
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-022-08652-z

ORIGINAL ARTICLE

A robot learning from demonstration framework for skillful small 
parts assembly

Haopeng Hu1 · Xiansheng Yang1 · Yunjiang Lou1

Received: 2 March 2021 / Accepted: 2 January 2022 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Increasing demand for higher production flexibility and smaller production batch size pushes the development of manu-
facturing industry towards robotic solutions with fast setup and reprogram capability. Aiming to facilitate assembly lines 
with robots, the learning from demonstration (LfD) paradigm has attracted attention. A robot LfD framework designed for 
skillful small parts assembly applications is developed, which takes position, orientation and wrench demonstration data 
into consideration. In view of constraints in industrial small parts assembly applications, two cascaded assembly polices are 
learned from separated assembly demonstration data to avoid potential under-fitting problem. With the proposed assembly 
policies, reference orientation and wrench trajectories are generated as well as coupled with the position data. Effectiveness 
of the proposed LfD framework is validated by a printed circuit board assembly experiment with a torque-controlled robot.

Keywords  Flexible manufacturing · Learning from demonstration · Robotic assembly

1  Introduction

For the sake of adapting to the ongoing shift from mass pro-
duction to mass customization of products, manufacturing 
enterprises have to keep evolving their assembly lines to han-
dle more product variation, shorter product life cycles, and 
smaller batch sizes [1–3], i.e., developing flexible assem-
bly lines. Current industrial robots are notoriously difficult 
to program, leading to high change-over time and expert 
labor consumption. To make robotic assembly applicable to 
low-volume high-mix production, one approach is to make 
the programming of assembly tasks so intuitive that can be 
accomplished by workers without traditional robot program-
ming skills [4, 5]. Learning from demonstration (LfD) [6], 
or programming by demonstration, is a paradigm that aims 
to transfer human’s skills to robots by human demonstra-
tion instead of the unintuitive and tedious robot program-
ming by expert robot users [7]. The strength of LfD pays in 

industrial assembly applications as some assembly processes 
are such complicate that can be neither easily scripted nor 
easily defined as an optimization problem, but can be easily 
demonstrated [8]. With LfD, one or more assembly policies 
can be learned from the demonstration data which can also 
generate robots’ actions under new conditions, i.e., enable 
robots’ adaptive behavior [9].

The robotic assembly processes, as exhibited in Fig. 1, 
can be divided into two consecutive phases based on the 
density feature of the demonstration data and variance of 
the demonstration trajectories. When the human operator 
performs an assembly demonstration, he/she may guide 
the end-effector from anywhere convenient to approach the 
fixed part as soon as possible. As a result, demonstration 
data in this process feature low density. Moreover, since the 
initial pose is random, profiles of the demonstrated trajec-
tories deviate significantly from each other in this process. 
Afterwards, the human operator carefully adjusts the pose 
of the part in hand to a specific pose that is convenient for 
assembling the two parts. Then, the human operator assem-
bles the part by delicately moving the end-effector. As a 
result, density of the data after the specific pose is relatively 
high. In this process, there are only small deviations among 
trajectories because they are constrained by the design of the 
two parts. Therefore, the two phases exhibit quite different 
data densities and trajectory variances. By taking the pose 
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of the end-effector where the gripped part starts contacting 
with the fixed part as the cutting point, the assembly process 
before it is defined as the approaching phase and that after 
it is defined as the assembling phase. The cutting point is 
called the pre-assembly pose, as shown in Fig. 1. During 
the approaching phase, end-effector of the robot moves to 
the pre-assembly pose after picking up one part from some 
vessel, and the robot assembles one part to the other that is 
fixed somewhere in the assembling phase.

In the literature, one formulation of LfD-based parts 
assembly tasks is the peg-in-hole problem [10–12] which 
regards the assembly process as inserting a peg into a hole 
and the clearance between them is tight. In those works, 
the pegs (the gripped parts in Fig. 1) are always assumed to 
have been placed in contact with the holes (the fixed parts in 
Fig. 1). Those works focus on compensation of the motion 
error and relate to the assembly process in the assembling 
phase. Reinforcement Learning-based methods are widely 
applied to learn a decision making policy that maps states to 
actions through trial-and-error [13–16]. However, assembly 
motion during the assembling phase of skillful assembly 
tasks [8] may not be just inserting movement. Some LfD 
studies upon assembly applications regard the assembly 
tasks as the robot taking one part from somewhere and mov-
ing to some given goal pose [10, 17, 18]. A pre-structured 
policy [6] is learned through supervised [10] or unsuper-
vised [17, 18] machine learning algorithm. Given novel ini-
tial and goal pose of the part, the policy generates smooth 
robot assembly motion trajectories or real-time control input 
to drive the robot to the goal pose. This formulation reduces 
the assembly tasks to a pick-and-place problem and can be 
deemed as a process in the approaching phase. To the best 
knowledge of the authors, no studies tried to provide an 
overall solution for the WHOLE assembly process, consist-
ing of the consecutively approaching and assembling phases. 
The fundamental difficulty lies in how to formulate the two 
distinct phases by a single unified framework.

In this work, we focus on the small part assembly tasks 
and regard the robot LfD problem as a policy learning 

problem given multiple demonstrated robot assembly motion 
trajectories of one object. To accomplish such assem-
bly tasks with robots, two constraints must be taken into 
account, namely the environment constraint and the object 
constraint. In the industrial fields, the environment con-
straint is introduced by the deployment of industrial agents 
such as placement of robots, sensors, and conveyors. It varies 
from line to line, or even from day to day in re-configurable 
assembly lines [2] and allows of large variation in the assem-
bly motion of robots. Hence, the generalization ability of the 
learned policy matters in the approaching phase. The object 
constraint includes the assembly motion (position and orien-
tation trajectories) required and the corresponding force and 
torque pattern throughout the assembly process. It is totally 
defined by the design of product. Therefore, generalization 
ability of the learned policy in the assembling phase is not 
so important as that in the approaching phase. By improving 
the task-parameterized Gaussian mixture model (TP-GMM) 
and task-parameterized Gaussian mixture regression (TP-
GMR) algorithm, a unified robot LfD framework is tailored 
for skillful small parts assembly in this work. Two cascaded 
policies in Cartesian space are learned from separated dem-
onstration data for the approaching and assembling phases, 
respectively. Contributions of this work go as follows. By 
taking the two constraints into account, a novel unified 
LfD framework for assembly applications that governs an 
assembly task as two assembly phases is developed with 
two cascaded policies that coupled position, orientation and 
force-torque (wrench) are learned separately to avoid the 
under-fitting problem. A switch strategy between the two 
policies is also applied to avoid unexpected jump between 
the trajectories generated by the two polices. The assembly 
policies are designed to couple the orientation and wrench 
information with the generated position trajectories which 
enjoys more robustness over the unique query variable trick 
and enables online trajectory adaptation.

Remained content of this article is organized follows. 
Section 2 expounds the proposed robot LfD assembly frame-
work from system overview (Section 2.1) to policy learning 
(Section 2.2). Experiment verification of it lies in Section 3. 
Section 4 concludes this article.

2 � Methodology

2.1 � Framework overview

Work flow of the proposed robot LfD assembly framework 
is exhibited in Fig. 2. A typical LfD framework always con-
tains three work steps, namely demonstration, policy learn-
ing and policy execution (under strange environments), that 
is, the first decision to be made when designing a LfD sys-
tem is which demonstration technique is used given specific 

Fig. 1   The whole assembly process consisting of the approaching and 
the assembling phases
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applications [6]. Here the kinesthetic teaching technique is 
selected for the sake of its usability for non-expert robot 
users. During demonstration, the operator successively 
performs the approaching motion and assembling motion. 
Afterwards, two assembly policies Papp∕ass are learned given 
the separated demonstration data Dapp∕ass . During the pol-
icy execution process, the learned polices serve to generate 
both position 𝜉 and orientation q̂ motion trajectories and the 
force/torque profile given new task parameters {A, b} . As 
for robots’ execution of the policies given the initial, pre-
assembly and goal pose, a Cartesian impedance controller, 
which takes the joint torque � as control input, serves to 
enact those policies.

2.2 � Assembly policy

By an assembly policy, what we mean here is an assembly 
skill model that takes the initial pose, goal pose as inputs 
while generates a suitable robot motion trajectory as output. 
In assembly tasks, both position and orientation play impor-
tant roles while the force and torque information (wrench) 
also matters. Policies related to position, orientation and 
wrench are separately learned but coupled in this work.

2.2.1 � Position policy

Three elements ought to be considered to pre-structure the 
policy for assembly skill learning. First, as for modeling the 
assembly skills, the location primitives [18] are preferable to 
the trajectory primitives. This is because the robot ought to 
try to imitate the position/orientation pattern of the assembly 
demonstration data rather than the velocity pattern. Second, 
the stochastic models [6] instead of deterministic models are 
essential because there are always variances among each 

demonstration trajectories. And last but not least, the gener-
alization capability [19] of the model is necessary since the 
task parameters may vary during both the policy learning 
and policy execution process. On accounting of these ele-
ments, the task-parameterized Gaussian mixture model (TP-
GMM) [20] is taken to pre-structure the assembly policies 
and task-parameterized Gaussian mixture regression (TP-
GMR) algorithm is used to generate the motion trajectories. 
Unfortunately, given the assembly tasks in Fig. 1 the clas-
sical TP-GMM together with TP-GMR algorithm exhibits 
poor performance owing to the two distinct phases. As shown 
in Fig. 8 GMM-based policies encapsulate the demonstra-
tion trajectories with multiple Gaussian distributions. Once 
there are small number of Gaussian distributions ( K = 8 in 
the comparison experiment), the policy may fail to generate 
applicable trajectories. This is because there are not enough 
distributions to encapsulate the delicate motion in the assem-
bling phase. In this case the policy is unreliable, let alone 
capable of generalization. However, the larger the number 
of Gaussian distribution is, the more redundant motion will 
be generated. In this case, the policy is inefficient and will 
lead to extra wearing of the robot. In summary, it is difficult 
to balance the efficiency and reliability of the classical TP-
GMM-based policy.

Hence, in this work two parametric policies pre-structured 
by TP-GMM are learned respectively to model the two phases 
of the demonstrated assembly skill and generate the assem-
bly motion trajectory by �TP-GMR [19]. With TP-GMM, the 
position trajectory distribution P(�) of the assembly skill in the 
j-th task frame is modeled by

P
(
�(j)

)
=

K∑
k=1

�kN
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�(j)

|||�
(j)
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Fig. 2   Work flow of the robot LfD assembly framework
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where 𝜉(j) ≜ [t, x(j), y(j), z(j)]⊤ is the position in the j-th task 
frame at time/phase t, �k is the prior of the k-th multivariate 
Gaussian distribution with 

∑K

k=1
�k = 1 , �(j)

�,k
∈ ℝ

4 and 
Σ
(j)

�,k
∈ ℝ

4×4 as centers and co-variances. The parameters of 
TP-GMM are summarized as

The so-called task frames, or task parameters, are given by 
the J task frames {Aj, bj}

J
j=1

 that are time-invariant in this work 
and practical industrial assembly tasks,

in which Rj ∈ SO(3) and pj ∈ ℝ
3 are rotation matrix and 

translation vector of frame j with respect to the world frame. 
Given the demonstration data D ∶ {�n}

N
n=1

 in the world 
frame, rather than directly used to estimate the parameters, 
it is transformed to J task frames firstly through

Parameters in (1) are estimated in each frame individually 
by Expectation-Maximization algorithm in which the joint 
distribution of data in J task frames are used to compute the 
expectation (E-Step) but parameters are estimated only with 
the data in the corresponding frame (M-Step).

By taking time/phase variable t as query variable, given 
the task frames (2), a retrieved or generalized assembly 
motion trajectory will be computed through TP-GMR 
algorithm [20]. Anyway, generalization (interpolation and 
extrapolation) capability of the approaching policy counts 
for much more than that of the precise assembly policy. In 
order to further boost the generalization capability of the 
approaching policy Papp , i.e. to preserve the local structure 
of demonstration data around the approaching frame, the 
frame-weighted TP-GMR algorithm ( �TP-GMR) [19] is 
utilized here instead of the typical one. In the j-th frame, the 
Gaussian center � and covariance Σ can be partitioned as

and the trajectory distribution in the jth frame generated by 
GMR is given by

(1)
{
�k,
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where

Then the generated trajectory distribution in the world frame 
is estimated by

in which �̂O and �̂(j)
O

 are queried variable by GMR in world 
frame and the j-th task frame respectively ( [x, y, z]T in this 
work), and Σ̂�O

 stands for the corresponding co-variance. �(j)
n  

indicates the weight of the j-th task frame at step n,

Σ̃
(j)
n  in (4) is the covariance of demonstration data in the j-th 

task frame at time step n, computation of which costs addi-
tional effort but only required once after demonstration. As 
for the assembling policy Pass , typical TP-GMR algorithm 
( �(j)

n = 1 ) will work well since there is little variation in the 
profile of position trajectories in the assembling phase.

Anyway, generating the trajectories with two polices does 
not means simply performing the TP-GMR algorithm one by 
one. As indicated in Fig. 2, the pre-assembly frame 

{
Apre, bpre

}
 

is given in advance but destination of the motion generated by 
the approaching policy will not exactly be the pre-assembly 
pose. There may exist unexpected gap between the motion 
trajectories between the two phases which leads to redundant 
motion. To deal with this issue, a switch strategy between the 
two policies is proposed. To begin with, the last pose of the 
trajectories generated by the approaching policy is taken as the 
dummy pre-assembly frame utilized for the assembling policy. 
After generation of the trajectory of the whole assembly pro-
cess, we calculate two cutting points by

where �(j)
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k
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Gaussian distribution of the approaching policy and that of 
the temporally first Gaussian distribution of the assembling 
policy are taken as the cutting points. Note that the first entry 
of the Gaussian center �(j)

�,k
 is the time/phase variable that are 

identical in each task frame. Then we interpolate ñass posi-
tions between the two cutting points while get rid of the 
trajectories temporally after �𝜉O,ñapp

 and those before �𝜉O,ñass
.

2.2.2 � Orientation policy

As one of the key aspects, it is inevitable to take the orien-
tation trajectories required in many assembly tasks. In the 
literature, unit quaternion q ≜ [qw, qx, qy, qz]

⊤ is a popular 
representation of orientation in LfD studies [10, 18, 21], 
which is a kind of non-minimal representation defined on 
an unit sphere manifold S3 whose tangent space TqS

3 locally 
linearizes the manifold and behaves like Euclidean space ℝ3 
[22]. Compared with minimal representations of orienta-
tion such as Euler angle, it benefits from no singularity. By 
taking the orientation of the pre-assembly or goal pose as 
auxiliary quaternion qa [21], the demonstrated orientation 
data q can be transformed to the tangent space of qa through 
the logarithmic map S3

→ Tqa
S
3

where q̃ = q ∗ q̄a ≜
[
q̃w, �̃

⊤
]⊤ with �̃ ≜ [q̃x, q̃y, q̃z]

⊤ is the 
vector part of unit quaternion. q̄a denotes the quaternion 
conjugation of qa . ∗ represents the quaternion multiplication 
operation [23]. 𝜂 ∈ Tqa

S
3 ⊂ ℝ

3 is the projection of q in the 
tangent space of qa.

Afterwards, policy learning (EM algorithm) and trajec-
tory generation (GMR) processes are carried out on TqaS

3 
with Euclidean distance dist(�1, �2) = ‖�1 − �2‖ . Finally, 
orientation trajectories generated by the GMR ought to be 

(5)𝜂 ≜ log(q̃) =

⎧⎪⎨⎪⎩

arccos(q̃w)
�̃

‖�̃‖ , ‖�̃‖ ≠ �

[0, 0, 0]⊤, otherwise

projected back to the unit sphere manifold S3 via the expo-
nential map TqaS

3
→ S

3

Figure 3 exhibits the relationship between q and � . Note 
that both (5) and (6) are defined with respect to the same 
auxiliary unit quaternion qa.

In many assembly tasks, the coupling of position and ori-
entation must be taken into consideration. In S3 manifold, it 
is also feasible to make use of TP-GMM for generalization to 
new goal orientation [24]. By doing so, translation and rotation 
movements are coupled by the unique query variable. How-
ever, it is evident that during the approaching phase, orienta-
tion of the end-effector does not matter in the early phase but 
does matter around the vicinity of pre-assembly pose. There-
fore, in this work the positions with respect to the pre-assembly 
and goal frame act as query for retrieving or generalizing the 
trajectories of orientation, i.e. rotation and translation move-
ments are coupled by the covariance of multi-variate Gaussian 
distributions. Compared with coupling by the unique query 
variable, strength of the proposed coupling strategy lie in the 
fact that the robot may not exactly follow the generated assem-
bly trajectories owing to the performance of controller, noise 
of sensors and perturbation, which makes online adaptation of 
orientation plays a valuable role. By doing so, we estimate the 
end-effector’s orientation given the current position rather than 
current time/phase. Figures 4 and 5 indicate the proposed cou-
pling technique and describe the structure of the approaching 
policy and assembling policy respectively. Taking the output 

(6)q̃ = exp(𝜂) =

⎧⎪⎨⎪⎩

cos (‖𝜂‖) + sin (‖𝜂‖) 𝜂

‖𝜂‖ , 𝜂 ≠ 0

[1, 0, 0, 0]T , otherwise

Fig. 3   Graphic representation of the relationship between q and �

Fig. 4   Structure of the approaching policy

Fig. 5   Structure of the assembling policy
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of (3) in pre-assembly frame or goal frame as query variable, 
state of the GMM is defined as � ≜

[
�O, �

]T , i.e. parameters of 
the GMM are 

{
��,k,��,k,Σ�,k

}K

k=1
 . Similar to  (3), the orienta-

tion trajectory distribution generated by GMR turns out to be

where �̂n , Σ̂�,k,n , �k(⋅) are counterparts of those in (3) and the 
number of Gaussian distributions K may not be the same as 
that in (1).

2.2.3 � Wrench policy in the assembling phase

A typical assembly operation requires the knowledge of not 
only position and orientation trajectories but also the accom-
panying wrench profiles for successful assembly [10]. There 
is no probabilistic model in terms of the wrench w in the 
approaching policy since the end-effector of the robot is mov-
ing through the air as indicated by Fig. 1. In the assembling 
phase, the wrench pattern is modeled by GMM. As shown in 
Fig. 5, the wrench policy also takes position with respect to 
the goal frame as query variable. Wrench trajectory distribu-
tion generated by GMR shares the similar policy structure 
and coupling strategy as (7) just by replacing �̂  by ŵ

Anyway, there is no need to exactly follow the generated 
wrench trajectory during assembly processes [10]. In this 
work, the queried wrench trajectory distribution (8) plays two 
roles. First and foremost, it provides a reference wrench pat-
tern for successful execution of the task since the parts require 
enough wrench to be assembled. Secondly, it also serves as 
an indicator of possible damaging of the parts. Variability of 
the demonstrations is encapsulated in the covariance matrices 
of the trajectory distribution which can be exploited to detect 
if the robot reaches an unexpected pose [25]. By eigenvalue 
decomposition of covariance matrix Σ̂w,n = VΛw,nV

−1 , each 
eigenvalue �i,t corresponds to the allowable variability of the 
force/torque term at time/phase tn . In the experiment, we stop 
motion of the robot once any one dimension of the current 
external wrench wi,t exceeds the limit

(7)

P
(
�̂n
|||�̂O,n

)
= N

(
K∑
k=1

�k

(
�̂O,n

)
�̂k,n,

K∑
k=1

�k

(
�̂O,n

)2

Σ̂�,k,n

)

q̂n = exp(�̂n) ∗ qa

(8)

P
(
ŵn

|||�̂O,n

)
= N

(
K∑
k=1

�k

(
�̂O,n

)
ŵk,n,

K∑
k=1

�k

(
�̂O,n

)2

Σ̂w,k,n

)

[
ŵi,t − 𝛽|𝜆i,t|, ŵi,t + 𝛽|𝜆i,t|

]
, 𝛽 > 1

3 � Experiment verification

3.1 � Experiment setup

In this section, a printed circuit board (PCB) [26] assembly 
task is selected to demonstrate the work flow of the proposed 
robot LfD assembly framework and validate its effectiveness. 
As shown in Fig. 6, to successfully assemble the PCB to its 
bottom case, after plugging it through the scroll wheel holder 
the robot ought to carry out an insertion motion and then fit the 
PCB to the locating pins while pressing it to make it fastened 
by the resilient fasteners. The tolerance between the PCB and 
the bottom case is 0.5 ± 0.1 mm in the assembly process. A 
torque-controlled Franka Emika 7-DoF robot, whose position 
repeatability is ±0.1mm, serves as the policy executor. A struc-
tured light camera works to acquire the goal frame {Agoal, bgoal} 
in the experiment, as exhibited by Fig. 7. The structured light 
camera is capable of obtaining 6-D pose of the bottom case. 
The initial pose of the PCB is obtained by forward kinematics 
of the robot. Figure 7 also demonstrates the kinesthetic teach-
ing process. To begin with, the operator guides the robot with 
gravity compensation by the pilot on the robot’s 7th joint from 
arbitrary initial pose to the pre-assembly pose (the approaching 
phase). Afterwards, through carefully adjusting the pose of the 
end-effector to guarantee safety, the operator performs the PCB 
assembly task (the assembling phase).

In both the approaching and the assembling phases, the 
number of task frames J = 2 in (1) as indicated by Fig. 2. The 
goal frame can be estimated via observing the pose of the 
bottom case with the 3D camera while the pre-assembly frame 
{Apre, bpre} is calculated with the constant transformation from 
the goal frame to it. Let {p(m)

pre
, q(m)

pre
}M
m=1

 and {p(m)
goal

, q
(m)

goal
}M
m=1

 
represent the M demonstrated pre-assembly and goal poses 
respectively. To estimate the transformation between the two 
poses, we take the average of both poses first. The average 
positions p̄pre and p̄goal can be simply calculated by

Fig. 6   The PCB and bottom case of a cursor mouse
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However, with regards to the average orientations (unit 
quaternions) we follow the method [27] and calculate

Note that the multiplication operator “ ⋅ ” in (9) repre-
sents quaternion dot product [23] (Euclidean inner product 
for vectors in ℝ4 ) rather than quaternion multiplication. 
Afterwards, by applying principal component analysis 
(PCA) upon Q ∈ ℝ

4×4 the normalized eigenvector corre-
sponding to the largest eigenvalue is taken as the average 
quaternion which can be converted into rotation matrix 
R̄ . Then given the estimated goal frame {Agoal, bgoal} and 
recall the definition (2), we can calculate the pre-assembly 
frame through

Since human operators can never perform one task multi-
ple times within the same period, it is necessary to temporally 
align the demonstration data before policy learning. Dynamic 
time wrapping (DTW) is a populous temporal alignment 
method in LfD studies [18, 28, 29] including this work. With 
kinesthetic teaching, the human operator corrupts the wrench 
profile estimated by joints torques [10] in the assembling 
phase. To attenuate this effect, in this experiment the robot 
plays back the demonstrated motion in the assembling phase 

p̄pre =
1

M

M∑
m=1

p(m)
pre

, p̄goal =
1

M

M∑
m=1

p
(m)

goal

(9)Qpre =

M∑
m=1

q(m)
pre

⋅ q(m)
pre

⊤
, Qgoal =

M∑
m=1

q
(m)

goal
⋅ q

(m)

goal

⊤

Apre = Agoal

(
1 �

� R̄⊤
goal

)(
1 �

� R̄pre

)
,

bpre = Agoal

(
0

R̄⊤
goal

p̄pre − R̄⊤
goal

p̄goal

)
+ bgoal

to obtain clean wrench demonstration data. Moreover, sepa-
ration of demonstration data is performed manually, none-
theless, automatic separation is also possible by analyzing 
velocity and acceleration feature of it [8, 28].

3.2 � Cartesian impedance controller

In order to drive the robot tracking the assembly motion 
trajectories 

{
�̂O, q̂

}
 , the Cartesian impedance controller [9] 

is utilized in the experiment. With joint torque � as input, the 
controller turns out to be

where

are semi-positive definite matrices of impedance parameters. � 
in (10) is the Jacobian and h(⋅) represents dynamic model of the 
robot that allows for compensation of gravity, Coriolis force and 
friction. v and � stand for linear and angular velocities of the 
robot’s end-effector. �Tŵ serves as a feed forward term. In the 
experiment, both � and � are set to be diagonal matrices, i.e.

where 𝛾pos∕ori > 0 and 𝛽pos∕ori > 0 . The control input � is fed 
to the robot controller at 1kHz. In the approaching phase, 
compared with compliance what makes greater sense for the 
controller is driving the robot to the approaching pose as soon 
as possible, that is, efficiency dominates. Hence, in this phase, 

(10)𝜏 = �
T

(
�

[
�𝜉O − 𝜉O

log
(
�q ∗ q̄

)
]
− �

[
v

𝜔

])
− �

Tŵ + h(𝜃, 𝜃̇)

� =

(
�pos �

� �ori

)
, � =

(
�pos �

� �ori

)

Kpos∕ori = �pos∕oriI, Dpos∕ori = �pos∕oriI
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Fig. 7   Kinesthetic guiding demonstration process
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high stiffness ( �pos = 6000 and �ori =
√
�pos ) is assigned to the 

controller and there is no feed forward term in the controller 
(10). The assembling phase puts an requirement on the compli-
ance of the robot’s end-effector due to unavoidable position or 
orientation error and tight tolerances between the parts. Dur-
ing the assembling phase, stiff execution may not be safe for 
robots and objects in interaction [30]. Therefore, low stiffness 
( �pos = 3000 and �ori =

√
�pos ) is assigned to the controller 

in operation to perform compliant assembly which is robust 
against motion inaccuracy and disturbance [31, 32]. In addi-
tion, the damping coefficients are �pos = 100, �ori =

√
�pos for 

both assembly phases in the experiment.
The n-th reference pose 

{
�̂O,n, q̂n

}
 is fed to the robot control-

ler constantly until the position tracking error ‖�̂O − �O‖ con-
verges to a given threshold which is 0.0002m in the experiments. 
Data point in the generated assembly motion trajectory {
�̂O,n, q̂n

}N

n=1
 are tracked one by one. The impedance parameters 

of the controller are changed online without halting the motion 
of the robot.

3.3 � Experiment results & discussion

Demonstrations are performed from randomly selected initial 
pose to an unique pre-assembly and goal pose. In this experi-
ment, rather than absolute time a phase variable t ∈ [0, 1] 
is selected as query variable for position data generation. 
Figure 8 exhibits the TP-GMM learned from the demonstra-
tion data via EM algorithm. The assembly polices for the 
approaching and assembling phases are learned separately 
and we assign K = 8 in (1) for the former one and K = 5 for 
the latter one. The number of Gaussian distributions K is the 
only hyper-parameter of TP-GMM (1). In this experiment, the 
hyper-parameters of the assembly policies in the approaching 
and assembling phase are optimally and individually selected 
based the Bayesian information criterion (BIC) [33]. Moreo-
ver, the demonstrated motion in the assembling phase is much 

smaller than that in the approaching phase. This partially 
accounts for the necessity of separating the demonstration 
and learn two specific assembly policies. Some key motion 

Fig. 8   The learned assembly policy for the approaching phase in the 
initial frame (a) and pre-assembly frame (b), and assembly policy 
for assembling phase in the pre-assembly frame (c) and goal frame 
(d). Each ellipsoid represents a Gaussian distribution N(�

(j)

�O ,k
,Σ

(j)

�O ,k
) . 

Coordinates of the centers are the means �(j)

�O ,k
, k = 1, 2,… ,K . Each 

ellipsoid has three semi-axes whose directions are along the eigenvec-
tors of the co-variance matrix Σ(j)

�O ,k
 and lengths equal to square roots 

of the corresponding eigenvalues. The grey curves are demonstration 
data within the approaching phase (a)-(b) and assembling phase (c)-
(d). These ellipsoids are drawn in different color to be distinguishable 
from each other

Fig. 9   Demonstrated (grey) and retrieved (colored) position trajecto-
ries of the whole assembly process (left) and the assembling phase 
(right) in which “ ∗ ” denotes the starting positions and “ ◦ ” denotes 

the end positions of the retrieved trajectories. The frames indicate the 
given initial and goal frames
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in the assembling phase may be deemed to be noise once only 
one policy is learned to model the whole assembly process.

Figure 9 shows both the demonstrated and retrieved position 
trajectories of the whole assembly process (left) and assembling 
phase (right). Retrieval means generating the trajectories by the 
learned assembly policies given the same task frames (2) as the 
demonstrated ones [20]. Figure 9 (a) exhibits that position tra-
jectories are retrieved by the proposed method. For comparison 
purposes, two TP-GMM [20] based assembly polices, whose 
K = 8 and K = 13 respectively, are exploited in the experi-
ment as proposed in [17, 18]. The success rate and length of 
the generated position trajectory are taken as the performance 
indices to validate the reliability and efficiency of the proposed 
LfD method. For the sake of fairness, the orientation and wrench 
trajectories are also generated through the proposed orientation 
and wrench policy. And �TP-GMR is also utilized for position 
trajectories generation, which is different from [17, 18]. Moreo-
ver, the K-means algorithm is used to initialize the parameters of 
the proposed policy and the policies for comparison. As shown 
by the orange curves in Fig. 9(b), some motion trajectories gener-
ated by typical �TP-GMR with K = 8 fail to be feasible because 
some segments of them around the goal pose are outside the 
demonstration data. In the experiment, the PCB may contact 
with the bottom case in an undesired relative pose once follows 
those trajectories, which leads to assembly failure or even part 
damage. Though it has the same number of Gaussian distribu-
tions as the proposed approaching policy in the experiment, key 

positions of the demonstrated assembly are not encapsulated by 
it. However, when K = 13 , which equals to sum of that of our 
approach and assembling policy, TP-GMM with large number 
of Gaussian distributions can encapsulate not only key positions 
but also redundant motions in the demonstration data. The redun-
dant motion represents the unnecessary movement of the PCB 
to be assembled to the bottom case. As indicated by the green 
curves in Fig. 9(c), there are more redundant motions generated 
by �TP-GMR with K = 13 compared with the blue curves in 
Fig. 9(a). In the right figures of both Fig. 9(b) and (c), there are 
jagged curves around the beginning of the assembling phase. 
This is because the demonstration trajectories are jagged caused 
by the human operator’s repeatedly aligning pose of the PCB to 
the pre-assembly pose during the demonstration process. Lots 
of redundant demonstration motion are collected and then used 
to learn the TP-GMM-based policy. On the contrary, with the 
proposed LfD method those redundant motions are reduced. 
Table 1 presents the lengths of the retrieved position trajecto-
ries to quantitatively indicates the greater reliability and higher 
efficiency of the proposed LfD method compared with �TP-
GMR with K = 8 and K = 13 . The success rate of �TP-GMR 
with K = 8 is the lowest ( < 44.45% ), which is referred to as the 

Table 1   Lengths of the generated position trajectories in the demonstration retrieval experiment. The “Fail” indicates that end-effector of the 
robot collided with something in the environment unexpectedly when tracked the trajectory. (Unit: m)

Experiment number 1 2 3 4 5 6 7 8 9

Proposed method 0.7022 0.7043 0.9031 0.9066 0.7575 0.8513 1.0352 0.941 0.8503
�TP-GMR ( K = 8) 0.7338(Fail) 0.7403(Fail) 0.8876(Fail) 0.9043 0.7551(Fail) 0.8246 0.9961 0.9241 0.852(Fail)
�TP-GMR ( K = 13) 0.7569 0.7687 0.9457 0.9167 0.8904 0.8845 1.0395 0.9504 0.9262

Fig. 10   Demonstrated (grey), retrieved (blue) and recorded (orange) 
orientation profiles in the approaching phase

Fig. 11   Demonstrated (grey) and retrieved (blue) wrench profiles in 
the assembling phase. The recorded wrench profiles are not plotted 
since the wrench profile is not required to be tracked by the robot
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under-fitting problem. Compared with lengths of the trajectories 
retrieved by �TP-GMR with K = 13 , those retrieved by the pro-
posed method are shorter in each experiment episode. High effi-
ciency is achieved by the proposed method, which leads to higher 
productivity in the robotic assembly applications. Note that it 
is not fair to compare the time consumption of these methods. 
This is because two impedance controllers of different param-
eters are used in the proposed method but cannot be used in the 
two comparison experiments since there is no pre-assembly pose 
defined therein. In Fig. 9 each initial position generated by �TP-
GMR does not coincides with the corresponding initial frame 
and so does the end position, as a result of which extra control 
periods are required for the end-effector of the robot to move to 
the initial pose.

Figure 10 exhibits the demonstrated, retrieved and recorded 
orientation trajectories in the approaching phase. As que-
ried by the z-axis position in the pre-assembly frame, those 

trajectories converge to the orientation [1, 0, 0, 0]T in the pre-
assembly frame. Due to the same reason, the retrieved orienta-
tion trajectories (blue curves) overlap each other. As shown in 
Fig. 4, the orientation trajectories are retrieved in advance in 
this experiment. However, with the proposed coupling strategy, 
reference orientation can also be queried at any time step given 
current Cartesian position. This online adaptation technique 
can deal with unexpected perturbation during the assembly 
process. Figure 11 exhibits the demonstrated and retrieved 
wrench profiles in the assembling phase. Only one retrieved 
wrench profile is exhibited because the parts to be assembled 
do not vary among the experiment scenarios. As discussed 
in Section 2.2, we do not drive the robot tracking the wrench 
trajectory as it only serves as a feed forward term and safety 
indicator.

To verify the generalization capability of our proposed 
method, 4 novel initial poses are selected in the experiment. 

Fig. 12   Demonstrated (grey) and generalized (colored) position data 
of the whole assembly process (left) and the assembling phase (right) 
where the blue one is generated by the proposed method, the orange 
one is generated by �TP-GMR with K = 8 , and the green one is gen-

erated by �TP-GMR with K = 13 . “ ∗ ” denotes the starting positions 
and “ ◦ ” denotes the goal positions of the assembly motion trajecto-
ries. The frames indicate the given initial and goal frames
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By generalization what we mean is to generate the trajecto-
ries by the learned policy given the task frames (2) outside 
the demonstration ones [20]. Here only the initial frames 
are changed in each experiment episode since the initial 
pose of the gripped part (PCB) may vary but the goal pose 
is kept fixed in the robotic assembly tasks as exhibited by 
Fig. 1. Figure 12 shows the position trajectories generated 
by the proposed LfD method (blue), �TP-GMR with K = 8 
(orange) and �TP-GMR with K = 13 (green). The posi-
tion trajectories generated by the proposed method contain 
less redundant motions than those generated by the other 
two policies in each experiment episode. Table 2 presents 
lengths of generalized trajectories, among which the ones 
generated by the proposed policy are the shortest in each 
experiment episode. Some segments of the orange curves 
in Fig. 12 are also outside the demonstration data around 
the pre-assembly pose. Figure 13 presents the generalized 

orientation trajectories (blue curves) via GMR and the 
recorded orientation trajectories during assembly pro-
cess (orange curves). In contrast to Fig. 10, orientation 
data in Fig. 13 are plotted along the time sequence in the 
approaching phase due to the fact that variable z is not 
monotonously varying in these cases but the orientation 
policy (7) still works. In Figs. 10 and 13, it can be seen 
that during the approaching phase the recorded orientation 
trajectories quickly converge to the retrieved/generalized 
ones almost before the motion of position. This is mainly 
because the absolute value of the initial orientation error 
log(�q(0) ∗ q̄(0)) in (10) is numerically much larger than that 
of position.

In the generalization experiment, only the initial frame var-
ies. We can also change the goal frame by moving the mouse 
bottom case to another pose which will be estimated by the 
3D camera as shown in Fig. 7. Anyway, the demonstration 
data within the approaching phase can only provide limited 
information about the environment, which means that unex-
pected collision with some objects, such as the holder of the 
3D camera, may occur during the approaching phase. With 
TP-GMM-based policy, this problem can be solved by extra 
demonstration or correction demonstration from the human 
operator to adjust the parameters of the policy [33].

Table 2   Lengths of the generated position trajectories in the initial 
pose generalization experiment. (Unit: m)

Experiment number 1 2 3 4

Proposed method 0.8914 0.846 0.9149 0.8426
�TP-GMR ( K = 8) 1.118 1.1525 1.1006 1.0866
�TP-GMR ( K = 13) 1.1251 1.1505 1.096 1.0772

Fig. 13   Orientation trajectories generated by the orientation policy (blue) and the recorded orientation trajectories (orange) during the approach-
ing phase
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4 � Conclusion

To enable robots quickly acquire new assembly skills in 
assembly lines, the learning from demonstration paradigm 
provides a flexible solution to transfer workers’ assembly 
skills to robots. A robot LfD framework is developed in 
this article for skillful industrial assembly applications. In 
this framework, the assembly task is divided into approach-
ing and assembling phases, which is the key to avoid the 
potential under-fitting problem introduced by the large dif-
ference in variability of demonstration data between the two 
assembly phases. By exploiting the stochastic nature and 
generalization capability of TP-GMM, the demonstrated 
position data are modeled and retrieved through �TP-GMR. 
The corresponding orientation and wrench are also queried 
by the position via GMM, which turns out to be an effective 
coupling strategy that enables online adaptation of orienta-
tion and wrench. A PCB assembly experiment is taken as 
illustration for the proposed robot LfD assembly framework. 
It indicates that the learned policies can generate feasible 
and efficient assembly position and orientation trajectories 
in both phases.
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