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Abstract
The synchrosqueezing transform (SST) is a novel promising time–frequency analysis (TFA) method that has drawn increasing 
attention in the signal processing field. Compared with classical TFA methods, SST can provide a higher TF resolution and 
achieve the decomposition of intrinsic mode function more precisely, which can also benefit various engineering applications, 
e.g., fault diagnosis of machinery, mechanical intelligent manufacturing, and condition monitoring of machines. However, 
with the gradual understanding of SST, some drawbacks are recognized. One drawback is that when dealing with strongly 
frequency-modulated (FM) signals, the SST results smear heavily, which will lead to poor TF resolution and low-accuracy 
mode decomposition. To solve this problem, we propose a novel method combining the advantages of the SST and reas-
signment (RS) methods. First, we explore the theory of SST and RS from a geometric perspective and then propose a novel 
squeezing operator to enhance the TF resolution of SST results based on geometric relationships. Compared with SST, the 
theoretical analysis shows that the proposed method can provide a more energy-concentrated TF representation and achieve 
a higher TF resolution. Compared with RS, our proposed method can allow for signal reconstruction and mode decomposi-
tion. Numerical and real-world signals are employed to validate the effectiveness of the proposed method, such as bat echo 
signals, gravitational wave signals, and mechanical vibration signals.

Keywords Synchrosqueezing transform · Time–frequency analysis · Reassignment

1 Introduction

Rotating machinery, e.g., gas compressors, wind turbines, 
and aero-engines, occupies an important place in indus-
trial fields. How to prevent severe breakdowns of these 
machinery has been a hot topic in industrial engineering 
[1, 2]. Bearing faults are one of the most common failures 
in rotating machinery [3]. Vibration signal-based process-
ing is an effective method for bearing fault diagnosis [4, 
5]. In practical engineering, the vibration signal recorded 
from rotating machinery under time-varying speed condi-
tions usually tends to be strongly time-varying [6–8]. In 

the past few decades, time–frequency (TF) analysis (TFA) 
methods have drawn considerable attention for dealing with 
such a signal since TFA methods can characterize essential 
TF features closely related to the instantaneous operation of 
machinery [9, 10]. Conventional methods, e.g., short-time 
Fourier transform (STFT), wavelet transform (WT), and 
Wigner-Ville distribution (WVD), show powerful capabili-
ties in dealing with the signals measured in industrial fields 
[11, 12]. However, restricted by the Heisenberg uncertainty 
principle or unexpected cross-terms, the TF results gener-
ated via conventional methods are often blurry, and it is 
impossible to provide a precise TF description for a time-
varying signal [13]. Therefore, one challenging task of bear-
ing fault diagnosis based on TFA methods is how to achieve 
highly concentrated results for time-varying signals. This is 
because a more concentrated method can help us to more 
precisely extract the bearing fault features.

The TFA method is an effective tool to analyze time-
varying signals and draws considerable attention, as it can 
expand one-dimensional time series into a two-dimensional 
time–frequency plane. From this time–frequency plane, 
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we can observe the time-varying features and achieve the 
decomposition of different components. Recently, the 
synchrosqueezing transform (SST) has become a promis-
ing TFA method for such purposes. The SST can greatly 
enhance the TF resolution of the classical TFA method and 
allow precise mode decomposition or signal reconstruction 
[6–10]. SST, as a popular TFA method, has been applied in 
many fields [11–20]. However, with the increasing under-
standing of SST, some drawbacks are recognized. One draw-
back of SST is that when dealing with strongly frequency-
demodulated signals, the energy of TF representation 
generated by SST will smear heavily. To solve this problem, 
many energy-concentrated SST methods have been proposed 
in recent decades [8, 9, 14–18, 21–25]. In [8, 9], the authors 
proposed a two-step SST method, which first computes the 
demodulated version of time-varying signals and then uses 
SST technology to enhance the TF resolution of the first-step 
results. In [21, 22], an iteratively demodulated procedure 
is proposed so that the energy of TF representation can be 
concentrated step by step. In [23–25], based on the second-
order model of a nonstationary signal, a one-step method 
was provided in the analysis of chirp-like signals.

Recently, some researchers proposed a novel TFA method 
called the synchroextracting transform (SET), which is able 
to achieve significant improvement in concentrating TF 
energy [26]. In theory, the SET is proposed as a postprocess-
ing tool of the STFT. In many studies, it has been shown 
that the STFT can be regarded as a first-order TFA method, 
which means that the considered signal should be piecewise 
stationary in a short time [27]. Therefore, the SET method 
only works well in dealing with weakly time-varying sig-
nals. However, in industrial fields, practical signals often 
tend to be strongly time-varying and cannot meet the applied 
requirements of SET. Therefore, the TF results of strongly 
time-varying signals generated by the SET method may suf-
fer from some heavy problems, e.g., blurry TF energy. SET 
employs an extracting operator to retain only the TF coef-
ficients in the IF trajectory. Thus, an energy-concentrated 
representation can then be created from this postprocess-
ing procedure. It is known that the SET can be regarded 
as a ridge detection result of the STFT. The ridge in the 
STFT cannot allow for perfect reconstruction for nonstation-
ary signals. Therefore, the reconstruction of the SET only 
approximates the original signal instead of obtaining perfect 
recovery. Some new TFA methods employing a postprocess-
ing procedure have been proposed, e.g., multisynchrosqueez-
ing transform (MSST). MSST employs an iterative proce-
dure to squeeze the STFT result, which intends to gradually 
enhance the energy concentration. However, the MSST uses 
the first-order IF estimator that offers an accurate estimate 
for purely harmonic signals. Hence, the MSST cannot be 
used for highly nonstationary signals. When signals recorded 
in the real world cannot meet the requirement of the purely 

harmonic assumption, the MSST fails to produce a satisfac-
tory result for such signals.

To generate a concentrated representation for strongly 
time-varying signals, it is necessary to guarantee that the 
preprocessing TFA method is relatively concentrated. In 
many studies, it has been shown that the demodulated tech-
nique is an effective way to address strongly time-varying 
signals. The classical demodulated techniques include chir-
plet transform (CT) [28, 29], local polynomial transform 
(LPT) [30–32], general parameterized transform (GPT) [33], 
and matching demodulated transform (MDT) [34, 35].

Faced with complex real-world situations, it is found 
that most real-world signals cannot be suitably described 
by polynomial models, e.g., vibration signals of rotating 
machinery under unknown time-varying speeds [18–20]. 
To address more highly nonlinear signals, GPT, and MDT 
techniques suggest introducing more complex mathematical 
models to design the basis function, e.g., spline models and 
Fourier series models. These two demodulated techniques 
provide much more flexible solutions for characterizing a 
time-varying signal, which should be the best choice as the 
preprocessing method of the SET.

The reassignment (RS) method is a TFA method sharing 
a similar postprocessing manner with SST [5]. Although 
RS can generate a more energy-concentrated TF result than 
SST, it cannot allow signal reconstruction and mode decom-
position. In this paper, inspired by RS technology, we pro-
pose a novel TFA method, termed energy-concentrated SST 
(ESST), which combines the advantages of SST and RS. 
First, we provide geometric explanations for SST and RS, 
which can help us to understand the postprocessing manner 
of SST and RS more clearly. Then, based on the geometric 
relationship, the ESST is proposed in the study.

2  The theory of the proposed method

2.1  STFT method

We start this study from the framework of STFT. The STFT 
of a function s ∈ L2(ℝ) with respect to the real and even 
window g ∈ L2(ℝ) is defined by

where Vs(t,�) is defined as the spectrogram of STFT. A 
multicomponent signal with amplitude-modulated (AM) and 
frequency-modulated (FM) laws can be modeled as

(1)Vs(t,�) = ∫
+∞

−∞

g(u − t) ⋅ s(u) ⋅ e−i�(u−t)du

(2)s(t) =

n∑

k=1

Ak(t) ⋅ e
i�k(t)
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where A�(t) and ��

�(t) are assumed to be positive and slow-
varying, respectively. A�(t) and ��

�(t) are called the instan-
taneous amplitude (IA) and instantaneous frequency (IF), 
respectively. IA and IF are two key features to understand 
the time-varying behaviors of the multicomponent signal. 
However, just from the time-series data, the instantaneous 
feature of a multicomponent signal cannot be characterized. 
The STFT expands a one-dimensional time-series signal into 
a two-dimensional time–frequency plane so that we can 
observe and extract the IA and IF information of the signal.

Another important application of the STFT is to recon-
struct the monocomponent signal from a multicomponent 
signal. For Eq. (1), we calculate the integration with respect 
to frequency variable � ; then, we obtain

Thus, the original signal s(t) can be reconstructed by

According to [8], the STFT of a multicomponent signal 
s(t) can be approximately represented as

where ĝ denotes the Fourier transform of the window. We 
take the spectrogram of Vs(t,�) , and (5) can be written as

The STFT separation condition of signal s(t) is written as

where k ∈ {1,… , n − 1} , and Δ denotes the frequency sup-
port of window g . Because ĝ is compact in the frequency 
domain, if the separation condition is satisfied, the differ-
ent components can occupy distinct TF domains in the TF 
plane. Therefore, each component can be reconstructed by 
integrating the TF coefficients Vs(t,�) around its IF ��

�(t) in 
the frequency direction, i.e.,

(3)

∫ +∞

−∞
Vs(t,�)d� = ∫ +∞

−∞
∫ +∞

−∞
g(u − t) ⋅ s(u) ⋅ e−i�(u−t)dud�

= 2� ⋅ ∫ +∞

−∞
g(u − t) ⋅ s(u) ⋅ �(u − t)du

= 2�g(0) ⋅ s(t)⋅

(4)s(t) = (2�g(0))−1 ⋅ ∫
+∞

−∞

Vs(t,�)d�

(5)Vs(t,𝜔) ≈

n∑

k=1

Ak(t)e
i𝜑k(t)

⋅ ĝ(𝜔 − 𝜑�
k(t))

(6)||Vs(t,𝜔)
|| ≈

n∑

k=1

Ak(t) ⋅ ĝ
(
𝜔 − 𝜑�

k
(t)
)

(7)𝜑�
k+1(t) − 𝜑�

k(t) > 2Δ

(8)sk(t) = (2�g(0))−1 ⋅ � |�−��
k(t)|≤Δ

Vs(t,�)d�

2.2  RS method

However, the TF energy of the STFT spectrogram smears 
heavily, which will lead to a low TF resolution. To observe 
the time-varying TF features more precisely, RS technology 
is designed to improve the readability of TF representation. 
The RS expression is usually written as

where � denotes the Dirac distribution, and the reassignment 
operators �̂(t,�) and t̂(t,�) can be calculated as

where Vg�

s (t,�) and Vtg
s (t,�) can be regarded as the STFT 

using alternative windows, g′denotes the derivative of g(t) 
with respect to time, and tg = t ⋅ g(t) . RS considers spectro-
gram ||Vs(t,�)

|| reassignment, so the RS result cannot be used 
to reconstruct the signals.

In Fig. 1, we give the STFT result and RS result of a lin-
ear FM signal. The spectrogram of the STFT suffers a low 

(9)

Rm(v, �) = ∫
+∞

−∞

||Vs(t,�)
|| ⋅ �

(
v − �̂(t,�)

)
⋅ �(� − t̂(t,�))dtd�

(10)�̂(t,�) = � − Im

(
V
g�

s (t,�)

Vs(t,�)

)

(11)t̂(t,�) = t + Re

(
V
tg
s (t,�)

Vs(t,�)

)

Fig. 1  (a) STFT result, (b) magnified STFT result, (c) RS result, and 
(d) magnified RS result
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TF resolution, and the RS representation shows a high TF 
resolution. According to the findings of Professor Auger [5], 
RS has the ability to reassign the spectrogram energy into 
the IF trajectory of a linear FM signal so that the RS result 
can achieve an ideal TF location for a linear FM signal. 
Based on the reassignment manner of RS, we can build the 
corresponding geometric relationship, as shown in Fig. 2.

As shown in Fig. 2, we assume that (t,�) is an arbitrary 
point in the TF plane and that (̂t

(
t,�), �̂(t,�)

)
 is the cor-

responding reassignment operator and should be located in 
the IF trajectory. From a geometric perspective, RS reas-
signs the STFT spectrogram ||Vs(t,�)

|| into the TF position 
(̂t
(
t,�), �̂(t,�)

)
 from a two-dimensional TF direction. There-

fore, for a linear FM signal, RS can provide an ideal TF rep-
resentation. Herein, we define the time-reassignment distance 
Dt and frequency reassignment distance D� as Eq. (12), which 
will be used in the next subsection.

2.3  SST

According to [6, 7], the SST expression is written as

Where

Considering Vs(t,ω) being written as Eq. (1), �tVs(t,ω) can 
also be calculated by

(12)Dt = t̂(t,�) − t,D� = �̂(t,�) − �

(13)St(t, �) = ∫
+∞

−∞

Vs(t,�) ⋅ �(� − �0(t,�))d�

(14)�0(t,�) = −i ⋅
�tVs(t,ω)

V(t,ω)

Hence, �0(t,�) can be rewritten as

In practical calculation, it is necessary to take the real 
part of �0(t,�) so that it can be rewritten as

From expressions (10) and (17), �0(t,�) is equal 
to �̂(t,�) , which means that the SST can be regarded 
as a special case of RS because the SST only consid-
ers the reassignment in the frequency direction, i.e., 
(t,�) → (t, �̂(t,�)) . The reassignment manner of SST can 
also be understood more clearly, as shown in Fig. 3. For 
a linear FM signal, the reassignment ability of SST is not 
enough to squeeze all TF coefficients into the IF region. 
In Fig. 5a, b, the SST result of a linear FM signal is dis-
played. The TF resolution of the SST result is higher than 
that of the STFT result but lower than that of the RS 
result.

A fundamental difference between SST and RS is that 
SST squeezes the TF coefficients Vs(t,�)  along the fre-
quency direction whereas RS reassigns the TF spectro-
gram ||Vs(t,ω)

|| along the two-dimensional TF direction. 
According to expression (8), one can reconstruct the signal 
by integrating the TF coefficients Vs(t,ω) around its IF 
��

k(t) in the frequency direction. The SST is a technol-
ogy that only considers frequency reassignment so that 
we can reconstruct the signal using an expression similar 
to Eq. (8), as follows:

(15)

�tVs(t,�) = �t

(∫ +∞

−∞
g(u − t) ⋅ s(u)e−i�(u−t)du

)

= −∫ +∞

−∞
g�(u − t) ⋅ s(u)e−i�(u−t)du

+i�∫ +∞

−∞
g(u − t) ⋅ s(u)e−i�(u−t)du

= −V
g�

s (t,�) + i�Vs(t,�)

(16)�0(t,�) = � + i ⋅
V
g�

s (t,�)

Vs(t,�)

(17)�0(t,�) = � − Im

(
V
g�

s (t,�)

Vs(t,�)

)Fig. 2  The reassignment manner of RS

Fig. 3  The reassignment manner of SST
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where ds denotes the bandwidth of SST. Due to the ability 
of signal reconstruction, the SST can be used in the appli-
cations of signal denoising, data compression, and intrinsic 
mode decomposition. This point is a superior aspect of SST 
over that of RS because the RS result cannot be used to 
recover the time-series signal.

2.4  Energy‑concentrated SST

Although the SST allows for reconstructing original sig-
nals, it has to suffer a low-TF resolution because it only 
considers frequency reassignment. Herein, a question 
arises as to why we cannot utilize the reassignment opera-
tor of the RS method to enhance the SST result and why 
the signal reconstruction ability can be reserved simulta-
neously. Before achieving this goal, we need to identify 
two key distinctions between RS and SST, i.e. the issue 
of TF resolution and the issue of signal reconstruction. 
RS can generate a high-resolution TF result because it 
employs a two-dimensional reassignment operator applied 
to the spectrogram ||Vs(t,ω)

|| . However, the spectrogram-
based RS result cannot be used to recover the time-series 
signal because no signal reconstruction expression of 
the STFT is available based on the spectrogram result. 
According to reconstruction expression (4) of the STFT, 
if we want to reconstruct the monocomponent modes con-
tained in a signal, we need to calculate the integration of 
the STFT result along the frequency direction. For the 
STFT-based postprocessing reassignment technology, the 
way to possess the ability of signal reconstruction is to 
only consider the frequency reassignment, which should 
be the most important significance to propose SST as indi-
cated by Professor Daubechies et al. [6]. Therefore, the 

(18)sk(t)= (2�g(0))−1 ⋅ � |�−��
k(t)|≤ds

St(t,�)d�
SST can be understood as follows: as a similar method to 
RS, the SST sacrifices the TF resolution to reobtain the 
ability of signal reconstruction so that the monocomponent 
mode can be decomposed out to achieve a similar goal 
as the empirical mode decomposition method. Now, we 
reconsider the question of how to utilize the reassignment 
operator of RS to enhance the SST result. To resolve this 
question, we first rebuild a new geometric relationship, as 
shown in Fig. 4.

Figure  4  demonstrates the reassignment manner of 
RS (t,�) → (̂t(t,�), �̂(t,�)) and SST (t,�) → (t, �̂(t,�)) . 
Because the operator (̂t(t,�), �̂(t,�)) is located in the IF 
trajectory, RS can generate a more energy-concentrated 
TF result than SST, which only considers the frequency 
reassignment. The geometric relationship in Fig. 4 inspires 
us to utilize the time-reassignment distance Dt of RS to 
extend the frequency reassignment distance Dω of SST. 
The extended frequency distance is denoted as dx , and we 
assume that the TF point (t, �̂(t,�) + dx) can be located in 
the IF trajectory. Thus, we obtain the following equation:

Now, an essential question is how to calculate the value 
of tan� . Actually, the angle � denotes the IF slope of the 
linear FM signal. For a linear FM signal, the operator 
(̂t(t,�), �̂(t,�)) can be located in the IF trajectory, and an 
adjacent operator (̂t(t,� + Δ�), �̂(t,� + Δ�)) should also 
be located in the IF trajectory. According to this geometric 
relationship, tan� can be calculated by

Therefore, to make the original SST result more 
energy-concentrated, we use the new squeezing opera-
tor �̂(t,�) + tan� ⋅ Dt to substitute the original squeezing 

(19)dx = tan � ⋅ Dt

(20)tan � =
�̂(t,� + Δ�) − �̂(t,�)

t̂(t,� + Δ�) − t̂(t,�)
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operator �̂(t,�) , and the novel SST method can be written 
as

This novel method is named energy-concentrated SST 
(ESST). In Fig.  5c–d, we give the ESST result of the  
abovementioned linear FM signal. The TF representation is 
more concentrated than the SST result. Because the ESST 

(21)

RTs(t, �) = ∫
+∞

−∞

Vs(t,�) ⋅ �(� − (�̂(t,�) + tan α ⋅ Dt))d�

only considers the reassignment of TF coefficients in the 
frequency direction, it allows signal reconstruction by

For the signal reconstruction expressions (8), (18) 
and (22),  the regions � ∈ [��

k(t) − Δ,��
k(t) + Δ] , 

� ∈ [��
k(t) − ds,��

k(t) + ds]  and � ∈ [��
k(t) − dr,��

k(t)

+dr] are called the reconstruction regions of the STFT, SST, 
and ESST, respectively. ESST can generate the most energy-
concentrated TF representation, such that the corresponding 
reconstruction region should be the most compact, which 
can also be understood as dr ≤ ds ≤ Δ.

To estimate the ridges of the TFR, the following proce-
dure is employed in this study. In most studies on SST, the 
ridge detection method has been accepted as an effective tool 
to detect IF trajectories, that is,

where (t,�k(t)) is the estimation of the IF trajectories in the 
TF plane, and � and � are two parameters to adjust the level 
of regularization. According to Eq. (23), the IF of the mode 
with the largest energy is first detected. After one IF trajec-
tory is estimated, the corresponding TF coefficients are set to 
zero. Then, the retained TF representation is substituted into 
Eq. (23). By this iterative procedure, the IF trajectories of 
all active modes can be estimated one by one. In summary, 
the whole procedure of the adaptive mode decomposition 
method based on the proposed ESST can be summarized 
as follows.

3  Numerical validation

In this subsection, we utilize several numerical signals to 
compare the performance of STFT, SST, RS, and ESST in 
energy concentration and signal reconstruction.

3.1  The first case

The first numerical signal is considered a summation of 
three components with distinct linear FM laws and the same 
AM trend.

(22)sk(t)= (2�g(0))−1 ⋅ � |�−��
k(t)|≤dr

RTs(t,�)d�

(23)

E(�) = −∫
+∞

−∞

|||TFR
(
t,�k(t)

)|||
2

dt + ∫
+∞

−∞

(� ⋅ ��
k
(t)

2
+ � ⋅ �k(t)

2)dt

(24)
C1(t) = sin(2�(4t))

C2(t) = sin(2�(7t + 2.5t2))

C3(t) = sin(2�(11t + 5t2))

Fig. 4  The reassignment manner of the proposed method

Fig. 5  (a) SST result, (b) magnified SST result, (c) ESST result, and 
(d) magnified ESST result
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From Eq. (23), we know that signal C1 is a harmonic 
component (IF = 4Hz) , the FM law of signal C2 is stronger 
(IF = 7 + 5tHz) , and signal C3 has the strongest FM law 
(IF = 11 + 10tHz) . The TF representations generated by 
STFT, SST, RS, and ESST are displayed in Fig. 6. The 
energy of the STFT result (see Fig. 6a) smears around 
the IF with poor TF resolution. For the SST result (see 
Fig. 6b), the weak FM component (C1) looks more energy-
concentrated than the strong FM component (C3). With 
increasing FM law, the SST result smears more heavily, 
which means that the SST cannot deal with a strong FM 
signal effectively. For the RS result and ESST result (see 
Fig. 6c–d), all the components are energy-concentrated.  
For quantitative comparison, the Rényi entropy is  
employed to evaluate the performance of different meth-
ods. It is well known that a lower value of Rényi entropy 
denotes a more energy-concentrated TF representation.  
The corresponding Rényi entropy values are listed in 
Table 1. It is shown that compared with the STFT, the SST 

can greatly improve the energy concentration. However, 
to ensure that different modes can be decomposed out,  
the SST only considers frequency reassignment, which 
leads to the TF representation of the strong FM compo-
nent being very blurred. This means that for a strong FM 
signal, the one-dimensional reassignment of SST is not 
enough to work well. RS technology is based on two-
dimensional TF reassignment, so the corresponding TF 
result can concentrate on the IF more highly. However, the 
reassignment manner of RS has to lose the ability of signal 
reconstruction. From the Rényi entropy, we can see that  
our proposed method can provide an energy-concentrated 
TF result similar to the RS result; furthermore, the TF  
representation can be used to decompose each monocom-
ponent mode. Moreover, the computational time of various 
methods is proposed in Table 2. The proposed ESST has a 
very low-computational burden.

Herein, we test the reconstructed performance of SST and  
ESST. The SST and ESST are intended to reassign all TF  
coefficients into the IF trajectory. Therefore, for reconstruc- 

Table 1  The Rényi entropy of different TFA results

TFA STFT SST RS ESST

Rényi entropy 14.1672 10.8099 9.9948 9.9345

Table 2  Required computation time

TFA STFT SST RS ESST

Time (s) 0.051 0.128 0.234 0.134

Fig. 6  (a) STFT result, (b) SST result, (c) RS result, and (d) ESST 
result

Fig. 7  The reconstructed results by (a) SST and (b) ESST (the black 
solid line is the original component, and the red dotted line denotes 
the recovered component)
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tion Eqs. (18) and (22), we first let dr = ds = 0 , i.e., just 
using the TF coefficient in the IF trajectory to reconstruct 
each monocomponent. The IF trajectory can be estimated 
using the ridge detection method [1]. The reconstructed 
results of SST and ESST are shown in Fig. 7a, b, respec-
tively (the black solid line is the original component, and 
the red dotted line denotes the recovered component). For 
the harmonic component (C1), both of these methods can 
provide a satisfactory reconstructed result. However, for the 
time-varying component (C2 and C3), the reconstructed 
result by ESST is much closer to the original signal than 
that by SST.

In Fig. 7, using only the TF coefficient in the IF trajec-
tory to recover the components, the ESST can do a better job 
than the SST. This is because for strong FM signals, the ESST 
can reassign more TF coefficients into the IF trajectory than 
the SST. Herein, we consider a larger reconstruction region to 
recover the components, where the corresponding reconstruc-
tion region is shown in Fig. 8. To recover these three com-
ponents, we just need to integrate the TF coefficients in the 
reconstruction region along the frequency direction. In addi-
tion, the reconstruction results are shown in Fig. 9. The SST 
results are much closer to the original signal than just using the 
TF coefficient in the IF trajectory. However, the ESST results 
are similar to the results obtained using only the TF coefficient 
in the IF trajectory. This result indicates that because the SST 
results smear heavily, to recover the components precisely, a 
larger reconstruction region is needed than ESST.

3.2  The second case

For SST processing, the time-varying components with dif-
ferent FM rates lead to distinct energy-concentration TF 
results. The distinct integral regions yield different recon-
struction results. However, the ESST is not sensitive to the 
signal FM rate. Herein, a series of signals with uniformly 
changing FM rates are employed to compare the proposed 
method with other TFA methods, including STFT, SST, and 
RS. The signal is modeled as s(t) = sin(2�(7t + FM ⋅ t2)) , 
where FM = 0.2, 0.4… 5.

3.3  Case two

The second numerical signal is considered a summation of 
two components with crossed IF.

The TF representations by the four methods are shown 
in Fig. 10, and the corresponding Rényi entropy and com- 

(25)
C1(t) = ⋅sin(0.78t) sin(2�(25t))

C2(t) = sin (0.78t) ⋅ sin(2�(25t + 10 sin(1.5t)))Fig. 8  The reconstruction regions corresponding to three components

Fig. 9  The reconstructed results by (a) SST and (b) ESST (the black 
solid line is the original component, and the red dotted line denotes 
the recovered component)
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putational cost are listed in Tables 3 and 4. The ESST 
result is the most energy-concentrated. To recover the two 
components, the reconstruction regions are considered, as 
shown in Fig. 11. In addition, the reconstructed results are 
shown in Fig. 12. For the harmonic component, the SST 
and ESST give similar reconstructed results. However, 
for the time-varying component, the ESST can provide a 
more precise reconstructed result.

4  Experimental validation

4.1  The first case

A popular bat signal recorded by Rice University is 
employed to validate the proposed method [9]. By produc-
ing the frequency-modulated and sweeping-downward sig-
nal and collecting the echo-delay signal, bats can identify 
objects successfully in a complex environment. This sig- 

nal is sampled at 400 points, and its sampling frequency is 
14 kHz. The TF results generated by the STFT, SST, RS, 
and ESST are shown in Fig. 13. The corresponding Rényi 
entropy values are listed in Table 5, which shows that the 
ESST result is the most energy-concentrated.

To validate the invertible ability of ESST, we utilize 
the ESST result to reconstruct the monocomponents con-
tained in the bat signal. The decomposed results are shown 
in Fig. 14a–d. Four monocomponents are decomposed out. 
Figure 14e displays the summation of these four components 
(the black solid line is the original bat signal and the red dot-
ted line denotes the summation of recovered components). 
The error between the summation and original bat signal is 
plotted in Fig. 14f. It can be seen that the error is small com-
pared to the original signal, which denotes that the ESST 
can achieve the decomposition of the monocomponents and 
recover the original signal to a highly precise degree.

Table 3  The Rényi entropy of different TFA results

TFA STFT SST RS ESST

Rényi entropy 13.7439 10.1247 9.7817 9.7680

Table 4  Required computation time

TFA STFT SST RS ESST

Time (s) 0.067 0.16 0.321 0.176

Fig. 10  (a) STFT result, (b) SST result, (c) RS result, and (d) ESST 
result

Fig. 11  The reconstruction regions corresponding to two components
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4.2  The second case

The focus of the second experiment is on analyzing a  
gravitational-wave (GW) signal generated in the procedure of  
merging a pair of black holes, which is recorded by the 
laser interferometer GW observatory (LIGO) [25]. It is 
well known that the successful detection of the GW signal 

brought the 2017 Nobel Prize to the inventors of the LIGO. 
The merger of two black holes is a time-varying procedure, 
which leads to the GW signal being also strongly varying in 
a short time. Therefore, extracting more information from 
the time-varying GW signal is a challenging task.

The waveform of the GW signal of event GW150914 is 
shown in Fig. 15a. Over 0.2 s, this signal increases in fre-
quency and amplitude in approximately eight cycles, where 
the amplitude reaches a maximum. The varying frequency is 
closely related to the initial mass of two black holes and the 
mass of the eventual black hole. In Pham and Meignen [25], 
the frequency information is extracted by the WT method. 
However, the WT belongs to the linear TFA method, which 
must be restricted by the Heisenberg uncertainty principle. 
It is impossible to precisely characterize the time-varying 
frequency with concentrated energy by the WT technique. 
To generate the concentrated TF representations, we select 
the STFT, SST, and ESST to deal with this signal. The TF 
representations are displayed in Fig. 15b–d, and the local 
TF features are shown on the right. It is obvious that the 
SST result smears heavily. Although the high-order SST 
results increase the energy concentration, the TF energy is 

Table 5  The Rényi entropy of different TFA results

TFA STFT SST RS ESST

Rényi entropy 14.0748 10.8706 9.8586 9.8545

Fig. 12  The reconstructed results by (a) SST and (b) ESST (the black 
solid line is the original component, and the red dotted line denotes 
the recovered component)

Fig. 13  (a) STFT result, (b) SST result, (c) RS result, and (d) ESST 
result

Fig. 14  (a–d) Four decomposed components, (e) summation of four 
components (red) and the original signal (black), and (f) reconstruc-
tion errors between the summation and original signal
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still somewhat blurry. In Fig. 15d, it can be observed that 
the ESST provides a significantly concentrated TF result 
for the GW signal.

Furthermore, we extract the time-varying IF trajectory 
from the MSST, which can also be used for recovering the 
noise-reduced signal. Meanwhile, the reconstructed signal 
is displayed in Fig. 16, which is plotted together with the 
numerical GW signal calculated by general relativity. The 
reconstructed signal is highly consistent with the numeri-
cal GW signal. Moreover, we calculate the SNRs of the 
measured signal and reconstructed signal with respect to 
the numerical signal, which are 5.7367 dB and 7.0121 dB, 

respectively. It can be concluded that the ESST can effec-
tively improve the TF energy concentration and the SNR of 
the recovered signal.

4.3  The third case

In engineering applications, vibration signal processing is 
usually applied in condition monitoring, fault diagnosis, 
etc., because vibration signals can contain the currently 
essential information about the analyzed machine. In non-
stationary cases, the collected vibration signals will show 
some time-varying behaviors, so TFA methods are the most 
commonly employed methods to address them [36, 37]. In 
this subsection, we utilize the proposed method to analyze 
the vibration signal recorded in a start-up procedure from 
800 to 2400 rpm of a tractor [38–46]. The instantaneous 
speed (IS) is shown in Fig. 17a, and the recorded vibra-
tion signal is displayed in Fig. 17b. Figure 17c shows the 
frequency spectrum.

From the waveform and spectrum of the signal, we cannot  
obtain the time-varying information about the tractor [47]. 

Fig. 15  (a) Waveform of the measured GW signal, (b) STFT result, 
(c) SST result, and (d) ESST result

Fig. 16  Reconstructed GW signal from the ESST result
Fig. 17  (a) Instantaneous speed of the tractor, (b) time-domain wave-
form, and (c) frequency spectrum
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The TF representations generated by SST and ESST are shown  
in Fig. 18. The vibration components related to instantaneous 
speed are characterized, which include the first-order (1 ×) 
component of the rotating frequency and its high-order com-
ponents (2 × , 3 × , 4″…). From the SST result (Fig. 18a), the  
1 × component is characterized clearly. However, because 
the high-order components have stronger FM laws, the cor-
responding TF energy smears heavily. It is well known that 
a larger TF energy denotes a larger vibration level, which 
can provide essential information about the running status of  
machines. According to the smeared SST result, we cannot 
obtain accurate information about the different vibration 
components.

From the ESST results (see Fig. 18b), each component 
is well characterized and energy concentrated. The 1 × , 
3 × , and 4 × components are the most obvious, which 
denotes that these three components are closely related 
components that cause the vibration of the tractor. To 
observe the time-varying features of these components 
more clearly, we reconstruct them using the ESST result, 
as shown in Fig. 19. Each component is decomposed into 

mono-modes, and the time-varying waveform is charac-
terized clearly, which can be used to guide the control of 
tractor vibration effectively. Combining the IS informa-
tion, we find that the amplitude of these three components 
will reach a maximum at approximately 2300 rpm, and the 
corresponding frequencies are 38 Hz, 115 Hz, and 153 Hz. 
These three frequencies have a close relationship to the 
intrinsic mode of the tractor and should be the main factor 
considered to be reduced.

5  Conclusion

The SST, RS, and the proposed ESST are the postprocessing 
methods based on the STFT. The STFT can expand a one-
dimensional time-series signal into a two-dimensional TF 
plane. Because the phase information of the original signal is 
retained, we can reconstruct the signal precisely by integrat-
ing the TF coefficients related to different components along 
the frequency direction. SST considers only the reassignment 
of TF coefficients in the frequency direction, so it allows sig-
nal reconstruction and has a reconstruction expression similar 
to that of the STFT. The distinct point is that SST is intended 
to provide a more energy-concentrated TF representation, 
which can help us to understand the time-varying feature 

Fig. 18  (a) SST result and (b) ESST result

Fig. 19  The decomposed monocomponent signals
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of signals more precisely. RS is an interesting method that 
can provide a more energy-concentrated TF result than SST, 
but it loses the ability to reconstruct signals. Our proposed 
ESST is a novel method combining the advantages of SST 
and RS, and the effectiveness is validated by numerical and 
real-world signals. Compared with SST, ESST can provide 
a more energy-concentrated TF representation and achieve 
a higher TF resolution. Compared with RS, the ESST can 
allow for signal reconstruction and mode decomposition.

In the feature, more theoretical works can be done from 
the framework of the proposed method, e.g., synchroextrac-
ing transform and multisynchrosqueezing transform. Fur-
thermore, the proposed method can be applied in various 
real applications, e.g., mechanical engineering fault diagno-
sis, operating condition monitoring, and so on.
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