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Abstract
Product assembly is an important stage in complex product manufacturing. How to intelligently plan the assembly process 
based on dynamic product and environment information has become a pressing issue that needs to be addressed. For this 
reason, this research has constructed a digital twin assembly system, including virtual and real interactive feedback, data 
fusion analysis, and decision-making iterative optimization modules. In the virtual space, a modified Q-learning algorithm is 
proposed to solve the path planning problem in product assembly. The proposed algorithm speeds up the convergence speed 
by adding a dynamic reward function, optimizes the initial Q table by introducing knowledge and experience through the 
case-based reasoning algorithm, and prevents entry into the trapped area through the obstacle avoiding method. Finally, the 
six-joint robot UR10 is taken as an example to verify the performance of the algorithm in the three-dimensional pathfinding 
space. The experimental results show that the performance of the modified Q-learning algorithm is significantly better than 
the original Q-learning algorithm in both convergence efficiency and the optimization effect.

Keywords Path planning · Digital twin · Q-learning · Case-based reasoning

1 Introduction

Assembly is one of the most important parts of the industrial 
production process [1]. With the development of nowadays 
technology, humans are gradually replaced by industrial 
robots during the assembly process. Meanwhile, the develop-
ment of industrial robots has also gone through several stages. 
Industrial robots using traditional assembly methods can only 
run under a set path. People usually use Cartesian coordinates  
to describe the robot’s posture and obtain data through 
sensors, so as to obtain the relationship between the robot  
arms and the targets or obstacles. The D-H method has been 
used to extract the position parameters and joints’ variables, 
combined with the rigid body pose description theory and  

the inverse transformation method to solve the positive and 
negative kinematics [2]. This method requires plenty of cal-
culation and a lot of human engagement. People have to plan 
the path manually for the robots, and what the robot can do 
is only repeatedly work on the route planned by the operator 
and feedback a series of displacement, velocity, and accelera-
tion data to the operator. This method will cause the robot 
unable to adapt to the environment and to avoid obstacles 
autonomously.

However, with the current economic development, 
customers have stricter requirements for products. This is 
followed by more and more complex product designs and 
higher demand for assembly precision. The drawback of 
impotent real-time communication may lead to a negative  
influence on the verification of the component model as well 
as the evaluation of the overall product assembly, which 
will affect the whole product quality. The ability to autono-
mously avoid obstacles has also become more important 
for industrial robots. Thus, virtual assembly and machine 
learning were introduced. In virtual assembly, users can 
utilize various interactive devices to perform assembly 
operations on product components as in reality. During the 
operation process, the system provides real-time detection, 
management, and planning functions so that users can easily  
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analyze the feasibility of the assembly performance. After 
the process is completed, the system will take down all the 
information from the assembly process and generate reports 
and video recordings for continued analysis.

Since the most important parts in the virtual assembly sys-
tem are collecting data and human–computer interactions, two 
emerging technologies have been introduced into the product 
assembly process—digital twins (DT) and cyber-physical sys-
tems (CPS) [3]. DT can be considered an interdisciplinary, 
multi-scale simulation process that makes full use of data such 
as sensors status, physical models, and operating history. It mir-
rors the physical system into a virtual space and represents the 
whole life cycle of the corresponding physical process. Dif-
ferent steps of the asse mbly process are connected with each 
other based on the communication and information technology, 
which reduces the deviations and as well as increases the effi-
ciency of the entire production life cycle [4]. CPS, developed in 
the era of the Industrial Revolution 4.0, including network layer, 
perception layer, and control layer, integrates communications, 
control, and physical through the Internet [5]. The perception 
layer is mainly composed of sensors, controllers, and collectors. 
The sensor in the perception layer is the terminal device in the 
CPS and collects the needed information from the surrounding 
environment before sending the collected data to the applica-
tion server. In the later process, the terminal device will make 
changes in response to the data returned from the server after 
processing. The data transmission layer is the connecting bridge 
between the information domain and the physical domain. CPS 
promotes the assembly systems with the ability to reconfigure 
process path according to real-time environment, which helps 
them better adapt to different product variants [6].

In order to make the robot more intelligent when deal-
ing with complex situations in unknown environments, it is 
quite important to introduce the concepts of reinforcement 
learning and deep learning into the path planning process. 
Deep learning is a general term for a type of pattern analysis 
method that includes three types of methods: convolutional 
neural network (CNN), the self-encoding neural network 
based on multi-layer neurons, and deep belief network 
(DBN). In reinforcement learning, subject learns the opti-
mal strategy in a “trial and error” mode through the inter-
action with the environment to obtain the greatest reward 
[7]. Q-Learning, one of the commonly used algorithms in 
reinforcement learning, takes the optimal action at a certain 
moment to maximize the expectation of gaining benefits. 
The environment will feedback corresponding rewards based 
on the agent’s actions. To sum up, the fundamental idea of 
this algorithm is selecting the action with the greatest benefit 
from the constructed Q-table, in which the data represents 
the state and action of the agent. With the application of 
reinforcement learning, human involvement can be reduced 
from the assembly system, and the robustness of the system 
can be increased. It also allows the assembly robot to learn 

complex behaviors based on interactions with the surround-
ing environment. In the path planning process, it is quite 
important for the agent to connect with the environment and 
make the right decision on the next behavior, which means 
that the agent can perform a high-precision assembly pro-
cess instead of translating human behaviors into fixed robot 
programs [8].

The rest of this paper is organized as follows. Section 2 
reviews the related work on path planning and reinforcement 
learning. In Sect. 3, the digital twin framework for assem-
bly is introduced. The detailed algorithm description and 
improvement of the Q-learning model are analyzed in Sect. 4. 
Computational experiments of the UR10 robot are conducted 
in Sect. 5. Finally, conclusions are given in Sect. 6, together 
with some discussion of potential future work.

2  Related works

2.1  Path planning

Path planning has always been a vital part of the production 
process. It has a great influence on production efficiency and 
safety. Thus, how to let the industrial robots automatically 
plan their path has become a very important issue. Path plan-
ning can be divided into global path planning and local path 
planning. The location of the obstacles in the global path plan-
ning is known. Thus, the main mission of global path planning 
is to build up the model of the environment after calculation 
and then optimize the path. Commonly used methods include 
the visible method, free space method, grid method, Dijkstra 
algorithm, and A* algorithm. However, the accuracy of global 
path planning is hard to ensure in a complex and changing 
environment. The local path planning needs the industrial 
robots to collect information and data from the environment 
through the whole assembly process, which requires the 
robots to be equipped with learning ability. Artificial potential 
field method, fuzzy control algorithm, hierarchical algorithm, 
neural network algorithm, and reinforcement learning method 
are the most commonly used methods in local path planning.

Khatib and Wu [9] first introduced the path planning of 
artificial potential field method, a virtual force method, to the 
robot field, which helps create the robot movement in the sur-
rounding environment into an abstract artificial gravitational 
field. This method results in a generally smooth and safe path, 
while it may also lead the robot to the problem of local opti-
mum. Zuo et al. [10] developed a fuzzy algorithm, which 
determined the priority of several possible paths and repeat-
edly drives the robot to the final configuration in the highest 
priority forward directi on. Duguleana and Mogan [11] pro-
posed a hierarchical path planning approach, which contains  
two different levels of structure. A grid-based A* algorithm 
was applied in the first level for finding the geometric path 
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and selecting multiple sub-goals path points for the next 
level. The least squares strategy iteration was applied into 
the second level to generate a smooth path under the restric-
tion of robots’ kinematics. Cruz and Yu [12] combined neural 
networks together with reinforcement learning into a new 
approach for solving the problem of robots in environments 
with static and dynamic obstacles. This approach helped peo-
ple to take control of the robots at any speed and avoid local 
minima and converges in complex environments.

In recent years, researchers have also made great progress in 
modifying those methods above. Zhuang et al. [13] modified 
the classic algorithms of multi-agent so that it does not need 
the unvisited state. With estimating unknown environment, the 
paper applied the neural kernel smoothing and networks to the 
approximate greedy actions. Saeed et al. [14] proposed a digital 
twin-based assembly data management and process traceabil-
ity approach for complex products. Samuel [15] generated the 
collision-free path with grid models and potential functions. In 
order to find the initial feasible path and avoid obstacles, they 
developed a boundary node method and a path enhancement 
method. The above two methods were proved to be feasible by 
testing in work environments in different degrees of  complexity.

2.2  Reinforcement learning

As one of the machine learning methods, reinforcement learning 
is used to describe and solve the learning strategies problem to 
achieve goals or maximize returns in the process of interaction 
between the agent and the surrounding environment. Roveda et  
al. [16] introduced the concept of reinforcement learning into 
the game of checkers and used a value function represented by a 
linear function to guide the selection. After years of research, the 
development of reinforcement learning becomes rapid, among 
which the Q-learning method has been widely used [16].

Recently, more and more modifications are applied to 
Q-learning algorithm. Konar et al. [17] provided a new deter-
ministic Q-learning with a presumed knowledge, which used 
four derived properties to update the entries in the Q-table at 
one time. Compared with the traditional Q-learning approach, 
this modified method had less time complexity and smaller 
required storage. Robots sometimes face the problems of slow 
convergence speed and long-planned paths when they are in 
an unknown environment in applying the Q-Learning method 
to perform path planning. Aiming to solve these problems, 
Zhao et al. [18] proposed the experience-memory Q-learning 
(EMQL) algorithm, which continuously updated the shortest 
distance from the current state node to the start point. Hu et al. 
[19] also introduced an experience aggregative reinforce-
ment learning method with a multi-attribute decision-making 
(MADM) to complete the mission of avoiding the real-time 
obstacle by decomposing the original obstacle avoidance task 
into two separate sub-tasks. Each sub-task is trained individu-
ally by a double Q-learning with a simple reward function.

3  Digital twin framework for assembly

Digital twin system integrates information control module with 
hardware implementation module, as shown in Fig. 1. It pro-
vides a new virtual assembly mode for industrial production, 
including the virtual control environment and actual physical 
system. The integration of computing process and physical 
process, in order to maintain the space–time consistency of 
virtual model and equipment entity, provides strong support for 
improving the robot path planning in an unknown environment 
and reducing the error between virtual and actual assembly, 
thus improving the application efficiency of virtual assembly 
in the actual industrial production. And it is more convenient 
for six-axis industrial robots and other new robots to be widely 
used in industrial production.

The sensing layer contains several measuring, feedback, 
and assembly devices, which have sensing, communication, 
and executing abilities, respectively. The sensing device, such 
as the grating ruler, laser sensor, and vision sensor, sends the 
timely measurement data to the monitor after obtaining the sta-
tus attribute information concerned by the user. The execution 
device, including the flexible assembly part on the assembly 
robot as well as the whole digital production line, completes 
the corresponding operations according to the received instruc-
tions, such as adjusting the posture, drilling, and trimming. All 
collected data can be transmitted through the communication 
network. The ability to sense and control the physical elements is 
the basis of realizing the interaction with the information system.

The model library together with the perception of the under-
lying data constitutes the assembly scenario, including the data 
of each joint of the assembly robot, and the position and size 
of each product. Through matching and knowledge reasoning 
between the assembly task and scenario, the corresponding 
assembly process schemes are formed. The necessary assem-
bly resources are then obtained based on the assembly scenario. 
The algorithm library sequentially generates the corresponding 
instruction code and adjustment scheme to drive the assem-
bly equipment. During the real-time operation of the assembly 
equipment, the feedback equipment receives the corresponding 
feedback data and interacts with the simulation results. This 
offline pre-assembly process and CPS online simulation control 
further ensure the smooth assembly. 

4  Theoretical framework

4.1  Q‑learning algorithm

Q-learning is a value-based algorithm in reinforcement learn-
ing. Q , also represented as Q(s, a) , is the obtainable feedback 
when taking action a , under a certain state s . The main objective 
of this algorithm is to get the optimal Q value through iteration. 
A Q-table is created to reserve the Q value. The agent will select 
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an action based on the �-greedy theory under a randomly given 
state s. After taking the given action, a new state will be gener-
ated, and a reward will be given from the outside environment. 
The reward value will then be reserved in a matrix R for later 
calculation of Q value in the next step. The Q value will then be 
reserved in a new matrix, called P. Finally, the action sequence 
will be generated based on the optimal (i.e., maximum) Q 
value. The detailed algorithm is shown in Table 1.

In this algorithm, s is the current state, while s′ is the next 
state. � and a′ represent the current action and next action. 
Q(s, a) is the corresponding value of s and a; r is the corre-
sponding reward. � ( 0 < 𝛾 < 1 ) is a factor that reflects the 
future feedback on the current situation. � represents the learn-
ing efficiency.

4.2  Dual reward in the improved Q‑learning 
algorithm

In Q-Learning, the reward function plays an impor-
tant part. It helps the agent to better find the right way 
towards the goal. With a well-designed reward function, 
the agent can find the optimal way in a short time with 
the least steps. In most cases, the goal node is repre-
sented by an especially large reward value, while the 
common nodes that contain no goal and obstacles will 
only have a small positive number or even zero. The 
nodes that represent obstacles will have a negative num-
ber, which can prevent the conflict between agent and 
obstacles. However, with this kind of static reward func-
tion, the agent will be easily trapped in blind searching. 
Therefore, a dual reward function, which includes static 
reward function and dynamic function, is introduced in 
this paper.

4.2.1  The static reward function

In most cases, the state nodes can be represented by obsta-
cles nodes, common nodes, and goal nodes. In this research, 
the reward function only contains two different kinds of 
nodes, common nodes and goal nodes. And the reward func-
tion is shown below:

Fig. 1  Digital twin framework for assembly

Table 1  Pseudocode of Q-learning algorithm

Initialize Q(s, a) arbitrarily
Repeat (for each episode):
  Initialize s
  Repeat (for each step pf episode):
    Choose a from s using policy derived from Q (i.e. �-greedy)
    Take action a , observe r, s′

    Q(s, a) ← Q(s, a) + a [r + γmaxa' Q(s', a') – Q(s, a)]
    s ← s';
  until s is terminal
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4.2.2  The dynamic reward function

In an unknown environment, the robot with the static reward 
function can be easily trapped in blind searching, for exam-
ple, when the potential next state nodes of the robot are all 
common nodes, which means the robot will not be punished 
or highly rewarded no matter what action it takes in the next 
state. It can choose the action of any direction, or even back-
wards, which will increase the distance between the robot 
and the goal node. Therefore, the dynamic reward function is 
applied to calculate the distance between its current node and 
the target node. The dynamic reward function is shown below:

In these equations, dt represents the distance between the 
current state node and the target node. And the dt+1 represents 
the distance between the next state node and the target node. 
� is a factor that depends on static reward since it represents 
the proportion of dynamic reward in the total reward the agent 
would get. In this research, we give the value of 0.8 to � . 

4.3  Q‑table optimized by case‑based reasoning

In the training process of Q-learning, the initial parameter val-
ues are difficult to choose. The reward matrix in the Q-learning 
algorithm is a constant matrix, and the initial Q-table is often 
initialized to a zero-valued matrix. Therefore, it is more sensi-
tive to the parameter values in the early stage of the algorithm 
and is often directly given based on empirical values. However, 
the same initial parameter values cannot be applied to networks 
of different scales and densities, so multiple experiments are 
required in different networks to determine the parameter val-
ues. Moreover, large space is necessary for exploration. At the 
beginning of the algorithm, under the guidance of a lack of 
prior knowledge, the agent will be trapped into the random 
exploration stage for a long time, and it is difficult to quickly 
approach the optimal solution. At the same time, random explo-
ration may cause the algorithm to converge to the local opti-
mal value in advance. Under the positive feedback effect of the 
roulette exploration strategy, the degree of exploration of the 
sub-optimal path is strengthened, which causes the algorithm to 

(1)Rewards =

{

0, if the node is the common node

10, if the node is the target node

(2)dt =

√

(xtarget − xt)
2
+ (ytarget − yt)

2

(3)dt+1 =

√

(xtarget − xt+1)
2
+ (ytarget − yt+1)

2

(4)Rewardd = �
dt − dt+1
|

|

dt − dt+1
|

|

fail to jump out of the local optimal. In order to make better use 
of the experience of historical cases, we use case-based reason-
ing methods to initialize the Q-table to improve the speed and 
quality of the training process, as shown in Fig. 2.

The case-based reasoning method has the function of ana-
logical learning, which relies on past experience for learning 
and problem solving. A case library is constructed to store his-
torical path planning cases. The solution of the new case can 
be obtained by modifying the case in the case library which is 
similar to the current scenario. First, the information used or 
generated in the path planning process is obtained. Each case 
in the case library contains information such as the task, envi-
ronment, and path generated during each path planning task. 
By matching the context and task of the current task with the 
cases in the library, and evaluating and correcting the matched 
candidate cases, the Q table used by the case with the best per-
formance is finally used as the initial Q table of the current task. 
At the same time, the case-based planning method continuously 
expands and updates the case library through iterative learning. 
In this study, the task similarity is calculated as follows:

where π1, π2 respectively represent the collection of obstacle 
points in the two scenes. p(π1 ∩ π2) represents the number 
of point sets in the same area covered by obstacles in two 

(5)S(π1, π2) =
p(π1 ∩ π2)

max(p(π1), p(π2))

Fig. 2  Flow chart of Q-table optimization based on CBR
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scenes, and max(p(π1), p(π2)) represents the number of point 
sets in obstacles with a larger coverage area.

4.4  Obstacle avoiding strategy

In some of the cases, a large negative reward would be set 
for the obstacle nodes in the reward function in order to keep 
the robot from encountering the obstacles. However, this 
research tries to record down the obstacle nodes and find 
the feasible actions and states at first every time the agent 
is going to move on to the next state. With this strategy, the 
possibility of hitting an obstacle can be reduced compared 
to the method of giving the obstacle nodes a large negative 
reward, since the Q-Learning method will sometimes choose 
actions and states randomly, ignoring the value of the reward. 

5  Experiments and analysis 

In order to verify the theoretical analysis effect of path plan-
ning based on the improved Q-learning algorithm proposed 
in the previous section, the manipulator and its working 
environment in the assembly digital twin system were mod-
eled and verified. For specific assembly tasks, the end of 
the six-joint industrial robot needs to start from the starting 

position coordinate point in its working space, avoid possible 
obstacles in the working space, and plan the path to finally 
reach the target point. This study selects the path planning 
scenario shown in Fig. 3 below and takes a typical six-joint 
robot UR10 as an example to explore its performance in path-
finding in the below scenario. The virtual environment con-
tains obstacles and targets in the shape of rectangular solid. 
Although most of the obstacles and targets, in reality, are in 
different irregular shapes, we modified them into rectangular 
solid for calculation. The constructed virtual environment is 
shown below. The software and hardware environments for 
system implementation are summarized as follows:

1. Application server: A ThinkPad desktop with Intel Core 
i7 CPU (3.40 GHz) and 32 GB memory, 2 T SCSI HD 
and a Windows Server operating system

2. Programming platform: PyCharm and Python 3.6.0
3. Database: MySQL 6.0
4. Network configuration: 1G Ethernet network connection 

between testing clients and application server

Fig. 4  Planning paths under different algorithms and iterations. a 
Original Q-learning, iteration = 200; b original Q-learning, itera-
tion = 2000; c dynamic reward, iteration = 200; d dynamic reward, 
iteration = 2000; e dynamic reward and CBR, iteration = 200; f 
dynamic reward and CBR, iteration = 2000

◂

Fig. 3  Path planning environ-
ment with obstacles
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The actual maximum working range of the UR10 manipu-
lator is a 1300-mm radial range. Considering the flexibil-
ity and safety of the actual assembly task of the robot, the 
working range is selected to be a three-dimensional space of 
250mm × 200mm × 125mm . Taking 5 mm as the minimum 
unit for the end of the robot to move, the three-dimensional 
workspace of the robot can be divided into a discrete state 
set containing 50 × 40 × 25 grids S , starting point H(0, 0,0), 
ending point T (32, 30, 12). The pink area is the obstacles 
such as the workbench in the environment, and the white 
area is the feasible region for the robot to work freely.

The robot’s possible motion directions include up, down, 
front, back, left, right, and a combination of the three coor-
dinate directions. Therefore, the action set A of the robot 
includes basic element actions in 26 directions. By setting 
equal algorithm parameters, we set � from 0 every 0.05 to 1 
the maximum number of iterations to 10,000, and observe 
the number of steps and the number of iterations experi-
enced when the planned path stabilizes during the process 
of planning the path from the start to the end of the robot.

Figure 4 shows the path of the manipulator in the initial 
and final stages of different algorithms. In the scene where the 
robot has obstacle areas, especially trap areas, using appro-
priate profit gain and environmental prior information can 
improve the efficiency of algorithm optimization, and itera-
tive steps are fewer. Although the round update makes the 
update time of each step longer, after fewer rounds of update, 
the iterative step reduction is more advantageous, making 
the learning path of the improved algorithm shorter and the 
overall efficiency of the algorithm better. For the modified 
Q-Learning method in this research, dual reward function, 
CBR, and obtaining feasible action method are applied. Both 
of these methods can help the robot find the optimal route 
towards the target in a safer and more efficient way. For the 
dual reward function method, instead of the original reward 
function, this research combines both the static reward and 
dynamic reward as a whole. The former reward can help the 
robot identify the status of the next action, while the latter 
reward can lead the robot to the right direction towards the 
target. For the obtaining feasible action method, the robot 
can avoid the collision with obstacles, and the safety level 
of this method is much higher than that of simply setting the 
static reward of the obstacle nodes to a large negative value.

Furthermore, when the improved Q-learning algorithm 
takes three values of 0.6, 0.8, and 1 in λ , the algorithm 
compares and observes the steps required for each itera-
tion of the pathfinding learning process. The index of the 
iteration round is taken as the horizontal axis, and the 
pathfinding steps of the robot in each round are taken as 
the vertical axis. The comparison of step changes is shown 
in Fig. 5. In fact, when λ is set to 0, the learning algorithm 
becomes the original Q-learning algorithm. Therefore, if 
λ is too small, the effective income of the update will be 

annihilated more quickly. If λ is too large, it will cause 
a certain number of repeated steps to explode. Locally 
optimal, so the iterative effect of some rounds does not 
converge, and the movement is repeated in the trap area. 
According to the performance of different λ , we set λ to 
0.8 in the following experiment.

In this study, two scenes are designed to evaluate the 
four algorithms, Q-learning algorithm (Q), Q-learning 
algorithm with CBR (CBR-Q), Q algorithm with dynamic 
reward function (DR-Q), and Q algorithm with dynamic 
reward function and CBR (D-CBR-Q). The shapes of 
obstacles are different in the two scenes, while the start-
ing and ending point are the same. To compare the per-
formance of the algorithms, three evaluation indices are 
utilized—descendent epoch, convergent mean steps, and 
the computation time. The descendent epoch denotes the 
epoch when the mean step in a window of 10 epochs gets 
150% of the corresponding convergence step. The con-
vergent mean step is the average step after the descendent 
epoch. The computation time is the time required for the 
robot to move from the starting point to the ending point 
when the algorithm converges. The descendent epoch 
measures the convergence efficiency, while the convergent 
mean step represents the optimization effect of algorithms.

Figure 6 shows the steps per epochs of different algo-
rithms. Q, CBR-Q, DR-Q, and D-CBR-Q converge at 
around 6000 epochs, 4000 epochs, 2500 epochs, and 2000 
epochs, respectively, when the planned path and number 
of iterations stabilized, and the algorithm steps decreased 
significantly faster. The Q-learning algorithm still does not 
converge when iterates 2000 epochs, and the algorithm’s 
pathfinding performance at 2000 iterations is worse than 
the former at about 1500 iterations, and the pathfinding 
performance at 1000 iterations is the same as that of the 
former. From Table 2, we can see that the convergent mean 
steps of Q-learning in scene 1 is 423.63, CBR-Q reduces 
the step by 5.3%, DR-Q reduces the step by 11.2%, and 
D-CBR-Q reduces the step by 16.5%. As for the descend-
ent epoch, Q-learning reaches the 150% convergence step 
at 517 epoch, while CBR-Q is 35.9% faster, DR-Q is 56.3% 
faster, and D-CBR-Q is 51.1% faster than Q-learning. 
The evaluation indices shows that the CBR method and 
dynamic reward strategy can both improves the perfor-
mance of the traditional Q-learning algorithm and the pro-
posed D-CBR-Q outperforms the other three algorithms.

In order to realize the centralized management of dis-
tributed resources by the cloud service architecture and the 
assembly requirements of centralized resources for decen-
tralized services, a prototype system was developed using 
the web-based B/S (browser/server) architecture model. 
Figure 7 shows an example of editing UR10 in the equip-
ment model library shown in the integrated Vrep modeling 
software.
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Fig. 5  Number of iterations per round under different λ

Fig. 6  Steps per epochs of different algorithms
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6  Conclusions

The assembly path planning of manipulators is playing an 
increasingly important role in modern manufacturing. The 
digital twin system can provide an intelligent assembly para-
digm, which realizes the real-time synchronization of virtual 
assembly and actual assembly through the integration of 
intelligent calculation process and physical process. In this 
research, a digital twin system for manipulator assembly is 
constructed, which includes functions such as real-time per-
ception, data exchange, communication, intelligent decision-
making, and virtual-real interaction. Moreover, this research 
also proposes a modified Q-learning algorithm, which speeds 
up the convergence speed by adding a dynamic reward func-
tion, optimizes the initial Q table by introducing knowledge 
and experience through the CBR algorithm, and prevents 
entry into the trapped area through the obstacle avoiding 
method. Finally, take the six-joint robot UR10 as an exam-
ple to verify the performance of the algorithm in the three-
dimensional space of pathfinding. The experimental results 
show that the improved Q-learning algorithm’s pathfinding 

performance is significantly better than the Q-learning 
algorithm.

As far as future research is concerned, there is great 
potential for the extension of the current model and solu-
tion algorithm. The proposed algorithm can be improved 
from the following aspects: In theoretical research, a more 
in-depth discussion on specific scenario modeling methods 
and control algorithms is still needed; application explora-
tion also needs to be expanded from more perspectives; 
and the research on system architecture needs to be more 
detailed.
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Fig. 7  The GUI of manipulator 
modeling

Table 2  Comparison of different algorithms

Scene 
number

Algorithm Descendent 
epoch

Convergent 
mean steps

Computation 
time (s)

1 Q 517 423.63 9.63
CBR-Q 331 401.19 8.96
DR-Q 226 376.11 6.48
D-CBR-Q 253 353.77 4.56

2 Q 466 483.15 12.21
CBR-Q 318 466.68 10.25
DR-Q 207 414.58 9.07
D-CBR-Q 194 367.85 6.10
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