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Abstract
The true stress–strain curve of the thermal deformation of 30Cr2Ni4MoV steel was obtained by conducting a hot compres-
sion experiment. On the basis of the results, the constitutive equation of the material’s thermal deformation was constructed. 
Then, the microstructure of the hot compression specimen was observed and analyzed, and the microstructure evolution 
model of 30Cr2Ni4MoV steel during thermal deformation was established accordingly. The programming of the related 
mathematical model was realized using the secondary development interface provided by Deform. The experimental plan 
was subsequently developed using an orthogonal method, and the microstructure evolution of 30Cr2Ni4MoV steel during 
multi-directional forging deformation was simulated. Through an orthogonal experiment analysis, the influence weight dif-
ference of each influencing factor was obtained. A back propagation neural network prediction model for the microstructure 
of 30Cr2Ni4MoV steel under multi-directional forging deformation was then established. The neural network prediction of 
the microstructure evolution of 30Cr2Ni4MoV steel under multi-directional forging was finally realized.

Keywords  Multi-directional forging · Dynamic recrystallization · Orthogonal experiment · Secondary development of 
Deform · Back propagation neural network

1  Introduction

30Cr2Ni4MoV steel exhibits good hardenability, superior 
and balanced strength, high toughness and wear resistance, 
and good hot workability. It is often used in low-pressure 
rotors in large nuclear power plants [1–3]. However, this 
material is intrinsically coarse-grained steel, and its strong 
grain inheritance can easily lead to coarse grains and reduce 
mechanical properties [4, 5]. In recent years, the multi-
directional forging process has developed rapidly. This pro-
cess promotes the recrystallization of materials by applying 
multi-directional deformation to forging. This application 
helps achieve a strong grain refinement effect and greatly 

improves the mechanical properties of materials. The process 
has low requirements for production equipment and cost. It 
has become an important approach to the production and 
performance optimization of large-scale forgings [6–9].

The plastic deformation of materials at high tempera-
tures is a process involving multiple factors. In traditional 
production, the formulation of production plans and the 
control of the deformation process must be carried out in 
accordance with the results of trial production or experi-
ence. However, this requirement consumes considerable 
amounts of manpower and material resources. With the 
rapid development of computer technology, simulation 
has been inevitably introduced into traditional materials 
research [10–12]. With the aid of simulation technology, 
the mechanical behavior and microstructure evolution 
behavior of materials during and after deformation can 
be predicted so as to provide a reference for the formu-
lation and optimization of production plans. By using 
simulation software, Qian and Pan [13] established a 
three-dimensional macro–micro coupled finite element 
model for the forging and rolling of a large AISI 4140 
steel ring blank. Previous studies only focused on the 
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geometry and thermodynamics of the ring blank. On this 
basis, they achieved the prediction of the evolution and 
distribution of the microstructure of the blank during the 
deformation process, which provided a reliable platform 
and guidance for the study of deformation mechanism and 
optimization of the process. To optimize the hot forging 
of 316LN stainless steel pipes, He et al. [14] used a modi-
fied Arrhenius-type constitutive model and an artificial 
neural network model in their study of the flow stress of 
the thermal deformation of a material. Under the condi-
tion in which both models have high reliability, the neural 
network has a wider prediction range than the constitutive 
model and is thus convenient to use with finite element 
analysis software.

At present, the simulation studies on the multi-directional 
forging process of 30Cr2Ni4MoV steel are few and thus out 
of proportion to the current demand for this type of material. 
Therefore, the current study uses the finite element simula-
tion software called Deform to simulate the isothermal multi-
directional forging of 30Cr2Ni4MoV steel, and the corre-
sponding back propagation (BP) neural network prediction 
model is established. The prediction results of the two meth-
ods are then compared. The results are expected to facilitate 
the high-precision prediction of the multi-directional forging 
microstructure of 30Cr2Ni4MoV steel and guide actual pro-
duction processes.

2 � Hot compression experiment

2.1 � Experimental material and scheme

The research object of this experiment is a type of 
30Cr2Ni4MoV steel, which has been annealed after forg-
ing. Table 1 shows its main chemical composition, and 
Fig. 1 shows its microstructure. The structure in this state 
is mainly equiaxed grain, with an average grain size of 
about 200 μm.

The hot compression experiment is carried out on a 
Gleeble 3800 thermal simulator. The sample used is cylin-
drically shaped and measured φ8 × 12 mm. The selected 
deformation temperatures are 900 °C, 1000 °C, 1100 °C, 
and 1200 °C; and the hot compression strain rates are 
0.001, 0.01, and 0.1 s−1, respectively. In an actual opera-
tion, the heating rate is 20 °C per second, and the sample 
is heated to a predetermined temperature and then kept 

warm. The compression rate of deformation is 70%. After 
compression, the sample is immediately cooled to retain 
the deformed structure.

2.2 � Experimental results

The true stress–strain curve of the thermal deformation 
of the material is established on the basis of the experi-
mental data of hot compression. Figure 2 shows the com-
parison between the curves of different strain rates at the 
same deformation temperature. Observation and analy-
sis reveal that these curves present obvious three-stage 
changes. At the initial stage of deformation, the stress 
increases sharply due to work hardening. However, this 
increasing trend gradually slows down due to the subse-
quent dynamic recovery. The stress begins to decrease 
after reaching the peak value because the softening abil-
ity of dynamic recrystallization and recovery exceeds 
the effect of work hardening. At the end of the deforma-
tion, the stress tends to be stable, thereby reflecting the 
dynamic balance of softening and work hardening. The 
peak stress statistics under various deformation condi-
tions are shown in Table 2. The joint analysis of the data 
in Table 2 and the curve in Fig. 2 shows that the strain 
rate is proportional to the peak stress and that the defor-
mation temperature is inversely proportional to the peak 
stress. These data serve as the basis for the construction 
of the constitutive equation of the thermal deformation of 
30Cr2Ni4MoV steel.

Table 1   Chemical composition 
of experimental material

Composition C Cr Mo Ti Ni Mn Si P S V Fe

Mass fraction (%) 0.24 1.57 0.39 1.04 3.47 0.26 0.05 0.006 0.0125 0.088 18.41

Fig. 1   Microstructure of experimental material
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The change state of the true stress–strain curve shows 
that 30Cr2Ni4MoV steel undergoes obvious dynamic 
recrystallization during thermal deformation. Figure  3 

shows the microstructure of samples under deformation 
conditions of 900 °C–0.01 s−1 and 1000 °C–0.01 s−1 in 
the hot compression experiment. It can be seen that the 
microstructure has obvious dynamic recrystallization char-
acteristics. The metallographic microstructure of samples 
under different hot compression deformation conditions is 
observed and analyzed, and the dynamic recrystallization 
volume fraction (Xdrex) is obtained by calculating the pro-
portion of area, and the dynamic recrystallization grain size 
(Ddrex) is measured by using the transection method. The 
above data are counted in Table 3, which will be used as the 
basis for establishing the microstructure evolution model.
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Fig. 2   True stress–strain curves at different strain rates. a) T = 900 °C. b) T = 1000 °C. c) T = 1100 °C. d) T = 1200 °C

Table 2   Peak stress under various deformation conditions

Peak stress/MPa Deformation temperature/°C

900 1000 1100 1200

Strain rate/s−1 0.001 74.68 46.23 24.27 16.06
0.01 104.95 70.37 43.26 22.63
0.1 154.45 99.32 69.64 46.26
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3 � Deform simulation of multi‑directional 
forging of 30Cr2Ni4MoV steel

3.1 � Related mathematical models and secondary 
development of Deform

The constitutive equation of the thermal deformation of 
materials and various microstructure evolution models 
are important foundations for the finite element simula-
tion of the plastic deformation process. Based on the true 
stress–strain curve obtained from the experiment, the con-
stitutive equation of the material is constructed in the form 
of a hyperbolic sinusoidal function in the Arrhenius model 
[15, 16]. Based on the statistics and analysis of the hot 
compression microstructure, various thermal deformation 
microstructure evolution models of the material are con-
structed by using the Sellers model and Avrami dynamic 
recrystallization theory [17, 18].

The constitutive equation of the thermal deformation of 
30Cr2Ni4MoV steel is as follows:

𝜀̇ is the strain rate, σp is the peak stress, R is the gas 
constant (8.314 J(mol K)−1), and T is the deformation 
temperature.

The microstructure evolution model of the thermal 
deformation of 30Cr2Ni4MoV steel is shown below. The 
model includes the expression of the dynamic recrystalli-
zation critical condition, dynamic recrystallization volume 
fraction, and dynamic recrystallization grain size.

Xdrex is the dynamic recrystallization volume fraction, 
Ddrex is the dynamic recrystallization grain size, εp is the 
peak strain, ε is the strain, εc is the critical strain, and Z is 
the compensation factor of the deformation temperature to 
the strain rate obtained by the following formula:

The average grain size of the structure after dynamic 
recrystallization is called the average grain size of dynamic 
recrystallization (Davg), which is calculated according to 
the following formula:

The Deform software provides two secondary develop-
ment methods, namely pre-processing and post-processing 
secondary development. In this work, the custom subroutine 
is compiled in the pre-processing stage, and the constitutive 
equation of the thermal deformation of 30Cr2Ni4MoV steel 
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Fig. 3   Microstructure of 
hot compression sample. 
a) 900 °C–0.01 s−1. b) 
1000 °C–0.01 s−1

Table 3   Statistics related to dynamic recrystallization

Strain rate/s−1 Deformation 
temperature/°C

Xdrex/% Ddrex/μm

0.001 900 97.0 40
1000 99.9 72
1100 100.0 132
1200 99.9 224

0.01 900 81.0 54
1000 98.5 43
1100 99.9 76
1200 100.0 128

0.1 900 49.0 108
1000 87.0 46
1100 99.0 45
1200 99.9 73
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is written into the flow stress script (USRMTR). Figure 4 
presents the schematic of the pre-processing secondary 
development. In the post-processing stage, the microstruc-
ture evolution model, including the dynamic recrystalliza-
tion critical conditions, dynamic recrystallization volume 
fraction, and dynamic recrystallization grain size, is com-
piled into the script file (pstusr.f) and linked to the dynamic 
link library file (USR_DEF_PST3.dll). The display of cus-
tom variables is realized by calling the library on the post-
processing interface. Figure 5 shows the schematic of the 
post-processing secondary development.

3.2 � Establishment of finite element model

The multi-directional forging process mainly includes multi-
directional free forging, multi-directional die forging, and 
multi-directional extrusion. Their basic principle is to apply 
multi-directional plastic deformation to a blank to promote 
the dynamic recrystallization of the material, and refine 
the microstructure, and improve the macroscopic strength 
[19–21]. In this work, the isothermal multi-directional die 

forging of 30Cr2Ni4MoV steel is studied. The specific pro-
cesses include closed multi-directional forging (CMDF), 
bilateral open multi-directional forging (BOMDF), and 
single-side open multi-directional forging (SSOMDF). 
First, the geometric model corresponding to each process 
is established. Four-node tetrahedral elements are selected 
to divide a blank into 25,000 tetrahedral element meshes. 
Shear friction is selected as the friction property, and the 
friction factor is set to 0.3. The final constructed finite ele-
ment model is shown in Fig. 6. In the post-processing of the 
simulation results, the user-defined variables are extracted 
according to the intercepting plane method shown in Fig. 6d.

The mold structures of the three multi-directional forg-
ing processes show differences. The initial position of the 
blank of the first two processes is the geometric center of 
the mold cavity. By contrast, the blank of the SSOMDF 
process is placed on one side of the cavity. Thus, the stress 
state of the blank is not consistent during the deforma-
tion process. Each loading up to the preset deformation is 
defined as one pass deformation. At the end of each pass 
deformation, the CMDF and BOMDF blanks flip along 

Fig. 4   Schematic of pre-pro-
cessing secondary development User subroutine

script

usr_mtr.f

User subroutine object

code

usr_mtr.o

FFEM solver object code and

solving function library

DEF_SIM_USR_LIB.lib

Compile

New FEM solver

DEF_SIM.EXE

Connect

Executable file
DEF_SIM_USR.amk
DEF_SIM_USR.bat
DEF_SIM_USR.gui

Fig. 5   Schematic diagram of 
post-processing secondary 
development

User subroutine
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pstusr.f

User subroutine object
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pstusr.o

Custom subroutine library

USR_DEF_PST3.lib

Compile

Custom dynamic link library
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USR_DEF_PST3.gui
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the X and Y directions, respectively, so that the next pass 
deformation in another loading direction is applied to the 
blank. After each pass deformation of the SSOMDF, the 
blank is overturned along the X, Y, and Z directions, and 
the cycle is carried out so as to achieve uniform deforma-
tion of the blank. Aside from the mold structure, the main 
impact factors of the dynamic recrystallization behavior of 
the material also include deformation temperature, strain 
rate, and single pass deformation. To reduce the time cost 
of the simulation, we use an L9 (34) orthogonal table in 

the experimental design. The final determined orthogonal 
table, that is, the simulated grouping, is shown in Table 4. 
In the table, C represents a CMDF die, B represents a 
BOMDF die, and S represents a SSOMDF die. The initial 
grain size of the material is defined as 58.9 μm, and each 
group of processes undergoes nine passes of deformation. 
Corresponding to single pass deformation of 20%, 30%, 
and 40%, the dimensions of the cuboid forging blanks 
set are 40 × 40 × 50, 35 × 35 × 50, and 30 × 30 × 50 mm, 
respectively.

Fig. 6   Finite element model. 
a) CMDF. b) BOMDF. c) 
SSOMDF. d) A section of the 
blank

a) CMDF b) BOMDF

c) SSOMDF d)A section of the blank

Table 4   Orthogonal table Level value Process number

1 2 3 4 5 6 7 8 9

Impact factors Temperature/°C 900 900 900 1100 1100 1100 1300 1300 1300
Strain rate/s−1 0.1 1 10 0.1 1 10 0.1 1 10
Single pass deformation/% 20 30 40 30 40 20 40 20 30
Mold structure C B S S C B B S C
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3.3 � Analysis and discussion of simulation results

Process 3, process 6, process 8, and process 9 are taken as 
examples to briefly summarize the microstructure simula-
tion results of the multi-directional forging deformation of 
the blank.

The simulation result of process 3 is shown in Fig. 7. 
Among the first three groups of processes with a deforma-
tion temperature of 900 °C, the single pass deformation and 
strain rate of process 3 are the largest. The blank after three 
passes of deformation has a relatively high degree of recrys-
tallization on the right side of the x-axis direction. After six 
passes of deformation, the blank basically reaches complete 
dynamic recrystallization. The minimum grain size after 
nine passes of deformation is as low as 1.45 μm. This group 
uses a SSOMDF die. After nine passes of deformation, the 
grain size of the core of the blank and the free surface area 
near the left side of the blank’s x-axis direction are slightly 
large, and the small-sized grains are mostly distributed in the 
surface area of the blank. However, the gap between grain 
sizes is small. The overall structure is uniform.

The cloud diagram of the simulation results of the blank 
under the condition of process 6 is shown in Fig. 8. The 
deformation temperature of this process is 1000 °C. The 
strain rate is high, but the single pass deformation is low. 
After three passes of deformation, the dynamic recrystal-
lization of the blank is not complete, but after six passes, it 
can basically achieve complete dynamic recrystallization. 
However, the degree of change in the grain size of the blank 
after deformation from six passes to nine passes is not obvi-
ous, thus indicating a limit to grain refinement. This result 

may be due to the fact that the billet obtains small-sized 
grains after six passes of deformation and excessive grain 
boundaries require a large driving force for recrystalliza-
tion. At a low single pass deformation, the energy brought 
by the further accumulation of passes is not enough to drive 
recrystallization.

The simulation result of process 8 is shown in Fig. 9. 
The deformation temperature of this group is 1300 °C, and 
the simulation result shows that the degree of grain size 
refinement of this group is extremely small. This result is 
mainly due to the deformation temperature of process 8 
being relatively high and the strain rate being adequately 
low. The crystal grains first absorb energy and expand. Then, 
dynamic recrystallization occurs with the accumulation of 
deformation.

The simulation result of process 9 is shown in Fig. 10. 
The strain rate under this group of processes is increased to 
10 s−1, and the single pass deformation is 30%. The simu-
lated cloud image shows that the influence of a high tem-
perature under this process is lower than that of a high strain 
rate. The blank is completely recrystallized after three passes 
of deformation, and the overall average grain size is refined 
to about 20 μm after nine passes of deformation.

The blank can be completely recrystallized under each set of 
process conditions. Hence, this section does not discuss the rela-
tionship between deformation conditions and volume fraction. 
Table 5 shows the average grain size of the blank after defor-
mation under each set of process conditions. To quantitatively 
analyze the impact of each factor, we take the average grain size 
of the blanks deformed in three, six, and nine passes under each 
group of processes as the research index. The average value and 

Fig. 7   Simulation results of process 3
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range of the index corresponding to the value of each factor are 
then calculated. The results are shown in Table 6.

According to the range calculation results in Table 6, the 
range value of temperature is the largest for the average grain 
size after deformation regardless of the number of passes. This 
result shows that the factor exerts a major effect on the average 
grain size of the blank. The range of strain rate is the second, 
which indicates the factor’s strong role. The range of the mold 
structure ranks third while the range of single pass deformation 
ranks fourth; hence, the influence of these two factors is weak-
ened in turn. The average value of the index corresponding to 

the different values of each factor shows that as the deformation 
temperature increases, the average grain size of the blank after 
multi-directional forging also increases. When the strain rate is 
increased, the blank can obtain a fine average grain size. In this 
simulation, the change in the deformation value of a single pass 
does not reflect a linear effect. For the three deformations in this 
study, the grain size of the blank is slightly low when the value 
is 30%. According to the simulation examples, the differences 
in the mold structure directly affect the deformation behavior 
of the blank and further influence the distribution of recrystal-
lization and structure. According to the average values shown 

Fig. 8   Simulation results of process 6

Fig. 9   Simulation results of process 8
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in Table 6, the use of CMDF die can obtain a fine structure, 
and the SSOMDF die and BOMDF die have similar grain sizes 
and high values. In terms of the values involved in the various 
influence factors in this study, the deformation temperature can 
be set to below 1100 °C, the strain rate can be set to above 
1 s−1, and the single pass deformation can be set to 30% to 
obtain a fine and uniform multi-directional forging structure. 
Furthermore, a CMDF die may be used. According to the data 
in Tables 5 and 6, except for individual conditions, the average 
grain size of the blank decreases with an increase in the number 
of multi-directional forging passes. Therefore, the processing 
pass can be set to nine passes.

4 � Prediction of multi‑directional forging 
microstructure of 30Cr2Ni4MoV steel 
based on BP neural network

The accuracy of finite element simulation is greatly affected 
by the accuracy of related mathematical models. Simulations 
based on fixed-form models cannot easily achieve a compre-
hensive expression of complex macro- and microevolution laws 
during the thermal deformation of materials. The original inten-
tion of artificial neural network technology is to imitate the 

human brain’s information processing method, which is suitable 
for solving various types of complex nonlinear relationships. 
The BP neural network technology is widely used and can 
achieve an accurate approximation of arbitrary nonlinear rela-
tionships [22, 23]. Therefore, this work further uses a BP neural 
network to predict the microstructure of the blank deformed 
under different multi-directional forging process conditions.

4.1 � Neural network modeling

A typical BP neural network includes three network layers: 
input layer, hidden layer, and output layer. The content of the 
input layer and output layer needs to be determined according 
to the finite element simulation results. The deformation pro-
cess of the material involves a variety of influencing factors. 
The analysis of the orthogonal experiment results indicates 
that the roles of each factor and the influence weight are quite 
different. Hence, this study establishes different neural network 
models. In one neural network model that directly affects the 
dynamic recrystallization behavior, deformation temperature, 
strain rate, and true strain are used as the input layer. For the 
output layer, dynamic recrystallization volume fraction and 
average grain size are used. In another neural network model 

Fig. 10   Simulation results of process 9

Table 5   Average grain size 
statistics

Average grain 
size value/μm

Process number

1 2 3 4 5 6 7 8 9

Pass 3 25.0 19.6 16.0 34.0 14.0 30.2 59.7 52.8 23.1
Pass 6 8.64 6.08 2.96 31.7 13.0 13.5 58.7 50.6 20.6
Pass 9 7.09 4.94 2.45 28.5 12.5 11.1 59.0 49.5 20.0
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that directly affects the strain distribution, the number of defor-
mation passes, mold structure, and single pass deformation are 
used as the input layer. For the output layer, true strain is used. 
The range of the number of neurons in the hidden layer of the 
former is set to 3–12, and that of the latter is set to be 2–12. 
The selection of this value depends on the following formula:

num represents the number of neurons in the hidden layer, 
m is the number of nodes in the input layer, and n is the 
number of nodes in the output layer.

(5)num =
√
m + n + a (0 ≤ a ≤ 10)

In the BP neural network system, the size of the 
weight is proportional to the strength of the connection 
between neurons, and the node transfer function is the 
medium for neuron weight transfer. Therefore, choos-
ing the appropriate node transfer function is important 
to ensure the fitting accuracy of the neural network. In 
this study, the sigmoid function is used in the hidden 
layer while the linear function is used in the output layer. 
Given a different number of neuron nodes, the function 
fit is achieved.

A definite neural network topology architecture is estab-
lished accordingly (Fig. 11).

Table 6   Processing of 
orthogonal experiment results

Number of passes Project Temperature 
(°C)

Strain rate (s−1) Single pass 
deformation 
(%)

Mold 
structure

Pass3 Average value 900 20.2 0.1 39.6 20 36 C 20.7
1100 26 1 28.8 30 25.6 B 36.5
1300 45.2 10 23.1 40 29.9 S 34.3

Range 25 16.5 10.4 15.8
Pass6 Average value 900 5.9 0.1 33.0 20 24.2 C 14.1

1100 19.4 1 23.2 30 19.5 B 26.1
1300 43.3 10 12.4 40 24.9 S 28.4

Range 37.4 20.6 5.4 14.3
Pass9 Average value 900 4.8 0.1 31.5 20 22.6 C 13.2

1100 17.4 1 22.3 30 17.8 B 25
1300 42.8 10 11.2 40 24.7 S 26.8

Range 38 20.3 6.9 13.6

Fig. 11   Neural network topology architecture
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4.2 � Neural network prediction results 
and discussion

Based on the data obtained from the hot compression 
experiment, the established neural network model is 
trained and adjusted repeatedly, and finally the network 
model with good regression effect and strong generaliza-
tion ability is obtained. This study uses the GUI devel-
opment function provided by MATLAB to compile the 
neural network model into an executable function. The 
relevant deformation parameters are entered into the front-
end interface, and the corresponding neural network pre-
diction results are then obtained. This study randomly 

selects three groups of experimental conditions (Table 7) 
and carries out the neural network prediction of the multi-
directional forging deformation of 30Cr2Ni4MoV steel. 
The dynamic recrystallization volume fraction and average 
grain size prediction data of the blank after deformation 
are then obtained. The method of intercepting the plane 
on the blank is the same as the finite element simulation 
above, and the prediction results of the three sections are 
obtained and compared with the finite element simulation 
results under the same experimental conditions (Figs. 12, 
13 and 14).

The comparison of the prediction results under vari-
ous conditions shows that the dynamic recrystallization 

Table 7   Experimental 
conditions

Group Strain rate/s−1 Temperature/°C Mold struc-
ture

Reduction Defor-
mation 
pass

1 1 900 S 0.1 9
2 0.01 1050 B 0.2 6
3 0.1 1100 C 0.3 3

Fig. 12   Comparison of group 1. a) Finite element simulation. b) Neural networks
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volume fraction and average grain size prediction results 
obtained by the two methods are basically the same. 
However, the recrystallization area and average grain size 
distribution of the blank predicted by the neural network 
are more detailed than those by the finite element simu-
lation. Moreover, the transitional stratification changes 
between different recrystallization degrees and grain 
sizes are particularly obvious. This feature is particu-
larly significant in the prediction results of the second 
and third groups of conditions shown in Figs. 13 and 
14. Taking condition 2 as an example, for the dynamic 
recrystallization volume fraction, the finite element sim-
ulation results show that the small area on the left and 
the lower left corner of each slice shows multiple color 
layers, and most of the remaining areas are displayed as 
two similar red. Combined with the legend below the 
picture, the dynamic recrystallization volume fraction of 
each area of the blank is above 99.9%, and the difference 
between them is very small. In this state, the predicted 
result of the grain size distribution given by the finite 

element simulation is consistent with the volume frac-
tion distribution and gets a single grain size value. The 
prediction result of the neural network shows that the 
dynamic recrystallization volume fraction of each area 
of the blank is above 99.6%, which is 0.3% lower than 
the finite element simulation result, but the volume frac-
tion on each slice obviously has more transitional layers 
and richer details. The grain size predicted by the neural 
network is not a single value, and the distribution state 
is consistent with the recrystallized volume fraction, 
and correspondingly shows an obvious layered change 
process. It is analyzed that the finite element simula-
tion based on fixed-form of mathematical models is less 
flexible. The neural network with strong nonlinear rela-
tionship fitting ability showed a more detailed division 
of microstructure distribution in the abovementioned 
comparative experiment. Therefore, it is believed that 
the established neural network prediction model can be 
used to predict the microstructure of 30Cr2Ni4MoV steel 
in multi-directional forging deformation.

Fig. 13   Comparison of group 2. a) Finite element simulation. b) Neural networks
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5 � Conclusions

1.	 The true stress–strain curve of the thermal deforma-
tion of 30Cr2Ni4MoV steel was obtained through a hot 
compression test, and the constitutive equation of the 
thermal deformation of the material was constructed. On 
the basis of the statistics and analysis of the microstruc-
ture of the hot compressed sample, the microstructure 
evolution model of thermal deformation, including the 
dynamic recrystallization critical condition, dynamic 
recrystallization volume fraction, and dynamic recrys-
tallization grain size model, was constructed.

2.	 With the aid of the secondary development interface 
provided by Deform, the mathematical model was pro-
grammed, and the orthogonal method was used to set 
multiple groups of process conditions. Then, the multi-
directional forging deformation of 30Cr2Ni4MoV steel 
was simulated. The analysis of the orthogonal experiment 
results reveals the influence law of various factors and may 
serve as a reference for setting related process conditions.

3.	 According to the differences in the effects of objects 
and influence weights of various factors in the finite 

element simulation, a neural network prediction 
model for the multi-directional forging deformation of 
30Cr2Ni4MoV steel was established. Compared with 
the results of the finite element simulation, the neu-
ral network prediction results showed a more detailed 
division of microstructure distribution, and have richer 
detailed information.
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