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Abstract
As a complex thermo-physical process, the plasma arc welding (PAW) is easy to be unstable due to external interferences. 
Weld quality monitoring is important for intelligent robot PAW welding. Due to the different instability mechanisms, it is 
difficult to obtain high adaptivity and accuracy with features extracted in a single time window. In this paper, a novel feature 
extraction method based on sliding multiscale windows is proposed to improve model accuracy and calculation speed. A 
group of windows with different time widths are established to extract multiscale information. Windows slide throughout 
welding process and are synchronized on the timeline for feature correlation. The welding current and arc voltage are pro-
cessed to extract features inside windows, including signal denoising by discrete wavelet transform (DWT) and dimension 
reduction by primary components analysis (PCA). Based on the feature vectors extracted from multiscale-windows, support 
vector machine (SVM) with radial basis function (RBF) kernel is used. The best window width is determined automatically 
by model training. The proposed method is used to predict weld quality for PAW in the field of shipbuilding. The results 
show that the model with multiscale feature extraction is helpful to improve prediction precision and recall ratio.
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1  Introduction

Plasma arc welding (PAW) can obtain high depth-to-width 
ratio welds by compressing the arc, which improves man-
ufacturing efficiency significantly [1]. It has been widely 
used in the field of petroleum, shipping, aviation, etc. [2, 
3]. In recent years, with the development of liquid natural 
gas (LNG) ships, the application of PAW in the joining of 
stainless-steel sheets is booming. However, PAW is easy 
to be disturbed by external interference in mass automatic  
production. It has been found that the unstable keyhole  
or plasma arc would cause porosity and undercut of weld-
ments [4, 5]. Van Anh et al. [6, 7] demonstrated the close rela-
tionship between poor weld formation and welding heat input 
and plasma flow. As a remarkable feature of PAW, keyhole  

contributes significantly to large depth-to-width ratio and 
high efficiency. But at the same time, it increases the com-
plexity of the welding process. Liu et al. [8] concluded that 
the process stability of PAW is influenced by a combined 
effects of many factors. Wu et al. [9] performed numerical 
simulation to investigate the interaction among plasma arc, 
molten pool and keyhole of PAW. They proved the close 
relationship between these factors, but the interpretation 
ability of the model is limited due to the high complexity of 
welding process. Accordingly, it is necessary to establish a 
set of adaptive monitoring system in the automatic produc-
tion with PAW.

For traditional welding production, process monitoring 
mainly depends on manual observation and expert experi-
ence. Some welding process sensors or monitoring devices 
have been established based on process signals [10]. Zhang 
et al. [11] found through a large number of observation that 
the rapid decrease of plasma cloud upon establishment of 
the full penetration keyhole. They designed a sensor based 
on this mechanism to detect weld formation. Their follow-
up study [12] found that the duration of peak current was 
equal to the establishment time of keyhole. Normally, these 
research results not only rely on expert experience, but also 
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usually require complex equipment. For example, Liu et al. 
[13] built a vision system to monitor the transient keyhole 
status from the backside of the workpiece in PAW process. 
They found the strong relevance between the welding cur-
rent falling edges and the keyhole dynamic behaviors. These 
research results are of great significance for understanding 
PAW process. However, it also proves that it is very difficult 
to establish a monitoring system for such complex weld-
ing processes, which limits the application in large-scale 
production.

The methods based on Artificial Intelligence (AI) have 
an advantage in handling such high nonlinear problems. 
As reviewed by Zhang et al. [14], machine learning plays a 
vital role by minimizing human involvement and performing 
adaptive decisions in the field of welding. Chi and Hsu [15] 
established a fuzzy radial basis function (RBF) neural net-
work to predict quality characteristics of PAW process. Wu 
et al. [16] proposed a monitoring approach for the penetra-
tion state in variable polarity keyhole PAW. Feature extrac-
tion is an important part of artificial intelligence modeling, 
which normally requires a lot of time and energy in the field 
of welding. Based on continuous research, Wu et al. [17–19] 
extracted time and frequency domains features from sensors 
constitute a fusing feature set to reflect the variation trend of 
PAW weld penetration status. Song et al. [20] conducted a 
series of work to study the relationship between the welding 
sound and penetration states in PAW. They obtained feature 
vectors and proposed a t-SNE method to recognize different 
penetration states. In recent years, some novel feature extrac-
tion methods are studied and applied in the field of welding. 
Shevchik et al. [21] used wavelet packet transform (WPT) 
to extract features from the optical and acoustic emission 
signals in welding process. The quality classification ranged 
between 71 and 99%. You et al. [22] used wavelet packet 
decomposition (WPD) to extract features and exerted pri-
mary component analysis (PCA) to refine features. A model 
used these features provided a mean accuracy of 80.17% on 
predicting weld defects like blowouts, humping and under-
cut. Zhang et al. [23] calculated the statistical features of 
wavelet packet coefficients based on WPD. Their model 
detected blowout, undercut, and humping defects with an 
accuracy of more than 93%.

To extract features, signals are analyzed in a specific time 
span called “window”. The width of windows would affect 
the quality of extracted features significantly. At present, 
there are many studies on extraction methods, but less atten-
tion is paid to the calculation window. The optimization of 
the window number and width mainly depends on expert 
experience.

Huang et al. [24] determined the peak period (0.4 s) as 
calculation window to evaluate porosity defects for pulsed 
tungsten inert gas (TIG) welding of aluminum alloy. They 
computed a ratio of two spectral line intensities and their 

statistical parameters in every peak period of spectral sig-
nal. Huang et al. [25] observed laser welding process and 
found that the computed window with period of 0.002 s is 
suitable for predicting weld formation defects. In gas metal 
arc welding (GMAW) process, Huang et al. [26] extracted 
features in the window with time length of 0.4096 s. The 
accuracy of their model for weld formation was 98.75%. 
There are significant differences of window width among 
prediction models. This is due to the differences of weld-
ing principles, influencing factors and detection targets. For 
instance, in laser welding, Wang et al. [27] studied the oscil-
lation of plasma and found out that the fluctuation period 
was around 450–600 μs. Huang et al. [28] concluded in their 
study that the fluctuation frequency of plasma is between 
1.5 and 3 kHz, for keyhole it is between 200 and 700 Hz, 
and noise can be at the order of 10 kHz. Improper calcula-
tion window will lead to information loss, which will reduce 
the accuracy of models. Although manual determination is 
helpful, it increases the dependence of evaluation methods 
on experts. To this end, it is necessary to design a method to 
determine the most appropriate mode for window settings.

This paper aims to present an adaptive monitoring sys-
tem to evaluate the welding quality of PAW process. The 
welding current and arc voltage are collected as process 
signals. After wavelet denoising, a multiscale signal feature 
extraction method is designed to obtain information within 
different time scales synchronously. A group of sliding 
windows with different widths are established. The multi-
scale windows are synchronized on the timeline for feature 
correlation. After windows initialization, SVM with RBF 
kernel, as well as dimension reduction by PCA, is used to 
establish prediction model. Through labeling and training, 
the optimum parameters of window width are determined. 
The proposed method was used in weld quality prediction 
for PAW in the field of shipbuilding. Its performance is com-
pared with single window models. The comparison results 
show that it is helpful to promote the precision and recall 
ratio of model.

2 � Method and procedure

In PAW, keyhole is highly coupling with weld pool and 
plasma arc, and keyhole behavior involves mass and heat 
transfer. The so-called process instability refers to the abnor-
mal keyhole behavior, whose duration is different and related 
to its formation mechanism. Thermo-physical behavior in 
the PAW is complicated to evaluate accurately only based 
on theory. In addition, there are differences between varied 
applications. Therefore, it is necessary to carry out data-
driven optimization besides knowledge-driven model. The 
core of proposed method is to extract information from com-
plex PAW process with multiscale windows. The purpose 
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is to improve the accuracy of prediction. The settings of 
windows are critical. To this end, the training based on a 
group of labeled data should be carried out for window opti-
mization. Accordingly, the method is divided into two parts: 
training and prediction, as shown in Fig. 1. In the training 
part, there are three steps: (1) signal preprocessing, (2) 
feature extraction with multiscale windows, and (3) model 
training to determine the optimum window width. When the 
settings of windows are optimized, the prediction model is 
established. In the prediction part, the information extracted 

during welding process. The frequency of noise is usually 
high. When the signal-to-noise ratio is low, it is very unfa-
vorable to the information extraction. The optimization of 
multiscale windows would be affected. To this end, sig-
nals are denoised by wavelet denoise method. The method 
is based on the principle of discrete wavelet transform 
(DWT). DWT is a widely used wavelet transform method 
which decomposes the signal into a series of components 
with different frequency ranges, developed by Mallat [29]. 
The main formula of DWT can be written as:

where j and k are the parameters controlling the scale 
and shift of the basis wavelet functions � and scale func-
tions � . W�
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Fig. 1   The flow diagram of the proposed multiscale feature extraction method

by multiscale windows is used as input vector of model to 
output prediction results. The multiscale feature extraction is 
helpful to obtain effective and adequate information, which 
is helpful to improve model accuracy.

2.1 � Signal denoising

Although there is an analog filter in the signal condition-
ing module, it is difficult to avoid noise in signals collected 
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coefficient and detail coefficient, respectively. The two coef-
ficients stand for the low frequency and high frequency com-
ponents of the signal. In wavelet denoise method, for each 
component from DWT, a threshold is set to filter the high 
frequency values. After filtering, the components are recon-
structed into the denoised signal through a reverse process.

2.2 � Multiscale windows

After denoising, signals of complex process usually have 
different frequency components. Especially in the case of 
defects caused by process instability, the information usu-
ally comes from different frequency scales. For PAW, weld 
defects form due to the unstable keyhole that is highly cou-
pling with plasma arc and molten pool. Instability can be 
reflected in abnormal fluctuation of process signals. The fre-
quency of fluctuation is affected by physical factors includ-
ing materials, joint types, welding methods and environ-
ment factors. The time duration of factors is different. Even 
in a single welding process, the frequency of the fluctuation 
may be different. Figure 2a showed a filtered voltage signal 

collected in welding process, where fluctuation can be seen 
at the start period. The weld formation at initial part was 
poor because there is a big assembly gap. With the decrease 
of assembly gap, the welding process became stable in the 
second half of welded seam. Two sections of unstable weld-
ing process, Sects. 1 and 2, are used to investigate the effects 
of window width. Windows with different width are set for 
feature extraction from welding voltage signals, as shown 
in Fig. 2b, c. When window width is 0.1 s, it’s difficult to 
extract valid information from Sect. 1 since there is little 
change of voltage signal. Relatively, the information con-
tained in Sect. 2 is adequate. However, situation changes 
when the window width is increased to 2 s. The amount of 
information in Sect. 1 is appropriate, but there is superposi-
tion of different scale information in Sect. 2. From this point 
of view, the window width is critical to feature extraction. 
Accordingly, a method that can extract features in different 
time scales should be developed to solve such problem.

For objects with certain complexity, it is necessary to 
use multiple windows with different widths in time domain 
analysis. Here, a setting method of calculation windows 
is proposed. A group of windows with different width are 

Fig. 2   An example describing 
the shortcoming of single scale 
models: (a) a filtered weld-
ing voltage signal; (b) feature 
extraction ranges at section 
(1) and section (2) by using a 
smaller extraction window; (c) 
feature extraction ranges at sec-
tion (1) and section (2) by using 
a larger extraction window
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established, and feature extraction is carried out inside win-
dows. Normally, short windows focus on details, while long 
windows are capable to extract features that contain long-
term information. Windows slide throughout process. In 
addition, the multiscale windows should be synchronized 
on the timeline for feature correlation.

Figure 3 presented the setting method of multiscale 
windows. The initialization of window width needs basic 
cognition of the analyzed object. The requirement of 
expert knowledge is not necessary. Take three windows 
as an example, all windows are aligned at their end time. 
The moving distance between neighbored windows is set 
to be equal to the shortest window width. Before slide, a 
feature extraction is carried out inside every window. The 
features are used for model prediction. In this mode, there 
is no overlap for the shortest window. For other windows, 
there are some same data points in the two calculation pro-
cesses. The sliding step length and calculation frequency 
are determined by the shortest window. At every iteration, 
the number of windows and their width are kept constant. 
Through iterations, the width of windows is optimized by 
model training.

2.3 � Modeling procedure

As raw data of PAW, welding current and arc voltage 
contain plentiful information of process state. From the 

perspective of data size, they are not suitable to be directly 
used as the input of the model. Dimensionality reduction 
is indispensable. Accordingly, the raw data are firstly seg-
mented in the unit of windows, then dimension reduction 
is executed for the data inside windows. Here, the primary 
components analysis (PCA) [30] method is used for data 
dimension reduction. PCA is a widely used method of 
feature extraction and data dimension reduction. It trans-
forms the original data to a new coordinate system where 
the greater variance by some projection of the data lies 
on the former coordinates (called primary components). 
Here, the computation process mainly includes the fol-
lowing steps [22]:

where V is the mean vector of the feature vectors in data 
matrix V . The covariance matrix C of the data matrix is 
calculated by

The eigenvector ui of the covariance matrix is obtained by 
solving the equation

where �i is the i th eigenvalue of C , and �1 ≤ �2 ≤ ⋯ ≤ �n . 
Then, the transformed feature matrix S can be calculated by

(4)V̂ = V − V

(5)C =
1

n
V̂V̂

T

(6)�
i
= Cu

i
, i = 1, 2,… , n

Fig. 3   Schematic of multiscale 
windows settings and sliding
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where each row contains a primary component, and the pri-
mary components are sorted in the order of importance. By 
choosing the number of rows to be used, the feature matrix’s 
dimension can be reduced. The number of primary compo-
nents is determined by the information contained in them, 
where the information ratio is often represented by variance 
ratio of the component. Normally, the number of compo-
nents is set to contain at least 85% of the sample’s variance.

Subsequently, the feature vectors with the same ending time 
are connected end to end to form a dataset that contains mul-
tiscale information. The new feature dataset can be used in 
machine learning models. To determine the optimum window 
size, a predict model is built and trained with the dataset with 
different window width. The dataset is divided into training set 
and test set. Here, support vector machine (SVM) with radial 
basis function (RBF) kernel is used as the machine learning 
model. SVM is a common machine learning model developed 
by Cortes and Vapnik [31], which has been applied to various 
fields. The main formula of SVM can be expressed as:

(7)S = UV̂
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min
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w,b,�
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2
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where yi and xi are the label and the feature vector of the i 
th sample, respectively, and � is the distance between the 
inseparable points to the separating hyperplane. The hyper 
parameter C is called regulation parameter which controls 
the strength of the penalty to the inseparable points. Kernel 
functions are used to map the input features to higher dimen-
sional space to solve nonlinear problems. A frequently used 
kernel function is the RBF kernel, which is expressed as

where x′ is the center of the kernel, and � is the shape param-
eter. The kernel function is used to replace input feature 
vector x in Eq. (10) to solve nonlinear problems. The hyper 
parameters C and � should be optimized, and this is usually 
done by using cross-validation method like grid search.

3 � Application and discussion

3.1 � Application situation and objectives

The proposed method was used to predict the weld quality 
of PAW in the field of shipbuilding. As shown in Fig. 4, 
the robotic PAW system included an LHM-315 plasma 
welding machine, a TP-3 plasma torch, and a Yaskawa 

(9)K
�
x, x

��
= exp

�
−�‖x − x

�‖2
�

Fig. 4   The PAW welding system and signal acquisition device

2594 The International Journal of Advanced Manufacturing Technology (2022) 119:2589–2600



1 3

Shougang DX100 robot. A torch orifice with diameter of 
1.6 mm was used in the experiment. The electrode diameter 
was 1.5 mm. The electrode setback, the distance between 
the electrode tip and the nozzle orifice, was 3 mm. The 
electrode tip angle was 20°. Argon with purity of 99% was 
chosen as plasma and shielding gas, and the gas flow rate 
was 12 L/min. The welding current was 40 A, and the weld-
ing speed was set to 20 cm/min. The welded material was 
304L austenitic stainless steel. The size of the samples was 
150 mm × 150 mm × 1.2 mm, and the joint type was lap 
joint. During the welding process, a Hall current sensor 
and a Hall voltage sensor are used to obtain the electrical 
signals of welding circuit. A signal conditioning module is 
used for signal amplification and analog filtering. The signal 
acquisition module (USB-6211) is in the charge of analog-
to-digital conversion. The sampling rate of the acquisition 
process was 20 kHz. After the digital signals are transmitted 
to computer, LabVIEW is used for digital signal processing 
and visualization. Data dimension reduction and evalua-
tion modeling was performed under Python platform, with 
NumPy and Scikit-learn library used as tools.

Four groups were designed to represent different welding 
stability conditions. Each group was repeated 5 times. As 
base line, the distance between torch and workpiece in group 
1# was constant at 2 mm to keep plasma stable. As shown in 
Fig. 5, unstable welding conditions were created by chang-
ing the torch height. In group 2#, torch was lifted 1 mm at 
the middle of welding process. On the contrary, torch height 
in group 3# was reduced to 1 mm during welding process. In 
group 4#, a spacer was used to increase the distance between 
torch and workpiece continuously. As results, the fluctuation 
of torch height led to unqualified weld formation, as shown 
in Fig. 6. Here, the current and voltage of plasma arc are 
collected as input signals of model. The surface quality of 
welded seam was the prediction target of model. Accord-
ing to surface defects and seam width uniformity, the weld 

process was divided into two types. In Fig. 6, the zones with 
poor formation are marked in red, which should be predicted 
by model in the process of robot welding. The remaining 
zones, as well as their corresponding welding processes are 
considered as qualified. The target of the proposed model is 
to predict the weld quality based on electrical signals and 
present evaluation results on line.

3.2 � Modeling and windows optimization

During robot welding, electrical signals of plasma arc are 
easy to collect synchronously. It provides conditions for the 
industrial application of model. However, there is a lot of 
noise in signals, which is disadvantageous to the subsequent 
feature extraction. To this end, the denoising of raw signals 
are carried out firstly. The wavelet denoise method is used 
to remove the high-frequency noise in the signal and keep 
the fluctuation of the signal as much as possible. Here, the 
denoise threshold in this experiment was set as follows:

where length(x) denotes the length of the signal. The thresh-
old type used was soft threshold. The wavelet type was set 
to ‘db4’ wavelet, and the decomposition level was set to no 
more than 11. Compared to the raw signals presented in 
Fig. 6, the denoised waveform present in Fig. 7 has less high 
frequency noise, but the fluctuation trend and local details 
are preserved.

The denoised electrical signals of PAW are used as infor-
mation sources. With the 20-kHz sampling frequency, there 
would be a large number of input variables if the electrical 
signals are directly used as the input of classifier. In addition, 
the number of input variables will be different when window 
width changes. To this end, the electrical signals in the win-
dow are processed by PCA. It was found that the cumulative 

(10)Threshold =
√
2ln(length(x))

Fig. 5   Experiment settings: (a) base line group; (b) group 1#; (c) group 2#; (d) group 3#
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variance contribution rate of the three principal components 
can exceed 85% although the window width changes. Thus, 
the number of input parameters does not change with the 
window size, that is, each window forms three principal 
components as the input of the SVM. After dimension reduc-
tion based on PCA, an SVM model with RBF kernel was 
established. The hyper parameters C and � of SVM model 
were optimized using grid search cross-validation method. 
The candidate values of the hyper parameters are set to 
{0.1, 1, 10, 100, 1000} . Because the result of hyper parameter 
optimization may differ according to the choice of window 
widths, the specific optimization results are not discussed in 
this paper, and the final model always used the best hyper 
parameters to produce the outputs.

Here, the weld quality is the prediction target, and 
it is divided into poor formation and qualified forma-
tion. Two windows are set for feature extraction. The 
short window is designed for local and short-term distur-
bances, while the long one is to collect long-term fluc-
tuation or trend in welding process. According to Wang 

and Chen [32], for PAW process, fluctuation frequency 
could lie in a range of 0.5 to 1 kHz, and the frequency 
was found widely distributed within 250 Hz. Therefore, 
the range of segment lengths was set between 0.001  s 
and 2 s. The short window width was chosen in the list of 
{0.001s, 0.005s, 0.01s, 0.05s, 0.1s} , and the long window 
width in the list of {0.1s, 0.5s, 1.0s, 1.5s, 2.0s} . Window 
width, as well as their match, is the optimization objective 
of the proposed model. Orthogonal experiments were per-
formed for this purpose. According to the presented method, 
the total number of samples in the dataset was determined 
by the short windows size. In this study, for datasets with 
short window width of {0.001s, 0.005s, 0.01s, 0.05s, 0.1s} , 
the number of samples were {42002, 8402, 4203, 842, 422} , 
respectively. 70% of the dataset was used as training set, and 
the remaining 30% was used as test set.

During training, five-fold cross-validation method was 
used to reduce over fitting. Accuracy for test set and total 
computation time cost were used to evaluate the perfor-
mance of the model. The accuracy was defined as:

Fig. 6   The welded seams (unstable part marked in red) and corresponding signal waveforms: (a) group 1#; (b) group 2#; (c) group 3#; (d) group 
4#
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where nc and n represent the number of corrected classi-
fied samples and the total number of samples in the test set, 
respectively. Computation time was the total time cost of 
data segmentation, feature extraction, model training, and 
model testing.

According to the results presented in Fig. 8a, the model 
accuracy was significantly affected by window widths. The 

(11)At =
nc

n
window settings located on the upper left corner have high 
accuracy. It indicates that the longer the long window, and 
the shorter the short window, the higher the accuracy of the 
model. As the width of short window decreases, the accu-
racy of model increases rapidly. It proves that detail informa-
tion contributes a lot for prediction. With the increment of 
the long window width, the performance of model slightly 
increases. It reflects the relationship between the weld 
formation and the long-term fluctuation trend of welding 

Fig. 7   Signals after denoising: (a) group 1#; (b) group 2#; (c) group 3#; (d) group 4#

Fig. 8   Model performance with different windows (location of the optimized model is marked as red point): (a) model accuracy; (b) computa-
tion time
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process. The accuracy drops when the width of short win-
dow and long window is close.

It could be attributed to the information loss on both local 
disturbances and long-term trend. From the point of model 
accuracy, the two-window model has a wide range of param-
eter selection. It indicates that modeling with multiscale 
windows is helpful to improve model accuracy. As shown 
in Fig. 8b, the computation time cost mainly depends on the 
width of short window. With the decrease of short window 
width, the number of windows grows. It results in a large 
amount of calculation.

During the optimization of windows, the model accu-
racy and calculation time should be balanced. In Fig. 8a, 
the accuracy of model has the best performance when the 
short window width is less than 0.01 s, and the long window 
width is larger than 0.5 s. In Fig. 8b, the computation cost 
increases significantly when short window width is less than 
0.005 s. Therefore, the best choice in this case is 0.01 s for 
short window and 0.5 s for long window. The optimized 
matching between short window and long window is marked 
as a red point in Fig. 8.

3.3 � Model performance

The model with optimized windows, namely 0.01 s short win-
dow and 0.5 s long window, is established to predict weld 
quality for PAW. The prediction result of the model is com-
pared with models using a single window. The window widths 
of single window model are 0.005 s, 0.01 s, 0.05 s, 0.1 s, 0.5 s, 
1 s, and 2 s. The precision and recall for both qualified forma-
tion and poor formation are calculated as following:

where TP represents the number of correctly classified posi-
tive samples, FP denotes the number of wrongly classified 
positive samples, and FN  means the number of wrongly 
classified negative samples. Especially, if the number of 
positive classified samples is 0, the precision is also set to 0. 
The result is presented in Table 1.

The result shows that the model using multiscale windows 
performs better than models with single window, both in the 
precision and recall of poor formation. The performance of sin-
gle-window models varies significantly with the window width. 
Generally, the smaller segment length results in a better perfor-
mance for the classification of poor formation areas. But this 
improvement is at the cost of computing time. The accuracy of 
the multiscale-window model is better than all single-window 
models. It proves that the proposed modeling method is helpful 
to improve the prediction accuracy of weld quality for PAW. 
Figure 9 shows the prediction results in test set, where most 
samples are in good agreement with their actual seam states.

The model training was performed on a computer with 
a high-performance CPU of Intel Xeon E5-2470 (2.30 GHz 
with 16 cores and 32 threads). For industrial application, the 
trained model ran on a CPU of Intel i5-8300H (2.30 GHz 

(12)Precision =
TP

TP+FP

(13)Recall =
TP

TP+FN

Table 1   Performance in test set of prediction models with different 
windows

Model Qualified formation Poor formation

Precision Recall Precision Recall

Single window (0.005 s) 97.649% 91.595% 68.677% 89.313%
Single window (0.01 s) 93.464% 92.505% 64.555% 67.847%
Single window (0.05 s) 89.910% 85.576% 45.304% 55.034%
Single window (0.1 s) 92.150% 76.705% 37.879% 68.493%
Single window (0.5 s) 88.235% 92.308% 50.000% 38.462%
Single window (1 s) 80.488% 100.00% 0.000% 0.000%
Single window (2 s) 86.364% 100.00% 0.000% 0.000%
Multiscale windows 99.943% 99.986% 99.437% 99.718%

Fig. 9   Prediciton results in test 
set by proposed model
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with 4 cores and 8 threads) to output prediction results. 
Table 2 shows the average time cost for each step of on-
site prediction. The total computation time for one weld is 
3.612 ms, less than the time period (10 ms) of a welding 
process. In terms of accuracy and computation time, the 
proposed model has good engineering application ability. 
Currently, the most time-consuming step is signal preproc-
essing, and mainly comes from the wavelet denoising. In 
future application, a physical filter circuit would be added 
to the acquisition equipment to reduce or remove the need 
for digital filtering, by which the model’s computation time 
can be greatly saved.

4 � Conclusions

A feature extraction method based on multiscale windows 
was proposed to improve the accuracy and response speed of 
evaluation model. Its application in weld quality prediction 
for PAW proves its applicability in the field of shipbuild-
ing. The intelligent level of robot welding is improved. The 
conclusions are as follows:

1.	 Signals in complex process contain information in a 
wide frequency range. It’s difficult for model with single 
window to extract effective information rapidly. Mod-
eling with multiscale windows is helpful to extract infor-
mation of both momentary disturbances and long-term 
fluctuation trend. The optimization of window width is 
the dominant factor for model accuracy.

2.	 To establish multiscale-window model, SVM with RBF 
kernel is used after signal denoising and dimension 
reduction by PCA. The windows with different width are 
aligned to time stamp. For each type of window, the shift 
distance between neighbor windows is equal to its win-
dow width. The optimization of window width is carried 
out aiming at both model accuracy and calculation time.

3.	 A model with two scale windows is established to pre-
dict weld quality of PAW in the field of shipbuilding. 
The width of short window is 0.01 s, while the width 
of long window is 0.5 s. The prediction precision is 
99.943% and recall ratio is 99.986%. Its calculation 
time is 3.612 ms. The comprehensive performance of 
prediction model is significantly improved by multiscale 
feature extraction method.
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