
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-021-08597-9

ORIGINAL ARTICLE

A modified Q‑learning algorithm for robot path planning in a digital
twin assembly system

Xiaowei Guo2 · Gongzhuang Peng1 · Yingying Meng1

Received: 20 August 2021 / Accepted: 17 December 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Product assembly is an important stage in complex product manufacturing. How to intelligently plan the assembly process
based on dynamic product and environment information has become a pressing issue that needs to be addressed. For this
reason, this research has constructed a digital twin assembly system, including virtual and real interactive feedback, data
fusion analysis, and decision-making iterative optimization modules. In the virtual space, a modified Q-learning algorithm is
proposed to solve the path planning problem in product assembly. The proposed algorithm speeds up the convergence speed
by adding a dynamic reward function, optimizes the initial Q table by introducing knowledge and experience through the
case-based reasoning algorithm, and prevents entry into the trapped area through the obstacle avoiding method. Finally, the
six-joint robot UR10 is taken as an example to verify the performance of the algorithm in the three-dimensional pathfinding
space. The experimental results show that the performance of the modified Q-learning algorithm is significantly better than
the original Q-learning algorithm in both convergence efficiency and the optimization effect.

Keywords Path planning · Digital twin · Q-learning · Case-based reasoning

1 Introduction

Assembly is one of the most important parts of the industrial
production process [1]. With the development of nowadays
technology, humans are gradually replaced by industrial
robots during the assembly process. Meanwhile, the develop-
ment of industrial robots has also gone through several stages.
Industrial robots using traditional assembly methods can only
run under a set path. People usually use Cartesian coordinates
to describe the robot’s posture and obtain data through
sensors, so as to obtain the relationship between the robot
arms and the targets or obstacles. The D-H method has been
used to extract the position parameters and joints’ variables,
combined with the rigid body pose description theory and

the inverse transformation method to solve the positive and
negative kinematics [2]. This method requires plenty of cal-
culation and a lot of human engagement. People have to plan
the path manually for the robots, and what the robot can do
is only repeatedly work on the route planned by the operator
and feedback a series of displacement, velocity, and accelera-
tion data to the operator. This method will cause the robot
unable to adapt to the environment and to avoid obstacles
autonomously.

However, with the current economic development,
customers have stricter requirements for products. This is
followed by more and more complex product designs and
higher demand for assembly precision. The drawback of
impotent real-time communication may lead to a negative
influence on the verification of the component model as well
as the evaluation of the overall product assembly, which
will affect the whole product quality. The ability to autono-
mously avoid obstacles has also become more important
for industrial robots. Thus, virtual assembly and machine
learning were introduced. In virtual assembly, users can
utilize various interactive devices to perform assembly
operations on product components as in reality. During the
operation process, the system provides real-time detection,
management, and planning functions so that users can easily

 * Gongzhuang Peng
 gzpeng@ustb.edu.cn

 Xiaowei Guo
 xiaoweig@usc.edu

1 National Engineering Research Center for Advanced Rolling
and Intelligent Manufacturing, University of Science
and Technology Beijing, Beijing 100083, China

2 Daniel J. Epstein Dept. of Industrial & Systems Engineering,
University of Southern California, Los Angeles, CA 90089,
USA

/ Published online: 10 January 2022

The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-021-08597-9&domain=pdf

1 3

analyze the feasibility of the assembly performance. After
the process is completed, the system will take down all the
information from the assembly process and generate reports
and video recordings for continued analysis.

Since the most important parts in the virtual assembly sys-
tem are collecting data and human–computer interactions, two
emerging technologies have been introduced into the product
assembly process—digital twins (DT) and cyber-physical sys-
tems (CPS) [3]. DT can be considered an interdisciplinary,
multi-scale simulation process that makes full use of data such
as sensors status, physical models, and operating history. It mir-
rors the physical system into a virtual space and represents the
whole life cycle of the corresponding physical process. Dif-
ferent steps of the asse mbly process are connected with each
other based on the communication and information technology,
which reduces the deviations and as well as increases the effi-
ciency of the entire production life cycle [4]. CPS, developed in
the era of the Industrial Revolution 4.0, including network layer,
perception layer, and control layer, integrates communications,
control, and physical through the Internet [5]. The perception
layer is mainly composed of sensors, controllers, and collectors.
The sensor in the perception layer is the terminal device in the
CPS and collects the needed information from the surrounding
environment before sending the collected data to the applica-
tion server. In the later process, the terminal device will make
changes in response to the data returned from the server after
processing. The data transmission layer is the connecting bridge
between the information domain and the physical domain. CPS
promotes the assembly systems with the ability to reconfigure
process path according to real-time environment, which helps
them better adapt to different product variants [6].

In order to make the robot more intelligent when deal-
ing with complex situations in unknown environments, it is
quite important to introduce the concepts of reinforcement
learning and deep learning into the path planning process.
Deep learning is a general term for a type of pattern analysis
method that includes three types of methods: convolutional
neural network (CNN), the self-encoding neural network
based on multi-layer neurons, and deep belief network
(DBN). In reinforcement learning, subject learns the opti-
mal strategy in a “trial and error” mode through the inter-
action with the environment to obtain the greatest reward
[7]. Q-Learning, one of the commonly used algorithms in
reinforcement learning, takes the optimal action at a certain
moment to maximize the expectation of gaining benefits.
The environment will feedback corresponding rewards based
on the agent’s actions. To sum up, the fundamental idea of
this algorithm is selecting the action with the greatest benefit
from the constructed Q-table, in which the data represents
the state and action of the agent. With the application of
reinforcement learning, human involvement can be reduced
from the assembly system, and the robustness of the system
can be increased. It also allows the assembly robot to learn

complex behaviors based on interactions with the surround-
ing environment. In the path planning process, it is quite
important for the agent to connect with the environment and
make the right decision on the next behavior, which means
that the agent can perform a high-precision assembly pro-
cess instead of translating human behaviors into fixed robot
programs [8].

The rest of this paper is organized as follows. Section 2
reviews the related work on path planning and reinforcement
learning. In Sect. 3, the digital twin framework for assem-
bly is introduced. The detailed algorithm description and
improvement of the Q-learning model are analyzed in Sect. 4.
Computational experiments of the UR10 robot are conducted
in Sect. 5. Finally, conclusions are given in Sect. 6, together
with some discussion of potential future work.

2 Related works

2.1 Path planning

Path planning has always been a vital part of the production
process. It has a great influence on production efficiency and
safety. Thus, how to let the industrial robots automatically
plan their path has become a very important issue. Path plan-
ning can be divided into global path planning and local path
planning. The location of the obstacles in the global path plan-
ning is known. Thus, the main mission of global path planning
is to build up the model of the environment after calculation
and then optimize the path. Commonly used methods include
the visible method, free space method, grid method, Dijkstra
algorithm, and A* algorithm. However, the accuracy of global
path planning is hard to ensure in a complex and changing
environment. The local path planning needs the industrial
robots to collect information and data from the environment
through the whole assembly process, which requires the
robots to be equipped with learning ability. Artificial potential
field method, fuzzy control algorithm, hierarchical algorithm,
neural network algorithm, and reinforcement learning method
are the most commonly used methods in local path planning.

Khatib and Wu [9] first introduced the path planning of
artificial potential field method, a virtual force method, to the
robot field, which helps create the robot movement in the sur-
rounding environment into an abstract artificial gravitational
field. This method results in a generally smooth and safe path,
while it may also lead the robot to the problem of local opti-
mum. Zuo et al. [10] developed a fuzzy algorithm, which
determined the priority of several possible paths and repeat-
edly drives the robot to the final configuration in the highest
priority forward directi on. Duguleana and Mogan [11] pro-
posed a hierarchical path planning approach, which contains
two different levels of structure. A grid-based A* algorithm
was applied in the first level for finding the geometric path

3952 The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

1 3

and selecting multiple sub-goals path points for the next
level. The least squares strategy iteration was applied into
the second level to generate a smooth path under the restric-
tion of robots’ kinematics. Cruz and Yu [12] combined neural
networks together with reinforcement learning into a new
approach for solving the problem of robots in environments
with static and dynamic obstacles. This approach helped peo-
ple to take control of the robots at any speed and avoid local
minima and converges in complex environments.

In recent years, researchers have also made great progress in
modifying those methods above. Zhuang et al. [13] modified
the classic algorithms of multi-agent so that it does not need
the unvisited state. With estimating unknown environment, the
paper applied the neural kernel smoothing and networks to the
approximate greedy actions. Saeed et al. [14] proposed a digital
twin-based assembly data management and process traceabil-
ity approach for complex products. Samuel [15] generated the
collision-free path with grid models and potential functions. In
order to find the initial feasible path and avoid obstacles, they
developed a boundary node method and a path enhancement
method. The above two methods were proved to be feasible by
testing in work environments in different degrees of complexity.

2.2 Reinforcement learning

As one of the machine learning methods, reinforcement learning
is used to describe and solve the learning strategies problem to
achieve goals or maximize returns in the process of interaction
between the agent and the surrounding environment. Roveda et
al. [16] introduced the concept of reinforcement learning into
the game of checkers and used a value function represented by a
linear function to guide the selection. After years of research, the
development of reinforcement learning becomes rapid, among
which the Q-learning method has been widely used [16].

Recently, more and more modifications are applied to
Q-learning algorithm. Konar et al. [17] provided a new deter-
ministic Q-learning with a presumed knowledge, which used
four derived properties to update the entries in the Q-table at
one time. Compared with the traditional Q-learning approach,
this modified method had less time complexity and smaller
required storage. Robots sometimes face the problems of slow
convergence speed and long-planned paths when they are in
an unknown environment in applying the Q-Learning method
to perform path planning. Aiming to solve these problems,
Zhao et al. [18] proposed the experience-memory Q-learning
(EMQL) algorithm, which continuously updated the shortest
distance from the current state node to the start point. Hu et al.
[19] also introduced an experience aggregative reinforce-
ment learning method with a multi-attribute decision-making
(MADM) to complete the mission of avoiding the real-time
obstacle by decomposing the original obstacle avoidance task
into two separate sub-tasks. Each sub-task is trained individu-
ally by a double Q-learning with a simple reward function.

3 Digital twin framework for assembly

Digital twin system integrates information control module with
hardware implementation module, as shown in Fig. 1. It pro-
vides a new virtual assembly mode for industrial production,
including the virtual control environment and actual physical
system. The integration of computing process and physical
process, in order to maintain the space–time consistency of
virtual model and equipment entity, provides strong support for
improving the robot path planning in an unknown environment
and reducing the error between virtual and actual assembly,
thus improving the application efficiency of virtual assembly
in the actual industrial production. And it is more convenient
for six-axis industrial robots and other new robots to be widely
used in industrial production.

The sensing layer contains several measuring, feedback,
and assembly devices, which have sensing, communication,
and executing abilities, respectively. The sensing device, such
as the grating ruler, laser sensor, and vision sensor, sends the
timely measurement data to the monitor after obtaining the sta-
tus attribute information concerned by the user. The execution
device, including the flexible assembly part on the assembly
robot as well as the whole digital production line, completes
the corresponding operations according to the received instruc-
tions, such as adjusting the posture, drilling, and trimming. All
collected data can be transmitted through the communication
network. The ability to sense and control the physical elements is
the basis of realizing the interaction with the information system.

The model library together with the perception of the under-
lying data constitutes the assembly scenario, including the data
of each joint of the assembly robot, and the position and size
of each product. Through matching and knowledge reasoning
between the assembly task and scenario, the corresponding
assembly process schemes are formed. The necessary assem-
bly resources are then obtained based on the assembly scenario.
The algorithm library sequentially generates the corresponding
instruction code and adjustment scheme to drive the assem-
bly equipment. During the real-time operation of the assembly
equipment, the feedback equipment receives the corresponding
feedback data and interacts with the simulation results. This
offline pre-assembly process and CPS online simulation control
further ensure the smooth assembly.

4 Theoretical framework

4.1 Q‑learning algorithm

Q-learning is a value-based algorithm in reinforcement learn-
ing. Q , also represented as Q(s, a) , is the obtainable feedback
when taking action a , under a certain state s . The main objective
of this algorithm is to get the optimal Q value through iteration.
A Q-table is created to reserve the Q value. The agent will select

3953The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

1 3

an action based on the �-greedy theory under a randomly given
state s. After taking the given action, a new state will be gener-
ated, and a reward will be given from the outside environment.
The reward value will then be reserved in a matrix R for later
calculation of Q value in the next step. The Q value will then be
reserved in a new matrix, called P. Finally, the action sequence
will be generated based on the optimal (i.e., maximum) Q
value. The detailed algorithm is shown in Table 1.

In this algorithm, s is the current state, while s′ is the next
state. � and a′ represent the current action and next action.
Q(s, a) is the corresponding value of s and a; r is the corre-
sponding reward. � (0 < 𝛾 < 1) is a factor that reflects the
future feedback on the current situation. � represents the learn-
ing efficiency.

4.2 Dual reward in the improved Q‑learning
algorithm

In Q-Learning, the reward function plays an impor-
tant part. It helps the agent to better find the right way
towards the goal. With a well-designed reward function,
the agent can find the optimal way in a short time with
the least steps. In most cases, the goal node is repre-
sented by an especially large reward value, while the
common nodes that contain no goal and obstacles will
only have a small positive number or even zero. The
nodes that represent obstacles will have a negative num-
ber, which can prevent the conflict between agent and
obstacles. However, with this kind of static reward func-
tion, the agent will be easily trapped in blind searching.
Therefore, a dual reward function, which includes static
reward function and dynamic function, is introduced in
this paper.

4.2.1 The static reward function

In most cases, the state nodes can be represented by obsta-
cles nodes, common nodes, and goal nodes. In this research,
the reward function only contains two different kinds of
nodes, common nodes and goal nodes. And the reward func-
tion is shown below:

Fig. 1 Digital twin framework for assembly

Table 1 Pseudocode of Q-learning algorithm

Initialize Q(s, a) arbitrarily
Repeat (for each episode):
 Initialize s
 Repeat (for each step pf episode):
 Choose a from s using policy derived from Q (i.e. �-greedy)
 Take action a , observe r, s′

 Q(s, a) ← Q(s, a) + a [r + γmaxa' Q(s', a') – Q(s, a)]
 s ← s';
 until s is terminal

3954 The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

1 3

4.2.2 The dynamic reward function

In an unknown environment, the robot with the static reward
function can be easily trapped in blind searching, for exam-
ple, when the potential next state nodes of the robot are all
common nodes, which means the robot will not be punished
or highly rewarded no matter what action it takes in the next
state. It can choose the action of any direction, or even back-
wards, which will increase the distance between the robot
and the goal node. Therefore, the dynamic reward function is
applied to calculate the distance between its current node and
the target node. The dynamic reward function is shown below:

In these equations, dt represents the distance between the
current state node and the target node. And the dt+1 represents
the distance between the next state node and the target node.
� is a factor that depends on static reward since it represents
the proportion of dynamic reward in the total reward the agent
would get. In this research, we give the value of 0.8 to � .

4.3 Q‑table optimized by case‑based reasoning

In the training process of Q-learning, the initial parameter val-
ues are difficult to choose. The reward matrix in the Q-learning
algorithm is a constant matrix, and the initial Q-table is often
initialized to a zero-valued matrix. Therefore, it is more sensi-
tive to the parameter values in the early stage of the algorithm
and is often directly given based on empirical values. However,
the same initial parameter values cannot be applied to networks
of different scales and densities, so multiple experiments are
required in different networks to determine the parameter val-
ues. Moreover, large space is necessary for exploration. At the
beginning of the algorithm, under the guidance of a lack of
prior knowledge, the agent will be trapped into the random
exploration stage for a long time, and it is difficult to quickly
approach the optimal solution. At the same time, random explo-
ration may cause the algorithm to converge to the local opti-
mal value in advance. Under the positive feedback effect of the
roulette exploration strategy, the degree of exploration of the
sub-optimal path is strengthened, which causes the algorithm to

(1)Rewards =

{

0, if the node is the common node

10, if the node is the target node

(2)dt =

√

(xtarget − xt)
2
+ (ytarget − yt)

2

(3)dt+1 =

√

(xtarget − xt+1)
2
+ (ytarget − yt+1)

2

(4)Rewardd = �
dt − dt+1
|

|

dt − dt+1
|

|

fail to jump out of the local optimal. In order to make better use
of the experience of historical cases, we use case-based reason-
ing methods to initialize the Q-table to improve the speed and
quality of the training process, as shown in Fig. 2.

The case-based reasoning method has the function of ana-
logical learning, which relies on past experience for learning
and problem solving. A case library is constructed to store his-
torical path planning cases. The solution of the new case can
be obtained by modifying the case in the case library which is
similar to the current scenario. First, the information used or
generated in the path planning process is obtained. Each case
in the case library contains information such as the task, envi-
ronment, and path generated during each path planning task.
By matching the context and task of the current task with the
cases in the library, and evaluating and correcting the matched
candidate cases, the Q table used by the case with the best per-
formance is finally used as the initial Q table of the current task.
At the same time, the case-based planning method continuously
expands and updates the case library through iterative learning.
In this study, the task similarity is calculated as follows:

where π1, π2 respectively represent the collection of obstacle
points in the two scenes. p(π1 ∩ π2) represents the number
of point sets in the same area covered by obstacles in two

(5)S(π1, π2) =
p(π1 ∩ π2)

max(p(π1), p(π2))

Fig. 2 Flow chart of Q-table optimization based on CBR

3955The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

1 3

scenes, and max(p(π1), p(π2)) represents the number of point
sets in obstacles with a larger coverage area.

4.4 Obstacle avoiding strategy

In some of the cases, a large negative reward would be set
for the obstacle nodes in the reward function in order to keep
the robot from encountering the obstacles. However, this
research tries to record down the obstacle nodes and find
the feasible actions and states at first every time the agent
is going to move on to the next state. With this strategy, the
possibility of hitting an obstacle can be reduced compared
to the method of giving the obstacle nodes a large negative
reward, since the Q-Learning method will sometimes choose
actions and states randomly, ignoring the value of the reward.

5 Experiments and analysis

In order to verify the theoretical analysis effect of path plan-
ning based on the improved Q-learning algorithm proposed
in the previous section, the manipulator and its working
environment in the assembly digital twin system were mod-
eled and verified. For specific assembly tasks, the end of
the six-joint industrial robot needs to start from the starting

position coordinate point in its working space, avoid possible
obstacles in the working space, and plan the path to finally
reach the target point. This study selects the path planning
scenario shown in Fig. 3 below and takes a typical six-joint
robot UR10 as an example to explore its performance in path-
finding in the below scenario. The virtual environment con-
tains obstacles and targets in the shape of rectangular solid.
Although most of the obstacles and targets, in reality, are in
different irregular shapes, we modified them into rectangular
solid for calculation. The constructed virtual environment is
shown below. The software and hardware environments for
system implementation are summarized as follows:

1. Application server: A ThinkPad desktop with Intel Core
i7 CPU (3.40 GHz) and 32 GB memory, 2 T SCSI HD
and a Windows Server operating system

2. Programming platform: PyCharm and Python 3.6.0
3. Database: MySQL 6.0
4. Network configuration: 1G Ethernet network connection

between testing clients and application server

Fig. 4 Planning paths under different algorithms and iterations. a
Original Q-learning, iteration = 200; b original Q-learning, itera-
tion = 2000; c dynamic reward, iteration = 200; d dynamic reward,
iteration = 2000; e dynamic reward and CBR, iteration = 200; f
dynamic reward and CBR, iteration = 2000

◂

Fig. 3 Path planning environ-
ment with obstacles

3956 The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

1 3

3957The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

1 3

The actual maximum working range of the UR10 manipu-
lator is a 1300-mm radial range. Considering the flexibil-
ity and safety of the actual assembly task of the robot, the
working range is selected to be a three-dimensional space of
250mm × 200mm × 125mm . Taking 5 mm as the minimum
unit for the end of the robot to move, the three-dimensional
workspace of the robot can be divided into a discrete state
set containing 50 × 40 × 25 grids S , starting point H(0, 0,0),
ending point T (32, 30, 12). The pink area is the obstacles
such as the workbench in the environment, and the white
area is the feasible region for the robot to work freely.

The robot’s possible motion directions include up, down,
front, back, left, right, and a combination of the three coor-
dinate directions. Therefore, the action set A of the robot
includes basic element actions in 26 directions. By setting
equal algorithm parameters, we set � from 0 every 0.05 to 1
the maximum number of iterations to 10,000, and observe
the number of steps and the number of iterations experi-
enced when the planned path stabilizes during the process
of planning the path from the start to the end of the robot.

Figure 4 shows the path of the manipulator in the initial
and final stages of different algorithms. In the scene where the
robot has obstacle areas, especially trap areas, using appro-
priate profit gain and environmental prior information can
improve the efficiency of algorithm optimization, and itera-
tive steps are fewer. Although the round update makes the
update time of each step longer, after fewer rounds of update,
the iterative step reduction is more advantageous, making
the learning path of the improved algorithm shorter and the
overall efficiency of the algorithm better. For the modified
Q-Learning method in this research, dual reward function,
CBR, and obtaining feasible action method are applied. Both
of these methods can help the robot find the optimal route
towards the target in a safer and more efficient way. For the
dual reward function method, instead of the original reward
function, this research combines both the static reward and
dynamic reward as a whole. The former reward can help the
robot identify the status of the next action, while the latter
reward can lead the robot to the right direction towards the
target. For the obtaining feasible action method, the robot
can avoid the collision with obstacles, and the safety level
of this method is much higher than that of simply setting the
static reward of the obstacle nodes to a large negative value.

Furthermore, when the improved Q-learning algorithm
takes three values of 0.6, 0.8, and 1 in λ , the algorithm
compares and observes the steps required for each itera-
tion of the pathfinding learning process. The index of the
iteration round is taken as the horizontal axis, and the
pathfinding steps of the robot in each round are taken as
the vertical axis. The comparison of step changes is shown
in Fig. 5. In fact, when λ is set to 0, the learning algorithm
becomes the original Q-learning algorithm. Therefore, if
λ is too small, the effective income of the update will be

annihilated more quickly. If λ is too large, it will cause
a certain number of repeated steps to explode. Locally
optimal, so the iterative effect of some rounds does not
converge, and the movement is repeated in the trap area.
According to the performance of different λ , we set λ to
0.8 in the following experiment.

In this study, two scenes are designed to evaluate the
four algorithms, Q-learning algorithm (Q), Q-learning
algorithm with CBR (CBR-Q), Q algorithm with dynamic
reward function (DR-Q), and Q algorithm with dynamic
reward function and CBR (D-CBR-Q). The shapes of
obstacles are different in the two scenes, while the start-
ing and ending point are the same. To compare the per-
formance of the algorithms, three evaluation indices are
utilized—descendent epoch, convergent mean steps, and
the computation time. The descendent epoch denotes the
epoch when the mean step in a window of 10 epochs gets
150% of the corresponding convergence step. The con-
vergent mean step is the average step after the descendent
epoch. The computation time is the time required for the
robot to move from the starting point to the ending point
when the algorithm converges. The descendent epoch
measures the convergence efficiency, while the convergent
mean step represents the optimization effect of algorithms.

Figure 6 shows the steps per epochs of different algo-
rithms. Q, CBR-Q, DR-Q, and D-CBR-Q converge at
around 6000 epochs, 4000 epochs, 2500 epochs, and 2000
epochs, respectively, when the planned path and number
of iterations stabilized, and the algorithm steps decreased
significantly faster. The Q-learning algorithm still does not
converge when iterates 2000 epochs, and the algorithm’s
pathfinding performance at 2000 iterations is worse than
the former at about 1500 iterations, and the pathfinding
performance at 1000 iterations is the same as that of the
former. From Table 2, we can see that the convergent mean
steps of Q-learning in scene 1 is 423.63, CBR-Q reduces
the step by 5.3%, DR-Q reduces the step by 11.2%, and
D-CBR-Q reduces the step by 16.5%. As for the descend-
ent epoch, Q-learning reaches the 150% convergence step
at 517 epoch, while CBR-Q is 35.9% faster, DR-Q is 56.3%
faster, and D-CBR-Q is 51.1% faster than Q-learning.
The evaluation indices shows that the CBR method and
dynamic reward strategy can both improves the perfor-
mance of the traditional Q-learning algorithm and the pro-
posed D-CBR-Q outperforms the other three algorithms.

In order to realize the centralized management of dis-
tributed resources by the cloud service architecture and the
assembly requirements of centralized resources for decen-
tralized services, a prototype system was developed using
the web-based B/S (browser/server) architecture model.
Figure 7 shows an example of editing UR10 in the equip-
ment model library shown in the integrated Vrep modeling
software.

3958 The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

1 3

Fig. 5 Number of iterations per round under different λ

Fig. 6 Steps per epochs of different algorithms

3959The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

1 3

6 Conclusions

The assembly path planning of manipulators is playing an
increasingly important role in modern manufacturing. The
digital twin system can provide an intelligent assembly para-
digm, which realizes the real-time synchronization of virtual
assembly and actual assembly through the integration of
intelligent calculation process and physical process. In this
research, a digital twin system for manipulator assembly is
constructed, which includes functions such as real-time per-
ception, data exchange, communication, intelligent decision-
making, and virtual-real interaction. Moreover, this research
also proposes a modified Q-learning algorithm, which speeds
up the convergence speed by adding a dynamic reward func-
tion, optimizes the initial Q table by introducing knowledge
and experience through the CBR algorithm, and prevents
entry into the trapped area through the obstacle avoiding
method. Finally, take the six-joint robot UR10 as an exam-
ple to verify the performance of the algorithm in the three-
dimensional space of pathfinding. The experimental results
show that the improved Q-learning algorithm’s pathfinding

performance is significantly better than the Q-learning
algorithm.

As far as future research is concerned, there is great
potential for the extension of the current model and solu-
tion algorithm. The proposed algorithm can be improved
from the following aspects: In theoretical research, a more
in-depth discussion on specific scenario modeling methods
and control algorithms is still needed; application explora-
tion also needs to be expanded from more perspectives;
and the research on system architecture needs to be more
detailed.

Funding This research is supported by the National Key Research
and Development Plan under grant number 2020YFB1713600, the
National Natural Science Foundation of China under the grant num-
ber 61903031, and the Fundamental Research Funds for the Cen-
tral Universities under the grant number FRF-TP-18-035A1 and
FRF-TP-20-050A2.

Availability of data and material The datasets used or analyzed dur-
ing the current study are available from the corresponding author on
reasonable request.

Fig. 7 The GUI of manipulator
modeling

Table 2 Comparison of different algorithms

Scene
number

Algorithm Descendent
epoch

Convergent
mean steps

Computation
time (s)

1 Q 517 423.63 9.63
CBR-Q 331 401.19 8.96
DR-Q 226 376.11 6.48
D-CBR-Q 253 353.77 4.56

2 Q 466 483.15 12.21
CBR-Q 318 466.68 10.25
DR-Q 207 414.58 9.07
D-CBR-Q 194 367.85 6.10

3960 The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

1 3

Code availability The code used during the current study is available
from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare no competing interests.

References

 1. Kumar K, Zindani D, Davim JP (Eds.) (2019) Digital manufactur-
ing and assembly systems in industry 4.0. CRC Press

 2. Guo F, Cai H, Ceccarelli M, Li T, Yao B (2019) Enhanced DH:
an improved convention for establishing a robot link coordinate
system fixed on the joint. Ind Robot Int J Robot Res Appl

 3. Polini W, Corrado A (2020) Digital twin of composite assembly
manufacturing process. Int J Prod Res 58(17):5238–5252

 4. Lu Y (2017) Cyber physical system (CPS)-based industry 4.0: a
survey. J Ind Integr Manag 2(03):1750014

 5. Müller R, Vette M, Hörauf L, Speicher C (2016) Identification of
assembly system configuration for cyber-physical assembly sys-
tem planning. Appl Mech Mater 840:24–32. Trans Tech Publica-
tions Ltd

 6. Sutton RS, Barto AG (2018) Reinforcement learning: an introduc-
tion. MIT press

 7. Beltran-Hernandez CC, Petit D, Ramirez-Alpizar IG, Harada
K (2020) Variable compliance control for robotic peg-in-hole
assembly: a deep-reinforcement-learning approach. Appl Sci
10(19):6923

 8. Khatib O (1986) Real-time obstacle avoidance for manipulators
and mobile robots. Auton Robot Veh 396–404. Springer, New
York, NY

 9. Lee TL, Wu CJ (2003) Fuzzy motion planning of mobile robots
in unknown environments. J Intell Rob Syst 37(2):177–191

 10. Zuo L, Guo Q, Xu X, Fu H (2015) A hierarchical path plan-
ning approach based on A⁎ and least-squares policy iteration for
mobile robots. Neurocomputing 170:257–266

 11. Duguleana M, Mogan G (2016) Neural networks based reinforce-
ment learning for mobile robots obstacle avoidance. Expert Syst
Appl 62:104–115

 12. Cruz DL, Yu W (2017) Path planning of multi-agent systems in
unknown environment with neural kernel smoothing and rein-
forcement learning. Neurocomputing 233:34–42

 13. Zhuang C, Gong J, Liu J (2021) Digital twin-based assembly
data management and process traceability for complex products.
J Manuf Syst 58:118–131

 14. Saeed RA, Recupero DR, Remagnino P (2020) A boundary node
method for path planning of mobile robots. Robot Auton Syst
123:103320

 15. Samuel AL (1959) Some studies in machine learning using the
game of checkers. IBM J Res Dev 3(3):210–229

 16. Roveda L, Pallucca G, Pedrocchi N, Braghin F, Tosatti LM
(2017) Iterative learning procedure with reinforcement for high-
accuracy force tracking in robotized tasks. IEEE Trans Industr Inf
14(4):1753–1763

 17. Konar A, Chakraborty IG, Singh SJ, Jain LC, Nagar AK (2013) A
deterministic improved Q-learning for path planning of a mobile
robot. IEEE Trans Syst Man Cybern Syst 43(5):1141–1153

 18. Zhao M, Lu H, Yang S, Guo F (2020) The experience-memory
Q-learning algorithm for robot path planning in unknown environ-
ment. IEEE Access 8:47824–47844

 19. Hu C, Ning B, Xu M, Gu Q (2020) An experience aggregative
reinforcement learning with multi-attribute decision-making
for obstacle avoidance of wheeled mobile robot. IEEE Access
8:108179–108190

Publisher's note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

3961The International Journal of Advanced Manufacturing Technology (2022) 119:3951–3961

	A modified Q-learning algorithm for robot path planning in a digital twin assembly system
	Abstract
	1 Introduction
	2 Related works
	2.1 Path planning
	2.2 Reinforcement learning

	3 Digital twin framework for assembly
	4 Theoretical framework
	4.1 Q-learning algorithm
	4.2 Dual reward in the improved Q-learning algorithm
	4.2.1 The static reward function
	4.2.2 The dynamic reward function

	4.3 Q-table optimized by case-based reasoning
	4.4 Obstacle avoiding strategy

	5 Experiments and analysis
	6 Conclusions
	References

