyharmonic splines. The shape parameter 
σ, used to tune the overall shape of the RBF basis function 
in the approximation process, is a free positive constant 
needed to be specified by the user in advance [51].

In this study, we are especially interested in the classi-
cal MQ-RBF, which is given by [52]:

with:

and

where the 1st, second, and third derivatives are expressed 
as follows:

Hence, to approximate the interpolating function f every-
where by a linear combination of certain RBF �j , gives, [52]

(5)�(r) =
√
r2 + �2

r = ‖ x − c ‖

𝜎 > 0

(6)
��(r)

�x
=

(x − c)√
r2 + �2

=
(x − c)

�(r)

(7)

�2�(r)

�x2
=

1√
r2 + �2

−
(x − c)2

(r2 + �2)3∕2
=

�
1 −

(x − c)2

�(r)2

�
1

�(r)

(8)

�3�(r)

�x3
=

3 (x − c)3

(r2 + �2)5∕2
−

3 (x − c)

(r2 + �2)3∕2
=

(
3 (x − c)3

�(r)2
−

3 (x − c)

1

)
1

�(r)3

(9)f (x) =

n∑
j=1

�j �j

(‖‖‖x − cj
‖‖‖
)

where f (x) is a sum of n RBF’s, each associated with a 
center cj = xj and weighted by an appropriate weight �j . 
x is the input which we wish to evaluate our function f  . By 
choosing interpolate nodes, we can approximate the func-
tion f (x):

After some algebra, solving the interpolation problem leads 
to a system of linear equations is obtained as follows form:

with

Note that the entries of the interpolation matrix are given 
by Aij = �j(xi); i, j = 1, ..., n and constitute a positive definite 
matrix. Thus, using relation Eq. (5), we can define the coef-
ficient matrix as follows:

3.2 � Boundary conditions

In robot trajectory context, the time scale is referred by the 
independent variable x and the n points requirement to be 
interpolated in increasing order, i.e., x1 < x2 < ... < xm . 
Likewise, we are generally interested in assigning the velocity 
and acceleration for the start and end knots of trajectory, i.e.,

where velocities 
{
v1, vn

}
 and accelerations 

{
a1, an

}
 are 

given data of the problem.
To accomplish this goal two extra knots (virtual via-

points) with the associated RBFs should be introduced 
near each extreme point of RBF’s so that the boundary 
conditions for velocity and acceleration can be respected. 
Therefore, the relation Eq. (9) rewrite as follows:

(10)yi =

n∑
j=1

�j �j

(‖‖‖xi − xj
‖‖‖
)
, i = 1, ..., n

(11)KW = Y ,

{
W =

[
�1, ...,�n

] T

Y =
[
y1, ..., yn

] T

(12)K =

⎡⎢⎢⎢⎣

1 �2(x1) ⋯ �n(x1)

�1(x2) 1 ⋯ �n(x2)

⋮ ⋮ ⋱ ⋮

�1(xn) �2(xn) ⋯ 1

⎤⎥⎥⎥⎦

(13)�1 =
� f

(
x = x1

)
� x

, �n =
� f

(
x = xn

)
� x

,

(14)a1 =
�2f

(
x = x1

)
�x2

, an =
�2f

(
x = xn

)
�x2

(15)f (x) =

n+4∑
j=1

�j �j

(‖‖‖x − cj
‖‖‖
)

Table 1   Meaning of symbols

Symbol Description

JM Jerk index objective function
N Number of robot joints
T Traveling time objective function
n Number of interpolation points
t Independent time variable
hi The time interval between two via-points
KT Weight of the term proportional to the execu-

tion time
KJ Weight of the term proportional to the jerk{
q̇j(t), q̈j(t), q⃛j(t)

}
   Velocity, acceleration, and jerk of the jth joint{

q̇max
j

, q̈max
j

, q⃛max
j

}
  

Velocity, acceleration, and jerk limits for 
joint j
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The new elements defining the associated linear system are 
as follows:

•	 The coefficients matrix K [n + 4 × n + 4]:

with:

	   Noting that the previous four rows of matrix K are cal-
culated via relations given in Eqs. (6) and (7). Moreover, 
the values of the four extra knots added to RBF’s trajectory 
are given by:

•	 The unknown vector of the linear system:

and where the vector Y  becomes:

3.3 � Optimization process consideration

In the optimization problem, the solution to this problem was 
denoted as the vector of optimization variables F = (h1, ..., hn−1,

�1, ..., �N) . That is, the issue is to find a set of optimum values 
for the time intervals hj (hj = tj+1 − tj, j = 1, ..., n − 1) , and the 
suitable shape parameters �i (i = 1, ..., N) such as the transfer  
time is minimized between each pair of adjacent knots. Kine-
matic constraints on velocity, acceleration, and jerk for all joints  

(16)K =
[
k1 k2

]

(17)k1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 �2

�
x1
�

⋯ �n

�
x1
�

�1

�
x2
�

1 ⋯ �n

�
x2
�

⋮ ⋮ ⋱ ⋮

�1

�
xn
�

�2

�
xn
�

⋯ 1

��
1

�
xn+1

�
��
2

�
xn+1

�
⋯ ��

n

�
xn+1

�
��
1

�
xn+2

�
��
2

�
xn+2

�
⋯ ��

n

�
xn+2

�
���
1

�
xn+3

�
���
2

�
xn+3

�
⋯ ���

n

�
xn+3

�
���
1

�
xn+4

�
���
2

�
xn+4

�
⋯ ���

n

�
xn+4

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

k2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�n+1

�
x1
�

�n+2

�
x1
�

�n+3

�
x1
�

�+4

�
x1
�

�n+1

�
x2
�

�n+2

�
x2
�

�n+3

�
x2
�

�n+4

�
x2
�

⋮ ⋮ ⋮ ⋮

�n+1

�
xn
�

�n+2

�
xn
�

�n+3

�
xn
�

�n+4

�
xn
�

��
n+1

�
xn+1

�
��
n+2

�
xn+1

�
��
n+3

�
xn+1

�
��
n+4

�
xn+1

�
��
n+1

�
xn+2

�
��
n+2

�
xn+2

�
��
n+3

�
xn+2

�
��
n+4

�
xn+2

�
���
n+1

�
xn+3

�
���
n+2

�
xn+3

�
���
n+3

�
xn+3

�
���
n+4

�
xn+3

�
���
n+1

�
xn+4

�
���
n+2

�
xn+4

�
���
n+3

�
xn+4

�
���
n+4

�
xn+4

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)
x
n+1 = x

1

+ 0.02

(
x
2

− x
1

)
; x

n+2 = x
n
− 0.02

(
x
n
− x

n−1

)
;

x
n+3 = x

1

+ 0.04

(
x
2

− x
1

)
; x

n+4 = x
n
− 0.04

(
x
n
− x

n−1

)

(20)
W[n + 4 × 1] =

[
�1, ...,�n,�n+1,�n+2,�n+3,�n+4

] T

(21)Y[n + 4 × 1] =
[
y1, ..., yn, v1, vn, a1, an

] T

are respected using the MQ-RBF interpolation technique. Also,  
it remains to describe the expression of the objective function 
Eq. (1) in order, to be able to implement the algorithm for the 
trajectory optimization constructed with MQ-RBFs, So, the objec-
tive function Eq. (1) can be defined in terms of MQ-RBF and 
formulated as.

where the execution time

and absolute mean jerk

Therefore, to be capable to compare the results obtained 
by our method, the values of the weighting coefficients KT 
and KJ presented in the expression of the objective function 
Eq. (22) have been adjusted by choosing KJ = 0 permits to 
find a minimum-time trajectory Eq. (23), while setting KT = 0 
permits to find a minimum-jerk trajectory profile is found 
Eq. (24).

4 � Comparative examples

4.1 � Trajectory for pick‑and‑place tasks

As previously stated, the objective here is to find a trajectory 
that connects a beginning and final configuration while also 
satisfying other specified constraints at the endpoints (null limit 
velocity and acceleration). To achieve this goal, we will use two 
knots associated with the limit configurations, and four extra-
knots are inserted according Eq. (19). The trajectory found by 
MQ-RBF is then compared to those obtained by using [52]:

•	 Gaussian RBF (Ga-RBF):

•	 Generalized inverse multiquadric RBF (GIMQ-RBF):

•	 Inverse quadric RBF (IQ-RBF):

(22)Fobj = KT T + KJ JM

(23)T =

n−1∑
i=1

hi

(24)JM =

N∑
j=1

√√√√√√ 1

T

T

∫
0

q⃛2
j
(t) dt

(25)�(r) = exp

(
−
1

2

r2

�2

)

(26)�(r) =
1(

r2 + �2
)2

(27)�(r) =
1√

r2 + �2
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•	 Quintic RBF (Qnt-RBF): 

As a first illustrative example, a single link trajectory is 
considered it has to connect the limit configurations qi = 0, 
qf = π and the employed time interval tf = 1.5 s. Also, the 
shape parameter σ is taken the same for all applied radial 
basis functions and we suppose σ = tf. Trajectory plots of 
the five RBF’s which connect the endpoints are given in 
Fig. 1. The corresponding profiles of velocity, accelera-
tion, and jerk are also plotted in Fig. 1, for purposes of 
comparison. Table 2 reports the extreme recorded values.

Note from Fig. 1 that the position profiles for the five 
RBF’s models are not significantly different and they link the 

(28)�(r) = r5

initial and final positions in a smooth way, with no overshoot 
beyond the endpoints. From velocity, acceleration, and jerk 
points of view, it is clear that Ga-RBF trajectory behaves like 
the Qnt-RBF model and that Qnt-RBF trajectory has a better 

Fig. 1   Trajectory model for pick-and-place tasks

Table 2   Maximum values of velocity, acceleration, and jerk recorded 
during pick-and-place tasks. (The bold values indicate the lowest val-
ues)

Radial basis functions Vmax (deg/s) Amax (deg/s2) Jmax (deg/s3)

Ga-RBF 4.0203 8.2790 48.4002
GIMQ-RBF 4.4951 9.9652 47.7309
IQ-RBF 4.4207 9.6465 45.2121
MQ-RBF 4.3015 9.1527 40.9374
Qnt-RBF 3.9270 8.0607 55.8505
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velocity and acceleration profiles. However, this superior-
ity is paid by having significantly higher values in the jerk 
function. It can be noted that MQ-RBF trajectory is close to 
those of the GIMQ-RBF and IQ-RBF models but with better 
scores in terms of extreme values of jerk compared with other 
RBF’s trajectories, as indicated in Table 2.

4.2 � Trajectory for continuous tasks

As a second illustrative example, a single link trajectory is 
considered for planning trajectory in continuous tasks as 

in Ref. [18]. The trajectory has to connect the following 
angles (in degrees) q = [120,60,80,120,0]. The employed 
time intervals are 2 s between each pair of adjacent knots. 
The objective of this example is to test the use of MQ-RBF 
for planning joint trajectories and to compare the results 
with those obtained by using:

•	 Gaussian RBF (Ga-RBF): implemented according to Ref. 
[43], and

•	 Cubic spline (CS): implemented according to Ref. 
[53]

Fig. 2   Trajectory model for continuous tasks
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Note that the only drawback of the cubic splines is just 
the presence of the discontinuity in the acceleration func-
tion at the extreme points. This can be avoided, by adding 
two free extra-knots in the second and penultimate posi-
tion. Trajectory plots of the three interpolation functions 
(MQ-RBF, Ga-RBF, and CS) which pass through the five 
sets of knots with and their derivative are given in Fig. 2. 
Table 3 summarizes the extreme recorded values of veloc-
ity, acceleration, and jerk.

Indeed, from Fig. 2 the position and velocity pro-
files of the MQ-RBF and Ga-RBF trajectories behave 
like the cubic spline. Also, it can be noted in Fig. 2 that 
Ga-RBF trajectory determined according the procedure 
described in [43] has a better velocity and acceleration 
profile. However, this superiority is paid by having an 
oscillating jerk profile with significantly higher values, 
compared with the MQ-RBF trajectory which has the 
better scores in terms of extreme values of jerk, as indi-
cated in Table 3.

5 � Generating trajectories results 
and interpretations

5.1 � Example 1: Minimum time trajectory

The objective function that contains the minimum-time 
Eq. (23) for the PUMA 560 robot is considered in this 

example. The goal is to plan optimal trajectories and 
compare the obtained results with those given in Chet-
tibi’s recent works [43]. The knot angle values in the 
joint space are reported in Table 4, and the kinematic 
limits of the joints are given in Table 5. Note that the 
velocity and acceleration at start knots and end knots 
were set as zero.

The obtained total traveling time of the trajectory is 
T = 17.2347 s, the optimum values of time intervals are 
h1 = 3.3201 s, h2 = 1.1645 s, h3 = 1.9295 s, h4 = 2.3207 s, 
h5 = 2.4683 s, h6 = 2.9501 s, and h7 = 3.0816 s and the opti-
mum values MQ-RBF shape parameters are σ1 = 3.0214, 
σ2 = 9.0955, σ3 = 2.4557, σ4 = 1.5580, σ5 = 8.5448,  and 
σ6 = 2.9987. The joint trajectories and their derivatives of 
the 6-DOF robot manipulator in minimum time which pass 
through the six via-points using the MQ-RBF interpolation, 
are given in Fig. 3.

The traveling time found by the Gaussian RBF inter-
polation in [43] is about 17.7107 s. In Refs. [30, 54], it 
is stated a minimum time of about 18.451 s using cubic 
spline and 21.964 s using cubic B-spline, respectively. 
The results obtained by the MQ-RBF interpolation tech-
nique are comparable with those from Chettibi [43], tak-
ing into account end conditions and kinematic constraints. 
This first example illustrates that the proposed technique 
is capable of achieving shorter production times. This 
appears to be an essential property that is highly desir-
able in the industrial field.

Table 3   Maximum values of velocity, acceleration, and jerk recorded 
during continuous tasks. (The bold values indicate the lowest values)

Trajectory model Vmax (deg/s) Amax (deg/s2) Jmax (deg/s3)

MQ-RBF 98.9206 130.3330 258.2874
Ga-RBF 92.0799 104.5160 420.4119
CS 108.1250 150.0000 295.0000

Table 4   Joint space knots for 
trajectory planning

Knot Joint (degrees)

1 2 3 4 5 6

1 10 15 45 5 10 6
2 60 25 180 20 30 40
3 75 30 200 60 −40 80
4 130 −45 120 110 −60 70
5 110 −55 15 20 10 −10
6 100 −70 −10 60 50 10
7 −10 −10 100 −100 −40 30
8 −50 10 50 −30 10 20

Table 5   Kinematic constraints of the robot joints

Constraints Joint

1 2 3 4 5 6

Velocity (°/s) 100 95 100 150 130 110
Acceleration (°/s2) 45 40 75 70 90 80
Jerk (°/s3) 60 60 55 70 75 70
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Fig. 3   Optimized trajectory with minimum time
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5.2 � Example 2: Minimum time‑jerk trajectory

The second example aims to plan a smooth trajectory plan-
ning for the industrial robot PUMA 560 with six revolute 
joints and to compare the obtained results with the algo-
rithms given by two important earlier studies [14, 34]. For 
each knot point, there are four different knot angles (n = 4), 
although the authors [14, 34] utilized joint space values 
reported in Table 6 while respecting kinematic constraints 
given in Table 7. Note that the velocity and acceleration 
were set as zero at the beginning and end points of the 
trajectory.

In order to be able to compare the results yielded by 
our method, the values of the weighting coefficients 
KT and KJ presented in the expression of the objective 
function Eq. (22) have been adjusted as Gasparetto and 
Zanotto [34], so that the traveling time of the algorithm 
described in this example and the technique presented 
in [34] would be the same (about 9.1 s). The obtained 
total traveling time of the trajectory is T = 9.0975  s, 
the optimum values of time intervals are h1 = 3.3393 s, 
h2 = 2.5904 s, and h3 = 3.3393 s, and the optimum val-
ues of MQ-RBF shape parameters are σ1 = 5.5483, 
σ2 = 3.3848, σ3 = 5.3837, σ4 = 6.0000, σ5 = 5.9905, and 
σ6 = 5.4499.

The 6-DOF robot manipulator’s trajectories and their 
derivatives up to the third-order are presented in Fig. 4. 

These figures show that the two first derivatives of joint 
trajectories curves are null in the beginning and end-
point of the trajectory. They show that all kinematic per-
formances are met. Figures 5, 6, 7, and 8 show the mean 
kinematic values (velocity, acceleration, and jerk) for all 
joints and their average values, respectively, compared 
with those obtained by the method proposed by [14, 34].

Table 8 illustrates the maximum joint velocities, accel-
erations, and jerks obtained from our method. It can be 
noticed from these values that all kinematic performances 
for the robot manipulator are met.

Table 9 illustrates the mean kinematic values of veloc-
ity, acceleration, and jerk and their average values for all 
joints, compared with those results from Gasparetto and 
Piazzi works [14, 34]. Gasparetto and Zanotto [34] used 
the cubic splines interpolation with the SQP method to 
minimize the time-jerk objective function whereas in the 
front of Piazzi’s work [14] which the trajectory interpo-
lated by means of minimum jerk (MJ) cubic splines. In 
this study, as shown in Table 9, the mean jerks of joint 
1, 2, 3, 5, and 6 yielded by MQ-RBF are lower than 
those yielded by Gasparetto’s technique with 14%, 7%, 
15%, 1%, and 11% respectively, and the results yielded 
by Piazzi’s method are lower with 16%, 11%, 16%, 1%, 
and 16% respectively. It can be easily said that the MQ-
RBF technique performed better than those presented in 
the earlier studies [14, 34] in the aspect of jerk value.

Table 6   Joint space knots for 
trajectory planning

Knot Joint (degrees)

1 2 3 4 5 6

1 −10 20 15 150 30 120
2 60 50 100 100 110 60
3 20 120 −10 40 90 100
4 55 35 30 10 70 25

Table 7   Kinematic constraints 
of the robot joints

Constraints Joint

1 2 3 4 5 6

Velocity (°/s) 100 95 100 150 130 110
Acceleration (°/s2) 60 60 75 70 90 80
Jerk (°/s3) 60 66 85 70 75 70
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Fig. 4   Optimized trajectory with minimum time-jerk
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Fig. 5   Mean velocity values

Fig. 6   Mean acceleration values
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Fig. 7   Mean jerk values

Fig. 8   Average kinematic values
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6 � Conclusion

A new technique, using multiquadric radial basis functions 
(MQ-RBFs), has been presented to construct robot trajec-
tories. The trajectory planning is performed in the JS, and 
the transfers with via-points can be simply attained satis-
fying imposed boundary conditions. Considering this fact, 
the proposed approach was tested and verified in diverse 
cases and with others interpolation functions such as RBF’s 
and splines. Also, the trajectory constructed with MQ-RBF 
is optimized; using SQP technique and a minimum-time, 
smooth trajectory profile is found for the 6-DOF PUMA 
560 robot that meets kinematics constraints. The proposed 
methodology has been tested in simulation and the results 
are compared with important approaches proposed by the 
previous authors [14, 30, 34, 43, 54].

The performance of the proposed technique can be sum-
marized as follows:

1.	 The trajectory construction using MQ-RBFs allows to 
generate smooth trajectories with satisfying imposed 
constraints on the initial and final velocities and accel-
erations.

2.	 The proposed approach is capable to construct joint tra-
jectories for robot manipulators as good as cubic splines, 
cubic B-spline and Gaussian-RBF in terms of traveling 
time but with continuous derivatives and significantly 
decreased jerk.

3.	 The proposed technique also makes it possible to process 
a large number of via-points in a trajectory with simple 
implementation.

4.	 MQ-RBF technique provides minimum jerk index with 
the same transfer time compared to previous studies.

Further research will investigate and exploit the bene-
fits of the proposed technique for planning the trajectory 
of parallel manipulators and CNC machines. Other inno-
vative multi-objective optimization techniques will also be 
taken into account. Optimal trajectory planning can also be 
improved by using other optimization techniques. In addi-
tion, other Hybrid RBF (HRBF) interpolation methods such 
as the Hybrid Gaussian–cubic radial basis function can be 
considered to obtain smooth trajectories.
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Table 8   Maximum kinematic 
values

Algorithm Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Our method Vmax (°/s) 36.27 46.22 61.60 27.82 40.12 40.48
Amax (°/s2) 38.98 50.86 65.31 14.22 33.79 44.68
Jmax (°/s3) 46.11 57.93 77.49 14.13 36.30 56.40

Table 9   Mean kinematic values Algorithm Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Average

Our method Vmean (°/s) 16.09 21.07 26.21 15.23 15.47 19.56 18.94
Amean (°/s2) 18.27 20.10 29.62 6.05 13.94 22.34 18.39
Jmean (°/s3) 24.95 24.55 39.63 5.38 16.24 30.82 23.59

Gasparetto–Zanotto Vmean (°/s) 16.10 20.57 26.61 15.38 14.40 19.40 18.74
Amean (°/s2) 17.15 18.15 28.23 5.53 12.03 20.76 16.97
Jmean (°/s3) 29.24 26.45 46.85 5.48 16.48 35.90 26.73

Piazzi–Visioli Vmean (°/s) 16.08 20.69 26.42 15.38 14.46 19.50 18.75
Amean (°/s2) 17.45 18.80 28.52 5.55 12.18 21.39 17.31
Jmean (°/s3) 29.73 27.68 47.35 5.75 16.38 36.97 27.31
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