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Abstract
In this study, structural performance analysis and test verification of a machine tool were performed. This research is based on a 
five-axis machine tool for modeling and experimental verification. The mechanical-structure performance of the machine-tool 
cutting process directly affects the processing results. The processing performance of a five-axis machine tool was analyzed 
to identify processing weaknesses as the basis for subsequent structural improvements. Data were then integrated through the 
abductory induction mechanism (AIM) polynomial neural network to predict intelligent processing quality, and an in-depth 
investigation was conducted by importing processing parameters to predict the surface quality of the finished product. The finite-
element analysis method was used to analyze the static and dynamic characteristics of the whole machine and to test the structural 
modal frequency and vibration shape. For modal testing, the experiment used various equipment, including impact hammers, 
accelerometers, and signal extractors. Subsequent planning of modal frequency band processing experiments was conducted to 
verify the influence of natural frequencies on the processing level. Finally, according to the machine processing characteristics, a  
processing experiment was planned. The measurement record was used as the training data of the AIM polynomial neural network  
to establish the processing quality prediction model. After analysis and an actual machine test comparison, the two-axis 
static rigidity values of the machine were X: 1.63 kg/µm and Y: 1.93 kg/µm. The modal vibration shape maximum error of 
the machine was within 6.2%. The processing quality prediction model established by the AIM polynomial neural network  
could input processing parameters to achieve the surface roughness prediction value, and the actual relative error of the Ra value 
was within 0.1 µm. Based on the results of cutting experiments, the influence of the dynamic characteristics of the machine on  
the processing quality was obtained, especially in the modal vibration environment, which had an adverse effect on the surface  
roughness. Hence, the surface roughness of the workpiece processed by the machine could be predicted.

Keywords  Five-axis machine tool · Finite element method · Static stiffness · Modal analysis · Modal test · Abductory 
induction mechanism

Abbreviations
CPM	� Complexity penalty factor
FSE	� Fitting squared error
KP	� Complexity penalty
PSE	� Predicted squared error

1  Introduction

A machine tool must have sufficient rigidity and optimized 
design considerations in the structural analysis stage to facil-
itate the best performance of the machine and to develop 

intelligent processing functions based on excellent machine 
performance. Therefore, many studies have been conducted 
in this area. Eynian [1] used mathematical models to deter-
mine the processing parameters that are required for stable, 
high-performance, and high-speed processing. These math-
ematical models must accurately measure the modal param-
eters of the processing system. Tang et al. [2] proposed a 
nonlinear tool mark coefficient recognition method using 
finite amplitude. The results showed that the size distribu-
tion of the critical depth of the cut is affected by the pro-
cess damping, and the percentage increase in the cut depth 
is closely related to the tool direction and the frequency 
response function (FRF). Liu et al. [3] considered the effect 
of elastic interaction to analyze the influence of the anchor 
bolt pre-tightening sequence on the pre-tightening state. The 
results showed that the pre-tightening sequence from the 
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middle to the side can ensure uniform deformation of the 
machine bed.

Muñoz-Escalona and Maropoulosb [4] studied a geo-
metric model for predicting the surface roughness of square 
inserts in face milling. The Taguchi method was used as an 
experimental design, and the surface roughness of the milled 
surface was measured using a non-contact profiler. Zhao 
et al. [5] proposed a surface-roughness prediction model and 
showed that the tool posture has a significant influence on 
the surface roughness, which means that the angle of the tool 
can be controlled to improve the surface roughness of the 
processing. Wang et al. [6] proposed a five-axis tooth surface 
milling surface roughness control method using feed rate 
optimization based on surface topography analysis. Accord-
ing to this model, the influence of tool runout and workpiece 
curvature on the surface profile was analyzed.

Wang et al. [7] proposed a model by which the predicted 
surface morphology was determined, and the factors affect-
ing the development trend of roughness were analyzed. 
Tomov et al. [8] suggested the relationship between the 
parameter-prediction model and the surface-roughness 
formation process. Das et al. [9] explored artificial neural 
networks and predicted the cutting force and surface rough-
ness generated during CNC milling. García-Plaza et al. [10] 
optimized surface-roughness monitoring by focusing on 
vibration signal analysis. Accordingly, the signal statistical 
measurements and frequency bands were correlated with 
surface roughness. Rasagopal et al. [11] studied the influ-
ence of processing parameters on the surface roughness and 
cutting force of mixed aluminum metal matrix composites. 
The results were optimized and analyzed using the Taguchi 
method. Mansour and Abdalla [12] developed a mathemati-
cal model of surface roughness based on the cutting speed, 
feed rate, and cutting axial depth. Abouelatta and Mádl [13] 
identified a correlation between surface roughness and cut-
ting vibration during turning and derived a mathematical 
model of the predicted roughness parameters based on cut-
ting parameters and machine tool vibration. Lin et al. [14] 
constructed a prediction model for surface roughness and 
cutting force. Once the machining parameters are given, the 
surface roughness and cutting force can be predicted through 
the network. Ostasevicius et al. [15] proposed a method to 
improve the surface roughness. The method is based on the 
excitation of a specific higher vibration mode of the turning 
tool, and it reduces the harmful vibrations in the machine 
tool and workpiece system by increasing the energy dissipa-
tion inside the tool material. Sahin and Motorcu [16] found 
that the feed rate is the main factor affecting the surface 
roughness, and good agreement between the predicted and 
experimental surface roughness was observed within a rea-
sonable range. Öktem et al. [17] studied the best cutting 
conditions to achieve the smallest surface roughness in mold 
surface milling. Lalwani et al. [18] studied the influence of 

cutting parameters on the cutting force and surface rough-
ness in finishing hard turning. Davim et al. [19] established 
a surface roughness prediction model using neural networks 
using cutting conditions, such as cutting speed, feed rate, and 
cutting depth, as influencing factors. Their analysis showed 
that the cutting speed and feed rate have a significant effect 
on reducing the surface roughness, while the depth of cut 
has the smallest effect. Liu et al. [20] proposed a model that 
can provide valuable information about the effects of cutting 
parameters on surface roughness. Diniz and Micaroni [21] 
studied the effect of changing the cutting speed, feed, and 
nose radius on the surface roughness of a workpiece with 
and without cutting fluid. Muthukrishnan and Davim [22] 
used the input parameters of the cutting depth, cutting speed, 
and feed, and the output parameter was the surface finish 
of the machined part. The surface finish of machining can 
be predicted under cutting conditions within the operating 
range. Rawangwong et al. [23] used tungsten carbide tools 
for the face milling of semi-solid metal AA7075. They used 
Taguchi’s experimental method to determine the cutting 
speed, feed rate, and depth of cut to obtain more satisfac-
tory surface roughness. Wang et al. [24] used an abductive 
network to construct a network model, and one output was 
surface roughness. Chen et al. [25] proposed an abductory 
induction mechanism (AIM) polynomial network with the 
material properties provided as input to generate a model 
that predicts the tool geometry.

The machine tool industry is gradually advancing in 
terms of intelligent machine tool manufacturing. Accord-
ingly, this study recorded the measurement results of the 
cutting experiment under different dynamic characteristics 
and parameters of the machine in the cases of the respective 
processing parameters, construction methods, and cutting 
materials. It employed a similar neural network construction 
to be effective. It is expected that the model for predicting 
the surface quality of the finished product can reduce pro-
cessing costs and can thus be used as a basis for follow-up 
control experiments. When the processing parameters are 
imported, the surface roughness can be predicted using the 
network.

2 � Materials and methods

The experimental hardware equipment used in this research 
included a five-axis machine tool, LM load cell, German 
Mahr sensor probe, Millimar C1200 displacement display 
meter (LVDT), impact hammer (Kistler 9726A20000), 
accelerometer (Endevco Model 65–100), spectrum ana-
lyzer, SE-4000 non-contact surface roughness meter, and 
Olympus STM 6 high-precision tool microscope. The 
software included the finite-element analysis software 
ANSYS Workbench, spectrum analysis software Novian, 
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modal post-processing software MEscope, static stiffness 
acquisition and analysis software, and the AIM polynomial 
neural network. The main process was to set the material 
parameters and boundary conditions, test static rigidity and 
dynamic characteristics, and perform further processing 
tests. The material properties are listed in Table 1.

In the meshing process, the element type was set to “tet-
rahedron,” and mesh sizes were selected on the basis of 
the machine parts. The mesh size was set to 50.0 mm for 
the spindle seat and column, 20.0 mm for the screw, and 
40.0 mm for the rest of the machine. The total number of 
nodes and elements was 351,004 and 200,994, respectively.

The X- and Y-axes values of the static rigidity apply a 
force of 2940 N at the head end of the spindle and a reaction 
force of 2940 N at the end of the table the torque and bearing 
load are applied at the end of the table. During the modal 
analysis, the foot was fixed according to the actual placement 
of the machine. The experimental process is illustrated in 
Fig. 1.

3 � Analysis and test

When the machine is processing, the relative movement of 
the spindle end to the work platform affects the surface qual-
ity and accuracy of the workpiece. Therefore, static-rigidity 
simulation analysis was conducted for the spindle relative 
to the work platform. According to the analysis results, the 
X-axis relative displacement was 182.7 µm, and the static 
rigidity value was 1.64 (kg/µm). The Y-axis relative dis-
placement was 145.5 µm, and the static rigidity value was 
2.06 (kg/µm. The X- and Y-axes values of the static rigidity 
obtained from the analysis were 1.64 (kg/µm) and 2.06 (kg/
µm), respectively, as shown in Fig. 2.

In the static rigidity experiment, the force application 
point was 100 mm below the nose of the spindle. The rotary 
table was used as a benchmark to test the corresponding 
axial rigidity of the machine spindle, as shown in Fig. 3. 
According to the experimental results, the static rigidity 

values of the spindle end corresponding to the X- and Y-axes, 
measured on the basis of the rotating table, were 1.63 (kg/
µm) and 1.93 (kg/µm), respectively (Fig. 4).

On comparing the analysis results with the actual test, the 
X-axis static stiffness error value was 0.7%, and the Y-axis 
static stiffness error value was 6.9%. The natural frequency 
analysis of the five-axis machine tool structure and the 
boundary conditions was set according to the actual fixed 
condition of the machine. We compared the main modes 
that have a greater impact on the processing performance, 
and we observed their mode shapes, including the torsion 
of the spindle and the column, as well as the torsion mode 
of the rotating table.

When performing modal experiments, it is necessary to 
devise a reasonable layout plan for the object to be tested 
while simultaneously confirming whether the position of the 
hitting point interferes with the position of the signal picked 
up by the accelerometer. The natural frequency of the struc-
ture is then analyzed, and the analysis model is compared 
with the actual machine vibration mode. The data collected 
in the experiment are imported into MEscope software, 
curve fitting is performed, and the sum of the imaginary 
part of the FRF is determined to calculate the frequency 
and damping value of each mode and to view the trend of 
each mode.

The distribution points of the accelerometers and the trig-
ger point of the conducted modal experiment are shown in 
Fig. 5. The main distribution points, such as column, spin-
dle, and rotating table, are the positions that directly affect 
the machining performance of the machine.

After comparing the results of finite element analysis 
(FEA) with those of experimental modal analysis (EMA), 
the maximum error ratio was 6.2%, the minimum error ratio 
was 2%, and the average error ratio was 4.7%, as shown 
in Table 2. These findings verify that the geometric model 
and parameter settings, such as the material properties and 
boundary conditions, are aligned with the characteristics of 
the actual machine.

4 � Cutting experiment

In the cutting experiment, we used ultra-fine tungsten steel 
and aluminum end mills; the cutting material was Al-6061, 
and the processing method was down-milling. Different 
axial and radial depths of the cut conditions were used to 
explore the surface roughness results. The cutting diagram 
and milling cutter specifications are shown in Fig. 6.

In this study, the processing parameters of UX300 
machine were determined experimentally. The tools and cut-
ting material were initially fixed, and the processing param-
eters were used as the software input variables. The input 
data were as follows: spindle speed (rpm), feed rate (F), axial 

Table 1   Material properties

Gray cast iron (FC300)

Density (kg/m3) 7300
Young’s modulus (Pa) 1.15 × 1011

Poisson’s ratio 0.25
Thermal conductivity (W/m °C) 45
Stainless steel 304
Density (kg/m3) 7750
Young’s modulus (Pa) 1.93 × 1011

Poisson’s ratio 0.31
Thermal conductivity (W/m °C) 16.3
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direction (ap), and radial depth of cut (ae), and the values 
of these parameters are listed in Table 3. The measure-
ment results of the SE-4000 non-contact surface roughness 

measuring instrument were set as the output data, which 
was the surface roughness, Ra, value of the workpiece. The 
processing methods and measurement parameters are shown 

Fig. 1   Research flow chart

Fig. 2   Spindle vs. rotating 
worktable (X- and Y-axes values 
of the static rigidity were 1.64 
(kg/µm) and 2.06 (kg/µm), 
respectively
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in Fig. 7. For modeling, the input and output factors were fit 
into a polynomial network model. The processing test data 
in the range of 4000–9000 rpm are listed in Tables 4, 5, 6, 
7, 8 and 9, respectively.

Based on the modal analysis and the experimental results, 
a cutting experiment was conducted to assess the vibration 
shape trend of the entire machine, and the relative movement 
of the spindle end and the working platform was divided. 
First, the spindle speed was set to 4066 rpm (67.7 Hz) by 

down milling. The main mode was the spindle vibration rela-
tive to the worktable. The surface roughness of each point 
was measured five times, approximately. The surface rough-
ness obtained by processing was Ra 0.54 µm, as shown in 
Fig. 8a. The rotation speed was 5226 rpm (87.1 Hz) using 
the down milling method. The main mode was the spindle 
vibrating up and down relative to the worktable. The surface 
roughness obtained by machining was Ra 16.96 µm. The 
surface after cutting using the tool is shown in Fig. 8b.

Fig. 3   Machine processing plat-
form for determining the X- and 
Y-axes values of static rigidity

Fig. 4   Static rigidity data 
analysis
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5 � Prediction model and cutting testing

A polynomial network was employed to construct the predic-
tive model, decompose the complex system into relatively 
simple subsystems through polynomial function nodes, and 
then combine the subsystems into many different levels. The 
input data were subdivided simultaneously and transmitted 
to each functional node. The function node used a polyno-
mial function to calculate a limited amount of input data 
and obtain an output as the input of the next layer. Thus, 
the training structure of the entire polynomial network was 
established sequentially, as shown in Fig. 9. Subsequently, 
the optimal network construction, hierarchical features, and 
functional nodes were automatically generated according to 
the predicted square-error rule.

The polynomial function reorganizes all polynomial node 
patterns as follows:

where Xi , Xj  and Xk are the input values, y
1
 is the out-

put value, and Wi , Wj  and Wk are the coefficients of the 

(1)
y
1
= w

0
+
∑m

i=1
WiXi +

∑m

i=1

∑m

j=1
WijXiXj

+
∑m

i=1

∑m

j=1

∑m

k=1
WijkXiXjXk +⋯ ⋯

polynomial function node. Commonly used polynomial 
nodes are the normalizer, single node, double node, tri-
ple node, white node, and unitizer. The definitions are as 
follows:

1.	 Normalizer: converts the original variable into a normal-
ized input variable; the average is 0, the variance is 1, and 
its polynomial function is expressed as y

1
= w

0
+ wixi , 

where xi is the original input variable; y
1
 is the normal-

ized output variable; and w
0
 and wi are the coefficients.

2.	 Single node: refers to a single input variable The out-
put and input variables have a third-order polynomial 
relationship. The polynomial function is expressed as 
y
1
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0
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1
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1
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3
 

are coefficients.
3.	 Double node: the two input variables, the output vari-

able, and the input variable have a third-order polyno-
mial relationship. The polynomial function is expressed 
as y

1
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1
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output variable, and w
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1
, w

2
,….w

7
 are coefficients.

4.	 Triple node: refers to the three input variables. The output 
variable and the input variable have a third-order polyno-

Fig. 5   The distribution points of the modal experiment
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mial relationship, and the polynomial function is expressed 
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5.	 White node: refers to n input variables, the output vari-

able and the input variable are first-order polynomial 
relationships, and the polynomial function is expressed 
as y

1
= w

0
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1
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2
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+⋯ + wnxn,wherex1

,  x
2
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0
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2
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6.	 Unitizer: converts the output variable of the network into 
an actual output variable, and its polynomial function 
is expressed as y

1
= w

0
+ w

1
x
1
 , where x

1
 is the input 

variable, y
1
 is the output variable, and w

0
 and w

1
 are 

coefficients.

The polynomial function node is used to construct the 
prediction model of the processing parameters and surface 

Table 2   Comparison of natural frequency between model and actual machine

Content Modal analysis Modal testing      Feature

Mode shape

Spindle, column 

and rotary table swing

horizontally back and 

forth

Frequency 69.1 Hz     67.7 Hz     2.1%

Mode shape

The main shaft and 

column swing up and 

down, and the rotary

table swings back and 

forth

Frequency      72.1 Hz     76.9 Hz 6.2%

Mode shape

The main shaft and 

column swing up and 

down, and the rotary

table swings back and 

forth

Frequency     90.0 Hz     85.1 Hz 5.8%
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roughness Ra values. The polynomial network filters vari-
ables that have no contribution. The output of any node can 
be used as the input of the next layer and is combined with 
the original input for subsequent comparison. The network is 
synthesized layer by layer until the network mode converges 
and satisfies the prediction square error (PSE) rule.

Before constructing a polynomial network, it is neces-
sary to import training data, learn the synthesis algorithm 
through the polynomial network, and determine the best 
network structure according to the minimum prediction 
square error method. PSE is a heuristic measurement of the 
expected square error of a network of independent data. PSE 
is defined as

The fitting square error (FSE) occurs when constructing a 
network model with the training data. FSE can be expressed as

where n is the number of training data, yi is the expected 
value of the training combination, and yi is the predicted 
value obtained from the network. Additionally, KP is the 
complexity penalty, and its value can be obtained from 
Eq. (4):

where K is the number of coefficients in the network, 
N is the number of training data, and �p2 is the num-
ber of error variances between the prediction model and  

(2)PSE = FSE + KP

(3)FSE =
1

n

∑N

i=1
(yi − yi)

2

(4)KP = CPM ×
2K

N
�p2

the actual model from the training database of the syn-
thetic network. The complexity penalty factor (CPM) is 
an adjustable parameter that is used when synthesizing  
a polynomial network model. When N increases or �p2 
decreases, a polynomial network is used to construct the  
training data, which has higher credibility, and the net-
work structure becomes more complex.

In Eq. (4), the matching accuracy increases as the PSE 
decreases. Under normal circumstances, the more com-
plex the network model, the smaller the FSE value, and 
the higher the matching accuracy. In other words, the more 
complex the network, the greater is the KP value. There-
fore, PSE produces a trade-off between network model 
complexity and accuracy. In the network synthesis and 
calculation, the best network refers to the network with 
the smallest PSE value. Moreover, the CPM can be used 
to adjust the balance between the model complexity and 
accuracy, as shown in Fig. 10. When the CPM value in the 
PSE increases, a more complex network is avoided. Con-
versely, when the CPM value decreases, a more complex 
network is adopted.

The reliability of the model was verified by predict-
ing the parameters that had not been tested through the 
AIM polynomial network model. The results were then 
compared with those of the machine processing. The AIM 
software parameters were adjusted to a suitable fit and 
could then be converted into program codes and added to 
the machine controller. The input enables an AIM poly-
nomial network model to adjust the parameters so that the 
FSE and PSE in the network model fit and converge to find 
an optimized network model. The adjustment parameters 
include the complexity penalty factor (CPM), number of 
layers, overfit penalty factor (overfit penalty), limiting 
factor (carving limit), and other parameters. Figure 11 
shows the surface roughness polynomial model. The opti-
mal model parameters were the complexity penalty factor 
(CPM) setting value of 0.01, number of layers, overfitting 
penalty factor of 1.0, and limit factor of 0.8. As shown 
in the Fig. 11, the nodes have several normalizers, trian-
gles, a single double, and a single unitizer. The polynomial 
function nodes are as follows:

Fig. 6   Cutting diagram and 
milling cutter specifications

Table 3   Cutting parameters

Material Aluminum 6061-T6

Spindle speed 4000–9000 rpm
Feed per tooth 0.0375 mm/tooth, 

0.08 mm/tooth
Feed rate 300–1440 mm/min
Cut deep 1 mm, 2 mm, 3 mm
Cut width 0.5, 1.0 mm
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Fig. 7   Processing method and 
measurement parameters

Table 4   Cutting training data for 4000 rpm

Spindle 
speed (rev/
min)

Parameter Cutting condition Ra (µm)

Feed rate 
(mm/min)

Feed per 
tooth 
(mm)

ap (mm) ae (mm)

4000 300 0.0375 1 0.5 0.48
4000 300 0.0375 1 1 0.44
4000 300 0.0375 2 0.5 0.46
4000 300 0.0375 2 1 0.45
4000 300 0.0375 3 0.5 0.44
4000 300 0.0375 3 1 0.49
4000 640 0.08 1 0.5 0.57
4000 640 0.08 1 1 0.53
4000 640 0.08 2 0.5 0.44
4000 640 0.08 2 1 0.42
4000 640 0.08 3 0.5 0.40
4000 640 0.08 3 1 0.45

Table 5   Cutting training data for 5000 rpm

Spindle 
speed (rev/
min)

Parameter Cutting condition Ra (µm)

Feed rate 
(mm/min)

Feed per 
tooth 
(mm)

ap (mm) ae (mm)

5000 375 0.0375 1 0.5 0.39
5000 375 0.0375 1 1 0.52
5000 375 0.0375 2 0.5 0.41
5000 375 0.0375 2 1 0.47
5000 375 0.0375 3 0.5 0.32
5000 375 0.0375 3 1 0.38
5000 800 0.08 1 0.5 0.52
5000 800 0.08 1 1 0.64
5000 800 0.08 2 0.5 0.43
5000 800 0.08 2 1 0.55
5000 800 0.08 3 0.5 0.43
5000 800 0.08 3 1 0.41

Table 6   Cutting training data for 6000 rpm

Spindle 
speed (rev/
min)

Parameter Cutting condition Ra (µm)

Feed rate 
(mm/min)

Feed per 
tooth 
(mm)

ap (mm) ae (mm)

6000 450 0.0375 1 0.5 0.43
6000 450 0.0375 1 1 0.57
6000 450 0.0375 2 0.5 0.42
6000 450 0.0375 2 1 0.50
6000 450 0.0375 3 0.5 0.36
6000 450 0.0375 3 1 0.28
6000 960 0.08 1 0.5 0.61
6000 960 0.08 1 1 0.48
6000 960 0.08 2 0.5 0.45
6000 960 0.08 2 1 0.58
6000 960 0.08 3 0.5 0.36
6000 960 0.08 3 1 0.38

Table 7   Cutting training data for 7000 rpm

Spindle 
speed (rev/
min)

Parameter Cutting condition Ra (µm)

Feed rate 
(mm/min)

Feed per 
tooth 
(mm)

ap (mm) ae (mm)

7000 525 0.0375 1 0.5 0.35
7000 525 0.0375 1 1 0.37
7000 525 0.0375 2 0.5 0.32
7000 525 0.0375 2 1 0.47
7000 525 0.0375 3 0.5 0.33
7000 525 0.0375 3 1 0.30
7000 1120 0.08 1 0.5 0.42
7000 1120 0.08 1 1 0.55
7000 1120 0.08 2 0.5 0.37
7000 1120 0.08 2 1 0.55
7000 1120 0.08 3 0.5 0.33
7000 1120 0.08 3 1 0.37
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Table 8   Cutting training data 
for 8000 rpm

Spindle speed (rev/
min)

Parameter Cutting condition Ra (µm)

Feed rate (mm/min) Feed per tooth (mm) ap (mm) ae (mm)

8000 600 0.0375 1 0.5 0.38
8000 600 0.0375 1 1 0.40
8000 600 0.0375 2 0.5 0.40
8000 600 0.0375 2 1 0.42
8000 600 0.0375 3 0.5 0.27
8000 600 0.0375 3 1 0.26
8000 1280 0.08 1 0.5 0.39
8000 1280 0.08 1 1 0.46
8000 1280 0.08 2 0.5 0.37
8000 1280 0.08 2 1 0.46
8000 1280 0.08 3 0.5 0.34
8000 1280 0.08 3 1 0.36

Table 9   Cutting training data 
for 9000 rpm

Spindle speed (rev/min) Parameter Cutting condition Ra (µm)

Feed rate (mm/min) Feed per tooth 
(mm)

ap (mm) ae (mm)

9000 675 0.0375 1 0.5 0.48
9000 675 0.0375 1 1 0.39
9000 675 0.0375 2 0.5 0.35
9000 675 0.0375 2 1 0.32
9000 675 0.0375 3 0.5 0.33
9000 675 0.0375 3 1 0.25
9000 1440 0.08 1 0.5 0.50
9000 1440 0.08 1 1 0.44
9000 1440 0.08 2 0.5 0.45
9000 1440 0.08 2 1 0.47
9000 1440 0.08 3 0.5 0.37
9000 1440 0.08 3 1 0.35

Fig. 8   a Spindle speed: 
4066 rpm (67.7 Hz). The 
spindle end moves left and right 
relative to the table; b spindle 
speed: 5226 rpm (87.1 Hz). The 
spindle end moves up and down 
relative to the worktable

Ra 0.54 µm

(a)
Ra 16.96 µm

(b)
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6 � Prediction model and verification

By importing the machining parameter data that have not 
yet undergone cutting experiments into the AIM polynomial 
network model, the predicted surface roughness Ra value 
can be obtained, and the actual machining and predicted 
results can be compared. The surface roughness error range 
is approximately within the Ra value of 0.1 µm. The experi-
mental findings show that the parameter processing results 
are within the predictable range; that is, this polynomial net-
work model has a certain degree of reference value, and the 
quality of the processed surface can be predicted from the 
polynomial model, as shown in Table 10.

Fig. 9   Synthetic polynomial 
network planning diagram
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(Spindle speed)

F
(Feed rate)

Triple
um

(Surface roughness
Ra )

ap
(Axial depth of cut)

ae
(Radial width of cut)

RPM
(Spindle speed)

F
(Feed rate)

Triple

RPM
(Spindle speed)

F
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Double
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Fig. 10   Convergent prediction square error

Fig. 11   AIM polynomial network
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7 � Conclusion

The starting point of this study was the machine model 
analysis. A virtual machine model of the five-axis machine 
tool UX300 was constructed using ANSYS for static rigidity 
and dynamic analysis. The boundary conditions and material 
properties were improved by comparing the actual machine 
characteristics to simulate the real scenario. Static rigidity 
and modal experiments were performed to prove this finding 
of improvement. The static rigidity values of the two axes of 
the five-axis machine tool spindle against the bed were X: 
1.63 kg/µm and Y: 1.93 kg/µm; the maximum modal error 
ratio was 6.2%, the minimum error ratio was 2%, and the 
average error ratio was 4.7%.

After studying and understanding the dynamic characteris-
tics of the machine in depth, we planned the modal frequency 
band processing parameters and conducted modal cutting 
experiments to prove that the machine processing frequency 
had a substantial impact on the surface quality of the finished 
product. Subsequent planning of large data cutting experiments 
was used to develop intelligent processing by using the AIM 
polynomial neural network to train the surface roughness Ra 
value prediction model, constructing the correlation equation 
between cutting parameters, and determining the surface rough-
ness model prediction results. The prediction error was within 
a certain range of the surface roughness Ra value of 0.1 µm.
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