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Abstract
Nowadays, most of the manufacturing industries rely on effective shop floor schedules to improve productivity and to optimize 
the makespan, production cost, tardiness, etc., which are usually considered in traditional scheduling problems. Recently, in 
response to the global initiatives for sustainability in manufacturing industries, an increasing number of shop floor schedules 
have taken energy consumption into account. However, few research works have considered traditional objectives, energy 
consumption, and other sustainability factors simultaneously in a shop floor schedule. In this paper, a many-objective opti-
mization model for a flexible job shop scheduling problem considering makespan, total energy consumption, and three other 
indicators is formulated. Then, an improved electromagnetism-like mechanism algorithm is proposed to find the optimal or 
near-optimal solutions. Finally, a real-life case study is conducted to evaluate the proposed model and the algorithm. The 
results show that the many-objective model is effective for reducing energy consumption and improving sustainability in 
the shop floor.

Keywords Electromagnetism-like mechanism algorithm · Energy consumption · Job shop scheduling · Many-objective 
optimization · Sustainable manufacturing

1 Introduction

With the rapid development of the manufacturing industry, 
and increasing needs for environmental-friendly production 
technics, currently the manufacturing companies are facing 
great challenges to develop their manufacturing systems to 
a more efficient and sustainable level [1, 2]. To be specific, 
under such circumstances, the companies should lower their 
production energy consumption, reduce carbon emissions, 
and improve energy efficiency, while maintaining a short 
makespan, and reasonable production cost as well.

Adopting a proper shop floor scheduling scheme has 
been proved to be an effective way for the enterprises to 
optimize their manufacturing efficiency and reliability. A 
traditional scheduling in a manufacturing process allocates 
limited resources to several tasks within a certain amount 
of time, in order to achieve one or multiple objectives such 
as minimizing makespan, reducing production cost or con-
trolling environmental impacts. Thus, the optimization of 
shop floor scheduling is of great significance for improving 
the energy efficiency of general production processes. There 
are different models of shop floor configurations, such as 
single machine, parallel machine, flow shop, job shop, and 
continuous manufacturing. A job shop often handles small to 
medium-size orders, which is more flexible and reconfigur-
able, hence plays an important role in smart manufacturing. 
In this paper, a flexible job shop scheduling problem (FJSP) 
is studied, in which jobs have different process sequences, 
and each operation for each job can be processed on differ-
ent machines. The processing time also varies depending on 
which machine is chosen.

A lot of research works have been done to solve shop 
floor scheduling problems. Most of them focus on the tra-
ditional objectives such as makespan, production cost, and 
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tardiness. [3–5]. When traditional scheduling objectives 
cannot meet the increasing needs of sustainable manufac-
turing, more and more researchers choose to integrate the 
new objectives of reducing energy consumption and improv-
ing energy efficiency into shop floor scheduling studies. 
For example, Wang et al. [6] studied an identical parallel 
machine scheduling problem to minimize both the makespan 
and the total energy consumption. Fu et al. [7] addressed a 
distributed permutation flow shop scheduling problem also 
to minimize the makespan and the energy consumption. Liu 
et al. [8] proposed a bi-objective optimization model that 
minimizes the non-processing electricity consumption and 
the total weighted tardiness in a job shop. Lu et al. [9] inves-
tigated an energy-efficient permutation flow shop scheduling 
problem to simultaneously ensure the machine service span 
and energy saving. Liu et al. [10] proposed a fuzzy flow 
shop scheduling problem to minimize energy consumption 
and tardiness. Some researchers also consider adding addi-
tional constraints and different situations to better interpret 
real-life cases. For example, Nagasawa et al. [11] studied a 
robust flow shop scheduling considering random processing 
time and minimizing the peak power consumption. Dai et al. 
[12] studied the FJSP to minimize energy consumption and 
makespan with transportation constraints.

The studies above mainly consider traditional schedul-
ing objectives or the combination of traditional and energy-
related objectives. Recently, in addition to the traditional 
objectives and the energy-related factors, researchers start 
to consider and seek to optimize other sustainability-related 
indicators, such as environmental indicators like carbon 
dioxide emissions [13–15], social indicators like worker 
allocation [16], and other mixed indicators [17].

However, research works that consider multiple environ-
mental indicators are still limited. Therefore, in this paper, 
a many-objective flexible job shop scheduling optimization 
model is formulated to improve the overall sustainability of 
the shop floor. The objectives of the model include minimiz-
ing makespan, total energy consumption, production cost, 
and improving processing power efficiency and reducing 
wasted carbon emission.

To solve the many-objective FJSP, which is NP-hard, a 
certain or several approximation methods are required. With 
the advancement of the computing capacity in computer tech-
nology since the late twentieth century, the intelligent algo-
rithm prospers and a large number of approximation meth-
ods, also known as heuristic algorithms, have helped greatly 
solve numerous complicated problems [18, 19]. Most of these 
algorithms are bio-inspired, evolution-based, or physical/
chemistry-based approaches [20]. They have shown a great 
effectiveness in solving optimization and many-objective  

optimization problems for real or simulated cases [21–27]. The  
electromagnetism-like mechanism algorithm (EMA) is a 
heuristic inspired by the attraction–repulsion mechanism 
of charged particles in a static electric field. It is firstly pro-
posed by Birbil and Fang [28] in 2003 to solve optimization 
problems, and has been used in many researches ever since. 
Debels et al. [29] studied a resource-constrained project sched-
uling problem and incorporated the EMA in their proposed 
meta-heuristic to provide near-optimal solutions for large 
instances. Karimi et al. [30] investigated a hybrid flexible flow 
shop scheduling problem for minimizing the makespan and 
implemented the EMA in their newly presented evolutionary 
algorithm. Fathian et al. [31] proposed a hybrid meta-heuristic 
algorithm based on the EMA to solve the nonlinear program-
ming model for a supply chain design and planning problem. 
Alinezhad et al. [32] developed a multi-objective optimization 
model for location-pricing with congested facilities and pre-
sented a meta-heuristic based on the EMA to find better solu-
tions. However, the EMA also has limitations when dealing 
with many-objective FJSP. For instance, the EMA lacks the 
capacity to record the best solution or solution set throughout 
the iterations. It also has a relatively high computational com-
plexity, and a fast convergence speed, which may cause pre-
mature problems and the loss of diversity in terms of the final 
Pareto solution set. Hence, an improved electromagnetism-
like mechanism algorithm (IEMA) is proposed to solve the 
scheduling problem studied in this paper to obtain optimal or 
near-optimal solutions more effectively.

The contributions of this paper are as follows:

1. The proposed many-objective optimization model takes 
not only traditional and energy factors into account, but 
also other environmental factors, which further improves 
the overall sustainability of the manufacturing process.

2. The proposed IEMA improves the computation and 
searching capability of the original EMA and can find 
better Pareto solutions to the problem discussed in this 
paper.

3. A real-life case of a hydraulic valve job shop is studied 
to verify the effectiveness of the proposed model and 
algorithm.

The following sections of this paper are outlined as follows. 
In Sect. 2, the many-objective FJSP along with the correspond-
ing mathematical model are put forward. Section 3 introduces 
the proposed IEMA. Section 4 includes a real-life case study 
of a hydraulic valve company to verify the effectiveness of 
the proposed many-objective model and algorithm. Finally, 
a conclusion and future research possibilities are presented 
in Sect. 5.
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2  Energy‑aware many‑objective flexible job 
shop scheduling problem

2.1  Problem description

In this paper, a flexible job shop scheduling problem is 
described as follows. A set of n jobs J =

{
J1, J2,… , Jn

}
 

i s  processed on m  machines  represented by 
M =

{
M1,M2,… ,Mm

}
 . Each job Ji possesses pi opera-

tions Oi =
{
Oi1,Oi2,… ,Oipi

}
 . The process sequence of 

operations is pre-determined. There are multiple choices 
for each operation Oij to select a machine for processing. 
The completion time and the total energy consumption 
of the task are depended on the choices of machine sets. 
Besides, the usage of electricity will also generate certain 
quantities of carbon dioxide during the process.

The assumptions for the FJSP problem are as follows: (1) 
Each machine can only process one job at a time. (2) Each 
operation of each job can only be processed on one machine 
at a time. (3) There are no priorities among different jobs. 
(4) The processing of an operation will not stop once started. 
(5) The electricity price is invariant during the scheduled 
production process.

2.2  Nomenclature

The nomenclature in this paper is presented in Table 1.

2.3  Model formulation

The many-objective FJSP proposed in this paper consider the 
makespan (MKS), the total energy consumption (TEC), the 

Table 1  Nomenclature Indexes

i, k Index of jobs,∈ {1, 2,… , n}

j, l Index of operations,∈
{
1, 2,… , pi

}
x, y Index of machines,∈ {1, 2,… ,m}

w Index of position,∈
{
1, 2,… , qx

}
Sets
Aij Set of available machines for operation Oij, Aij ⊆ M

Constants
m Number of machines
n Number of jobs
� Average auxiliary energy consumption per unit time
Variables
pi Number of operations for job Ji
aij Number of available machines for operation Oij

qx Number of operations processed by machine Mx

Ti Completion time of job Ji
Tijx Completion time of operation Oij on machine Mx

tij Processing time of operation Oij

tijx Processing time of operation Oij on machine Mx

Sij Starting time of operation Oij

Sijx Starting time of operation Oij on machine Mx

Sxw Starting time of the wth operation on machine Mx

sjx Configuring time of the machine Mx for the jth operation
Xijx

Xijx =

{
1, if operation Oij is processed on machine Mx

0, if otherwise   
Yijxw

Yijxw =

⎧⎪⎨⎪⎩

1, if operation Oij is processed on machine

Mx in wth position

0, if otherwise
  

BPjx Basic power demand of the machine Mx for maintaining the normal 
running for the jth operation

OPijx Operation power of the machine Mx when processing the operation Oij

IPx Idling power of the machine Mx
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total production cost (TPC), the wasted carbon dioxide emis-
sion (WCE), and the inverted processing power efficiency 
(IPPE) simultaneously. Their mathematical models are con-
structed as follows.

1. The makespan is the total production time of a set of 
jobs, whose function f1 can be represented by Eq. (1).

2. The TEC is divided into four parts: the configuration 
energy consumption (CE), which represents the part 
of energy required for readjusting and configuring the 
machines when changing tool positions, jobs and opera-
tions; the processing energy consumption (PE) is the 
part of energy consumed for processing operations; the 
idling energy consumption (IE) is the energy consumed 
when machines are running at the idle state; the auxiliary 
energy consumption (AE), which is the part of energy 
used for lighting, heating, ventilation, air-conditioning, 
and other power usage for maintaining the basic work-
ing environment. The equations for calculating the four 
parts of energy consumption are presented by Eqs. (2)–
(5) [12], and the TEC can be obtained by Eq. (6).

3. The TPC consists of two parts: the power usage cost 
(PUC) and the holding cost (HC). The power usage is 
considered mainly as electricity usage, which is cal-
culated by multiplying the power consumption by the 
electricity price (ε). The HC is described as the product 
of the unit holding cost of the job i 

(
Hi

)
 and its holding 

time during the production process. The equations for 
calculating the two components of the TPC and itself are 
presented by Eqs. (7)–(9), respectively.

(1)MKS = ���
1≤i≤n

Ti

(2)CE =
∑m

x=1

∑qx

j=1
BPjx ⋅ sjx

(3)PE =
∑n

i=1

∑pi

j=1

∑m

x=1
OPijx ⋅ tijx ⋅ Xijx

(4)

IE =
∑m

x=1
IPx ⋅

(
���
��

Tijx −
∑n

i=1

∑pi

j=1
(Tijx − Sijx) ⋅ Xijx

)

(5)AE = � ⋅ ���
1≤i≤n

Ti

(6)TEC = CE + PE + IE + AE

(7)PUC = � ⋅ TEC

(8)HC =
∑n

i=1
Hi ⋅

(
���
1≤i≤n

Ti − Ti

)

4. The WCE can be obtained by multiplying the worth-
less power usage by the coefficient of carbon dioxide 
emission for electricity (λ). The worthless power usage 
in a production process is mainly the idling power. The 
WCE is calculated through Eq. (10). The coefficient of 
carbon dioxide emission for electricity (λ) is taken as 
0.785kg∕kW ⋅ h [13].

5. The processing power efficiency (PPE) is described as 
the ratio between the processing energy consumption 
and the total energy consumption, which can be cal-
culated by Eq. (11). The IPPE is defined by Eq. (12), 
in order to maintain the optimizing direction of all five 
objective functions.

The objectives of the scheduling problem discussed in 
this paper are therefore minimizing MKS, TEC, TPC, WCE, 
and IPPE. Thus, they can be described as follows:

Subject to

(9)TPC = PUC + IC

(10)WCE = � ⋅ IE

(11)PPE =
PE

TEC

(12)IPPE =
1

1 + PPE

(13)minf1 = MKS = ���
1≤i≤n

Ti

(14)minf2 = TEC = CE + PE + IE + AE

(15)minf3 = TPC = PUC + IC

(16)minf4 = WCE = � ⋅ IE

(17)minf5 = IPPE =
1

1 + PPE

(18)
∑m

x=1
Sijx ⋅ Xijx = Sij

(19)
∑m

x=1
tijx ⋅ Xijx = tij

(20)Si(j−1) +
∑m

x=1
ti(j−1) ⋅ Xi(j−1)x ≤ Sij

(21)Sijx ≥ T(i−1)(j−1)x
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Equations (13)–(17) are objective functions, and Eqs. 
(18)–(25) are constraints. Equations (18) and (19) indicate 
the starting time and the processing time of each opera-
tion for each job after being assigned to a machine, respec-
tively. Equation (20) ensures the pre-determined processing 
sequence of operations for each job. Equation (21) ensures 
that the starting time of the operation Oij processed on 
machine Mx must be after the completion of the precedent 
operation O(i−1)(j−1) processed on machine Mx . Equation (22) 
indicates that each operation of each job can only be pro-
cessed on one machine at a time. Equation (23) ensures that 
only one operation can be processed in the same position on 
each machine. Equation (24) addresses the relation between 
the two variables Xijx and Yijxw . Equation (25) ensures that the 
two starting times Sij and Sxw are coherent only if operation 
Oij is processed in wth position on machine Mx , the coef-
ficient C is a big positive constant.

3  An improved electromagnetism‑like 
mechanism algorithm

The FJSP model formulated in the previous section requires 
an intelligent algorithm to find optimal or near-optimal solu-
tions. Traditional heuristic algorithms have been proved to 
be efficient to solve this kind of problem [4, 8]. However, 
they have pre-mature issues where solutions tend to con-
verge to local optima, and their local searching performance 
often relies on external searching scheme, such as simulated 
annealing. In this paper, an IEMA is proposed to solve this 
problem. The general procedure of IEMA can be represented 
by Fig. 1. Compared to the original EMA, the IEMA pre-
sents the following improvements:

An archiving operation is applied before moving the 
individuals of the current population, in order to save and 
update optimal and near-optimal Pareto solution set of each 
iteration.

The equations and parameters in the calculation proce-
dure are adjusted to adapt to solve the many-objective opti-
mization problem, and to assure a better evolution direction.

A magnetic deflection operation is added after moving 
the individuals of the current population, in order to further 

(22)
∑aij

x=1
Xijx = 1

(23)
∑m

x=1

∑pi

j=1
Yijxw = 1

(24)
∑qx

w=1
Yijxw = Xijx

(25)
|||Sxw − tij

||| ≤ C ⋅

(
1 − Yijxw

)

improve the searching ability of the algorithm throughout 
the whole iteration process.

The encoding scheme and the detailed procedure of the 
major operations of IEMA will be presented in the follow-
ing subsections.

3.1  Encoding and decoding

The solutions of a flexible job shop scheduling problem 
need to be encoded before being put into algorithms for 
computing. In a typical FJSP, two parts of information need 
encoding: the operation sequence and the machine selec-
tion. The operation sequence encoding represents the actual 
processing sequence of each operation for each job, while 
the machine selection encoding represents which machine 
is selected to process each operation. The encoding method 
used in this paper is shown by an example in Fig. 2. Each 
operation is assigned by two values: the operation sequence 
value and the machine selection value. In this example, there 
are 3 jobs {J1, J2, J3} and 9 operations {O11, O12, O13, O21, 
O22, O23, O31, O32, O33}. Each operation has its own avail-
able machine set. The operation sequence value is randomly 
generated initially for the first generation. Then, by sorting 
all 9 operation sequence values by an ascending or descend-
ing order, a processing order is thereby formed: {O21, O31, 
O11, O32, O22, O12, O23, O13, O33}. The machine selection 
value is also randomly generated in the beginning. The value 
of each operation represents which machine in the available 
machine set is chosen for processing. In the example, the 
second machine from the available machine set of operation 
O11 is selected to process O11 , and the fifth machine from the 
available machine set of operation O13 is selected to process 

Fig. 1  General procedure of the IEMA
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1 3

O13 . By adopting this encoding method, a scheduling solu-
tion can thereby be represented as {(1.0, 2), (2.5, 2), (6.2, 5), 
(0.4, 1), (2.3, 3), (4.4, 2), (0.6, 4), (1.1, 1), (5.8, 2)}.

The decoding process starts with the encoded representa-
tion of a scheduling solution. Firstly, the operation sequence 
is identified by sorting all the operation sequence value by 
the default order. Then, the machine on which each operation 
is processed is determined by the machine selection value 
assigned to that operation. After assigning each operation to 
the machines following the decoded sequence, the process-
ing time, energy consumption, and other parameters of each 
operation can be determined and ready for calculations.

3.2  Improved electromagnetism‑like mechanism 
operation

The improved electromagnetism-like mechanism operation 
includes three sub-operations: Coulomb force calculation, 
moving individuals, and magnetic deflection.

The first step is Coulomb force calculation. Same as the 
original EMA, each solution is defined by its charge and can 
be seen as a charged particle placed in an electric field. And 
because of the Coulomb’s law, each particle will subject 
to the Coulomb force due to the presence of other charged 
particles and will therefore move accordingly. The charge of 
each particle and the Coulomb force exerted on them can be 
calculated according to the Coulomb’s law [28].

Firstly, the charge of the particles will be determined. 
However, when dealing with many-objective optimiza-
tion problems, it is difficult to manipulate the Coulomb 
force equation directly because it is obtained with a single 
objective function. Therefore, in this paper, a comprehen-
sive evaluation function (CEF) is defined to replace the 
objective functions and simplify the computation. The 
CEF is defined by Eq.  (26), and it sums all the objec-
tive functions with each of them multiplying a preference 

coefficient �k . These coefficients are given by the decision- 
maker based on his preferences on each objective func-
tion. In this way, the charge qi of the particle xi can be 
calculated by Eq. (27).

When calculating the Coulomb force, the original EMA 
takes the distance between solutions into account. As a 
consequence, a solution may not be influenced by better 
ones due to a long distance, which therefore limits the 
EMA’s ability to jump out of the local optima. To avoid 
such redundancy, the proposed IEMA considers a constant 
distance d , and the equation for calculating total forces is 
thus adjusted to Eq. (28). Fi represents the total Coulomb 
force exerted on particle xi , which is the sum of all the 
Coulomb forces resulted from every other particle, which 
can be positive or negative based on their CEF.

In completion of the calculation of Fi , the particle can 
then be moved along its direction by a certain step. In 
order to keep the solution feasible after the movement, 
the step size is ranged and limited to the solution’s upper 
bound ( xmax ) or lower bound ( xmin ). For the encoding 
method proposed in this paper, xmax can be described 
as {(10, a11 ), (10, a12 ), …, (10, aij ), …}, while aij is the 

(26)CEF(xi) =
∑

k
�k ⋅

max[fk
(
xi
)
] − fk(xi)

max[fk
(
xi
)
] − min[fk

(
xi
)
]

(27)qi = exp

�
−N

CEF
�
xi
�
− CEF(xbest)∑N

i=1

�
CEF

�
xi
�
− CEF(xbest)

�
�

(28)Fi =

⎧⎪⎨⎪⎩

∑N

j≠i

��
xj − xi

�
⋅

qiqj

d

�
,CEF(xj) < CEF(xi)∑N

j≠i

��
xi − xj

�
⋅

qiqj

d

�
,CEF(xj) ≥ CEF(xi)

Fig. 2  Encoding method for FJSP
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number of available machines for operation Oij . And xmin 
can be described as {(0, 1), (0, 1), …, (0, 1), …}. Particu-
larly, if a machine selection value is not an integer after 
the movement, this value will be replaced by its nearest 
integer. The pseudocode of Coulomb force calculation and 
moving individuals is shown by Fig. 3.

The magnetic deflection operation is similar to the 
mutation operation in the genetic algorithm, which serves 
as an enhancement of local searching during late iteration 
process. After moving individuals, the particles have a 
possibility to be affected by a magnetic field. The affection 
possibility P depends on their iteration number, or genera-
tion number, which is defined in Eq. (29). When affected, 
each particle will subject to a magnetic force Fmi defined 
in Eq. (30), which is an adapted version of the Lorentz 
force equation, and results in deflecting the particle toward 
another direction.

B is the magnetic field strength, which can be consid-
ered constant for all particles of the same generation. R 
is the deflection rate, which declines with the increase 
in generation number. The pseudocode of the magnetic 
deflection is shown by Fig. 4.

(29)P = e
−

generationnumber

100

(30)Fmi = B ⋅ R ⋅ qi

3.3  Archiving operation

The archiving operation aims to obtain a Pareto solution 
set. For each generation, the Pareto solutions are stored 
into an archive. The archive will update when a new gen-
eration is produced, by adding new Pareto solutions and 
removing non-Pareto solutions. For a specific solution, if 
all of its objective values are greater than any of the other 
solutions in the same generation, then it should be con-
sidered a non-Pareto solution. Otherwise, it will be added 
into the archive as a Pareto solution. The pseudocode of 
the archiving operation is shown by Fig. 5.

4  Case Study

In this section, a real-life case of a job shop in a Chinese 
hydraulic valve company is used to test the general per-
formance of the many-objective optimization model and 
the proposed IEMA. Firstly, the IEMA’s effectiveness of 

Fig. 3  Pseudocode of force calculation and moving individuals

Fig. 4  Pseudocode of magnetic deflection

Fig. 5  Pseudocode of archiving operation
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solving the many-objective optimization model is veri-
fied against other widely used heuristics. And then, the 
performance improvement of the job shop by adopting the 
many-objective optimization model is analyzed through 
the Pareto solution set obtained by IEMA.

The case involves a flexible job shop scheduling prob-
lem with 6 jobs, 22 operations and 4 machines, including 
2 milling machines (M1, M2) and 2 drilling machines (M3, 
M4). The job shop uses roughly processed parts to produce 
major components of different hydraulic valves. The pro-
cessing procedures of each type of component are listed in 
Table 2. All the experiments in this section are conducted 
using MATLAB programming language and performed on 
a personal computer with Intel Core i7 CPU, 8 GB mem-
ory and 2.20 GHz processor. Each experiment is repeated 
10 times independently to avoid chance.

4.1  Effectiveness verification of the IEMA

To test the effectiveness of the proposed IEMA, the origi-
nal EMA, nondominated sorting genetic algorithm II 
(NSGA-II), particle swarm optimization (PSO), and PSO-
SA [4] are used as comparisons. Firstly, the box-plots of 
the 5 algorithms are analyzed in Fig. 6. A box-plot is used 

to evaluate the general distribution of a group of data. In a 
box-plot, the line in the middle of the rectangle represents 
the median, the two short segments outside the rectangle 
represent the minimum and the maximum value, and the 
top and bottom side of the rectangle represent the upper 
quartile and the lower quartile, respectively. Thus, the 5 
box-plots in the figure show the distributions of solutions 
in 5 Pareto solution sets obtained by different algorithms, 
respectively. By comparison, the IEMA has the lowest fit-
ness and a more concentrated distribution of solutions.

Secondly, the Pareto fronts of different Pareto solution 
sets obtained by the algorithms are compared in Fig. 7. The 
horizontal axis is the makespan, and the vertical axis is the 
TEC. As shown in the figure, the two objectives conflict 
with each other. Generally speaking, the lower the TEC, the 
longer the makespan. The results show that the IEMA has 
a better Pareto front compared to other algorithms, which 
means a better capability of finding solutions that minimize 
makespan and TEC.

The above experiments show that the proposed IEMA 
can help solutions jump out of their local optima in search 
of better solutions which have better fitness values. In addi-
tion, compared with other algorithms, the IEMA has a better 
Pareto front with regard to minimizing simultaneously the 
makespan and TEC, which are two conflicting objectives, 
and is therefore a better choice to solve our many-objective 
optimization problem.

4.2  Job shop performance improvement analysis

In order to verify the performance improvement to the real-
life job shop by adopting the many-objective optimization 
model, the IEMA is used to solve the scheduling problem 

Table 2  Processing procedure for each type of component

Job Procedure

J1 Milling, drilling, drilling, milling
J2 Milling, drilling, drilling, milling
J3 Milling, drilling, milling
J4 Milling, drilling, drilling, milling
J5 Milling, drilling, milling
J6 Milling, drilling, drilling, milling

Fig. 6  Boxplots of different algorithms Fig. 7  Pareto fronts of different algorithms
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under different situations depending on the decision-maker’s 
preferences. The best-compromised solution of the Pareto 
solution set in each situation is selected to compare with one 
another, and also with the default scheduling plan provided 
by the company, which is optimized for makespan using a 
basic genetic algorithm. The Gantt chart of the default plan 
is presented in Fig. 8. Based on the machine number, opera-
tion number, and the processing time, the scheduling rep-
resentation of the default plan can be denoted as: {M1(O11, 
401, O31, 334, O61, 370, O51, 586, O33, 428, O53, 567, O64, 
426), M2(O21, 306, O41, 398, O24, 504, O14, 597, O44, 410), 
M3(O42, 448, O43, 449, O23, 351), M4(O22, 348, O12, 574, 
O13, 355, O32, 363, O52, 157, O62, 320, O63, 258)}.

The first situation is where the decision-maker decides 
that the TEC is the most important objective to be opti-
mized. The preference coefficient for TEC is therefore set 
as the biggest among others. By applying the IEMA to 
this instance, a Pareto solution set containing several non- 
dominated solutions is generated and evaluated by their CEF 
value. The best-compromised solution has the smallest CEF 
value and is named as the TEC-optimized solution, or TEC-
optimized plan. Similar to the first, the second situation is 
defined as where the decision-maker decides the TPC to 
be the most important objective. The third and the fourth 
situation are therefore where the WCE or IPPE is, respec-
tively, the most favored objective. The best-compromised 
solution under each situation is also selected among their 
Pareto solution set. They are named as the TPC-optimized, 
WCE-optimized, and IPPE-optimized solution, respectively. 
The last two situations are for comparative purpose. The fifth 
situation is described as equally optimized, where all 5 pref-
erence coefficients have the same value. The last situation 
is the traditional energy-aware optimization model, where 
the decision-maker only considers makespan and TEC as 
optimization objectives, and the preference coefficients for 

the last three objectives are therefore 0. The objective values 
of the best-compromised solutions under each situation are 
listed in Table 3, and their scheduling representations are 
presented in Table 4.

Compared to the default plan, company can save 10.1% 
energy consumption if they choose the TEC-optimized 
plan, or save 35.9% production cost by adopting the TPC- 
optimized plan, or produce 53.3% less wasted carbon diox-
ide by adopting the WCE-optimized plan, or have 4% higher 
processing power efficiency by adopting the IPPE-optimized 
plan. The equally optimized plan has a similar improvement 
trend to the WCE-optimized plan, but the variations are sub-
tler. The makespan-TEC only plan successfully improves 
the two objectives, but the TPC and WCE are higher. As for 
the improvement ratio of the first four situations, the IPPE-
optimized plan has the lowest value compared to other three, 
while the WCE-optimized plan has the highest amount of 
improvement. However, it is also noticeable that by using 
the WCE-optimized plan, the completion time of the pro-
duction process in the job shop will be significantly delayed 
from 57.7 min to 71.8 min, and the cost of production will 
also be increased by 62.0%. Thus, the reduction in carbon 
dioxide emission will lead to a great decrease in profitabil-
ity to the company, which makes this plan hardly useful if 
the company’s carbon emission is already at standard. On 
the other hand, if the company needs to reduce their carbon 
emission in order to meet the sustainable manufacturing 
requirements, they can also refer to the TEC-optimized or 
the IPPE-optimized plan. Both of them can reduce a good 
amount of carbon emission without delaying the overall pro-
duction time, whereas the latter still leads to an increase in 
production cost. As for the TPC-optimized plan, it is the 
only one among the four optimized plans that saves a consid-
erable amount of production cost, but has the highest WCE 
and IPPE value at the same time.

In general, it can be seen that the first 5 optimized plans 
can reduce energy consumption to varying degrees, which 
means by adopting the proposed many-objective optimiza-
tion model, the hydraulic valve job shop in the company will 

Fig. 8  Default scheduling plan of the job shop

Table 3  Objective values of the best solutions under different situa-
tions

Situation Makespan
(s)

TEC
(W)

TPC
(yuan)

WCE
(g)

IPPE

TEC-optimized 3407 2675.1 918.6 125.8 0.543
TPC-optimized 3661 2819.2 641.0 222.0 0.558
WCE-optimized 4307 2715.1 1619.1 76.0 0.546
IPPE-optimized 3350 2700.9 1563.7 105.7 0.541
Equally optimized 4038 2882.0 1131.1 134.1 0.550
Makespan-TEC only 3245 2714.2 1318.0 174.4 0.549
Default plan 3463 2975.2 999.4 162.9 0.550
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consume less energy and therefore, have a positive impact 
on the environment and potentially reduce costs as well. In 
addition, compared to the traditional energy-aware model, 
the TEC-optimized plan generated by the many-objective 
optimization model has better TEC, TPC, and WCE reduc-
tion. However, in order to further reduce production cost, the 
company risk generating more carbon dioxide and having 
a lower processing power efficiency. Thus, the prior rec-
ommendation for the company is the TEC-optimized plan, 
which has better results in all five objectives and improves 
the overall sustainability and profitability of the production 
process in the shop floor.

5  Conclusion

This paper considers an energy-aware many-objective flex-
ible job shop scheduling problem. In order to solve this prob-
lem, firstly, a many-objective optimization model including 
makespan, TEC, TPC, WCE, and IPPE is constructed. Then, 
in order to optimize the above five objectives, an improved 
electromagnetism-like mechanism algorithm is proposed to 
find optimal or near-optimal solutions for the optimization 
problem. Finally, a real-life job shop case is studied to test the 
performances of the proposed IEMA and the many-objective 
optimization model. The results of the experiments show that 
the IEMA can solve the many-objective optimization prob-
lem more effectively compared to other heuristics. In addition, 
the real-life job shop can have a better performance by adopt-
ing the many-objective optimization model and choosing the 
proper optimized plan to suit their needs.

However, not all aspects are considered in this paper and 
thus further research is needed. For example, a dynamic 
scheduling should be considered in the future to better adapt 
to potential changes in reality. Moreover, the computation time 
of the IEMA could be further improved, and the model could 
also be more precise and robust to better describe real cases.
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