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Abstract
It is widely recognized that there exists a close relationship between the health condition of manufacturing equipment and 
the overall quality of the manufactured product. It is, therefore, vital and of paramount practical importance and theoretical 
significance to develop optimized/integrated models of statistical process control (SPC) and maintenance planning (MP). The 
paper targets integration of the decisions of MP and SPC for a two-stage dependent manufacturing process. Each stage of the 
process can either be in the “in-control” state or in the “out-of-control” state such that transitions occur due to manufacturing 
equipment degradation/failure. Four control charts are developed to monitor the process by formulating the problem based 
on the renewal theory and considering different potential scenarios. Based on the intuitively appealing concept of oppor-
tunistic maintenance, we develop a novel integrated SPC and MP framework referred to as the Opportunistic Maintenance 
Integrated Model (OMIM), which takes into account both process and equipment conditions. A genetic algorithm (GA) 
is then applied to find the optimal values of the decision variables minimizing the long-run expected average cost per unit 
time. As a benchmark to evaluate the performance of the proposed OMIM, another integrated model referred to as the Non-
Opportunistic Maintenance Integrated Model (NOMIM) is developed. Numerical results illustrate the superior performance 
of the proposed OMIM framework in comparison with its counterparts.

Keywords  Integrated models · Renewal theory · Opportunistic maintenance · Statistical process control · Quality control

1 �  Introduction

It is critical and of paramount importance that industrial 
and manufacturing systems operate at their full potential, 
producing products with the highest achievable quality. To 
reach this goal, tremendous efforts have been devoted to 
both quality and maintenance concepts to ensure that the 
industrial processes move smoothly during the production 

run with minimum waste. In this regard, control charts 
are powerful graphical tools in Statistical Process Control 
(SPC) providing significant operational cost reduction. Con-
trol charts are commonly used to monitor the process over 
time to ensure the stability of the process and to promptly 
detect any quality shift in the process. In brief, there are two 
states associated with a process, i.e., the “in-control” or the 
“out-of-control” states. When an assignable cause happens, 
the process is said to be in the “out-of-control” state and 
before such an event, the process is assumed to be in the 
“in-control” state [1]. In cases that a process enters the “out-
of-control” state, it is required to perform corrective actions 
for repairing the systems and bring it back to the healthy 
(in-control) state.

Within the SPC context, control charts are developed to 
achieve different objectives among which the commonly 
used design measures are the economic and economic-
statistical design. Advancements and developments of 
the economic and economic-statistical designs of control 
charts [2–5] have attracted considerable attention due to their 
potentials to significantly improve the overall performance 
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of the underlying systems. The application of control charts 
has not been limited to manufacturing, and they have also 
been applied successfully in various other application 
domains such as maintenance planning and optimization [6, 
7]. In particular, a close relationship is established between 
equipment maintenance and product quality [8]. The equip-
ment used in manufacturing processes is subject to degrada-
tion due to daily usage and age. Maintenance actions such as 
preventive and corrective maintenance are, therefore, com-
monly performed with a direct effect on the performance and 
reliability of the equipment. It is expected that improving 
equipment’s performance would consequently increase the 
product’s quality. In addition, when the equipment fails dur-
ing the production run, the process is stopped, which leads 
to a considerable loss in the process, delays in delivery, and 
customer dissatisfaction. It is, therefore, vital and of great 
practical importance and theoretical significance to develop 
integrated models of SPC and MP, which is the target area 
of this paper.

Generally speaking, integrated MP and SPC models can 
be classified into two main categories: 

	 (i)	 The first group of researchers  [9–13] focused on 
the development of SPC control charts to monitor a 
process, which is subject to instantaneous shift. This 
particular type of shift can be attributed to an equip-
ment failure, and;

	 (ii)	 The second group of researchers [14, 15] has consid-
ered the similarity between on-line quality control 
and Condition Monitoring (CM) for maintenance 
purposes. The goal is to design SPC charts for direct 
monitoring of equipment’s health condition.

The main difference between the two categories is that the 
former deals with process monitoring such that a sample 
of size n is collected from the process. Furthermore, the 
process is usually assumed to be in one of the two unobserv-
able states, namely in-control or out-of-control states. Then, 
quality-related statistics are plotted on a control chart and 
as soon as a point falls above or below the control limits, 
the process is stopped and investigation is triggered. Then, 
proper maintenance actions are performed on the equipment/
system. The common assumption in the first category is that 
failure of the system/equipment causes this shift in the pro-
cess. In the second group, on the other hand, the focus is 
on direct system/equipment monitoring, which is subject to 
stochastic degradation leading to potential failures. The sys-
tem is usually assumed to be in one of the three states, two 
operational states, and one observable failure state. The CM 
data are collected from the system and plotted on the con-
trol chart. If the control chart signals, the system is stopped 
and inspection is performed followed possibly by preventive 
maintenance.

In this paper, based on the intuitively appealing concept 
of Opportunistic Maintenance (OM), we propose a novel 
integrated SPC and MP model referred to as the Opportun-
istic Maintenance Integrated Model (OMIM) for a two-stage 
dependent process. In particular, the concept of OM policy 
is taken into considerations in the MP phase. It is worth 
mentioning that the OM policy is widely discussed in main-
tenance literature as well as integrated SPC and MP models 
while the main focus was on equipment/system monitoring, 
i.e., Category (ii) [16]. On the contrary, in this paper, we 
consider the application of the OM policy in the integrated 
models while the special focus is on process monitoring, 
i.e., Category (i), which is a new development in this line 
of research. In addition, to evaluate the effectiveness of the 
proposed framework, another integrated model is developed, 
referred to as the Non-Opportunistic Maintenance Integrated 
Model (NOMIM). Both models are then compared with a 
conventional stand-alone maintenance model.

The remainder of the paper is organized as follow: The lit-
erature review is presented in Section 2. Section 3 describes 
the research methodology. Section 4 deals with problem 
description and industrial context. In Section 5, process evo-
lution in one production cycle is discussed. In Section 6, the 
proposed integrated SPC and MP model considering OM 
policy is discussed. Section 7 deals with the optimization 
procedure for the OMIM. The integrated model of SPC and 
MP without considering OM policy is discussed in Section 8. 
Section 9 continues with the presentation of the optimization 
procedure for the NOMIM. Section 10 presents the numerical 
example, and finally, Section 11 concludes the paper.

2 � Literature review

Different types of control charts have been used for the 
development of integrated models of MP and SPC ranging 
from traditional charts such as X̄ , chi-square, and Multi-
variate Exponentially Moving Average (MEWMA) to mul-
tivariate Bayesian control charts. Table 1 summarizes the 
literature on integrated models of MP and SPC. Different 
inspection policies are, typically, used including periodic 
monitoring, variable monitoring, and constant-hazard poli-
cies. Furthermore, different failure/deterioration mechanisms 
are considered to model the underlying system ranging from 
an exponential distribution, Weibull distribution, to general 
continuous/discreet distributions. Finally, in some integrated 
models, the maintenance impact on the system is supposed 
to be perfect, meaning that maintenance action renews the 
system to the as-good-as-new condition. Imperfect mainte-
nance is also taken into the consideration, which brings the 
system to a state between a perfect and a failure state. The 
authors in [13] proposed a model for two-stage dependent 
processes, where it is assumed that the system failure follows 
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an exponential distribution, and a fixed sampling interval is 
used as the inspection policy. Furthermore, two stand-alone 
models, i.e., maintenance and SPC models, are developed to 
evaluate the effectiveness of the proposed integrated model. 
The results showed that the integrated model considerably 
outperforms the two stand-alone models in terms of cost 
reduction. Next, we provide a detailed comparison between 
multi-stage integrated models and single-stage models to 
better illustrate the existing research gap in this domain and 
justify the need to address the identified gaps.

Multi‑stage integrated models vs. single‑stage models  In 
the practical application of SPC within manufacturing and 

industrial sectors, most of the systems and processes consist 
of more than one unit/stage. Maintenance and control mod-
els for a single unit system/process cannot be applied to such 
multi-stage systems/processes when there is a dependency 
between stages, as the optimal maintenance policy for one 
is not necessarily optimal for the whole system/process [21]. 
Therefore, it is imperative to develop domain-specific main-
tenance models for multi-stage processes. Among different 
methods for maintenance decision-making in this context, 
integrated models have attracted considerable attention 
recently. Studies in the area of integrated models for main-
tenance planning, however, have focused mainly on single-
stage processes or single-unit systems.

Table 1   Classification of different studies on integrated SPC and MP models

 
Research 
Papers

States Failure distribution Maintenance policy Type of control chart Inspection policy Component

 [44] 2 Exponential Preventive & corrective Hoteling chart Fixed interval 1
 [2] 2 Exponential Preventive & corrective X̄ chart Fixed interval 1
 [42] 3 Weibull CBM X̄ chart Constant hazard 1
 [43] 2 Arbitrary random variable Preventive & corrective X̄chart Fixed interval 2
 [51] 3 Exponential CBM Synthetic X̄ chart Fixed interval 1
 [46] n Exponential CBM Variable Shewhart chart Fixed interval 1
 [26] 2 Arbitrary random variable Preventive & corrective Shewhart & cause-selecting 

charts
Fixed interval 2

 [38] 3 Gamma process CBM X̄ chart Fixed interval 1
 [50] 3 Arbitrary random variable CBM multivariate Bayesian chart Fixed interval 1
 [29] 2 General Preventive X̄ chart Constant hazard policy 1
 [8] 2 Weibull Preventive X̄ chart Fixed interval 1
 [31] 3 Discrete Preventive Cumulative count of conform-

ing chart
Inspecting each product 1

 [47] 3 Exponential CBM Chi –square chart Fixed interval 1
 [32] 2 Exponential Preventive X̄ chart Fixed interval 1
 [33] 2 Geometric Preventive X̄ chart Variables interval 1
 [13] 2 Exponential Preventive Shewhart individual -residual 

joint chart
Fixed interval 2

 [23] 3 Exponential CBM X̄ chart Fixed interval 2
 [52] n Discrete CBM X̄ chart Fixed interval 1
 [37] 2 Weibull Preventive Shewhart chart Fixed interval 1
 [49] 3 Exponential CBM np chart Fixed interval 1
 [36] 3 General CBM Multivariate Bayesian chart Fixed interval 1
 [7] 3 Exponential CBM Multivariate Bayesian chart Fixed interval 1
 [6] 3 Markov process CBM Multivariate Bayesian chart Variable interval 1
 [28] 2 Weibull preventive Multivariate EWMA chart Fixed interval 1
 [39] 3 Exponential CBM X̄ chart Fixed interval 1
 [35] 3 Markov process CBM Multivariate Bayesian chart Fixed interval 1
 [48] 3 Exponential CBM Adaptive chart Fixed interval 1
 [40] 2 Weibull preventive X̄ chart Fixed interval 1
 [54] 2 Discrete preventive X̄ chart Fixed interval 1
 [45] n Markov process CBM X̄ chart Fixed interval 1
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There are a few researches devoted to multi-stage pro-
cesses due to the unique and complex characteristics of 
multi-stage processes [22, 23]. In particular, in multi-stage 
processes, different quality characteristics may need to be 
monitored in each stage. Generally speaking, multi-stage 
processes can be classified into: (a) multi-stage dependent 
processes, and; (b) multi-stage independent processes. In 
a multi-stage dependent process, which is the focus of this 
paper, the quality characteristics of a downstream stage are 
affected by the ones in the upstream stage. This property 
of multi-stage dependent processes is commonly known as 
the “Cascade Property” [24]. Alternatively, in a multi-stage 
independent process (Category (b)), the quality character-
istics of different stages are independent of each other. It 
is widely discussed in the literature that due to the cascade 
property, the control charts applied for monitoring multi-
stage independent processes may be inappropriate for mon-
itoring the multi-stage dependent processes [25–27]. Alter-
natively, cause-selecting control charts and Hotelling’s T2 
control charts have been proposed by researchers to moni-
tor multi-stage dependent processes [25, 26]. The superi-
ority of cause-selecting control charts over Hotelling’s T2 
control chart has been broadly discussed in this context. 
Accordingly, in this research, to monitor the second stage 
of the process, cause-selecting control charts are employed, 
while the first stage is monitored using Shewhart-type con-
trol charts.

3 � Research methodology

In this section, research objectives and research questions 
are explained together with the adopted research strategy, the 
inference approach, and the utilized data analysis.

Research objective  The development of integrated models 
of MP and SPC for multi-stage dependent processes is over-
looked in the literature due to the demanding and challeng-
ing nature of such problems. In other words, while integrated 
SPC and MP models for a single-stage process have been 
widely studied in the quality control literature, the devel-
opment of integrated models for a multi-stage process is 
still in its infancy [17–19]. Based on the above mentioned 
observation, we follow an inductive inference approach to 
develop a novel integrated model for a multi-stage depend-
ent process. The main objective of this research work is to 
address this gap, i.e., to jointly optimize the integrated SPC 
and MP model for a two-stage dependent process in order to 
minimize the long-run expected average cost per unit time. 
Along this objective, two distinguished integrated models 
of SPC and MP are developed for a two-stage dependent 
process. The quality characteristic of the second stage is 
affected by the one in the first stage because of the cascade 

property. The first stage is monitored using a Shewhart type 
control chart, while the second stage is monitored using a 
cause-selecting control chart. The simultaneous effect of 
changes in the mean and variance of the process is investi-
gated under different maintenance policies.

Research questions  Towards achieving the aforementioned 
objective, in this research work, we aim to answer the fol-
lowing three questions: 

1.	 How significant is the impact of conducting an oppor-
tunistic maintenance policy for decreasing the expected 
total cost of a two-stage dependent process?

2.	 For a multi-stage process, how much does the integra-
tion of maintenance and quality control decisions reduce 
the total expected cost of the process compared to stand-
alone models?

3.	 What are the effects of the process parameters on the 
expected total cost and decision variables in an inte-
grated model of maintenance and quality?

The methodology of the paper to address the above-men-
tioned questions is based on development of mathemati-
cal models. More specifically, the problem is formulated 
based on the renewal theory and Genetic Algorithm (GA) is 
applied to find the optimal values of the decision variables to 
minimize the long-run expected average cost per unit time. 
The effects of the process parameters on the decision vari-
ables and cost are analyzed using the Design of Experiments 
(DOE) approach.

Research strategy  To answer the targeted questions and 
develop new models towards achieving our objective, it is 
assumed that the process has the cascade property. More 
specifically, the quality characteristic of a downstream stage 
is affected by the one in the upstream stage. This cascade 
property (inter-related stages) is modeled based on a regres-
sion formula. We further assume that two types of assign-
able causes denoted by AC1 and AC2 can occur, which are 
attributed to equipment degradation and failure. The AC1 
affects the first stage, while AC2 is associated with the sec-
ond stage. Each type of the two assignable causes affects 
both the mean and variance of the process. The failure of 
the equipment/system for each stage is a general continuous 
random variable. Four control charts, namely X̄ − S2 , and 
ē − S2

e
 are designed to monitor the first and second stages of 

the process, respectively.

Employing and comparing different maintenance policies 
to coordinate the decisions of MP and SPC for a two-stage 
dependent process are the main contributions of the paper. 
To this end, two main integrated models are developed. The 
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proposed models have the following key advantages com-
pared to the existing integrated models of SPC and mainte-
nance for multi-stage processes:

•	 The simultaneous effect of change on both the mean and 
variance of the process is considered.

•	 Applicability to deferent types of inspection policies.
•	 In addition to the multi-stage dependent process, the pro-

posed models can be applied for a multi-stage independ-
ent process.

•	 Unlike the excising integrated models in the literature, no 
restrictive assumptions are made regarding the process 
failure mechanism.

Regarding the inspection policies, it should be noted that, in 
developing the proposed integrated models, the time points 
of sampling inspection are considered as the decision vari-
ables. The proposed model, therefore, is capable of adapt-
ing to different inspection policy types. We should point 
out that in designing an integrated model, three inspection 
policies have been investigated, namely: (i) Fixed inspec-
tion using periodic interval; (ii) Constant hazard policy, 
and; (iii) Variable inspection interval. The former inspec-
tion policy, i.e., the fixed inspection interval, is the most 
widely used in practice within manufacturing and industrial 
sectors because it is easy to implement, especially when it 
comes to multi-stage/unit processes. Therefore, most of the 
recently proposed integrated models are developed based on 
fixed inspection policy as can be seen in Table 1. Although 
the analysis of Section 10 is conducted assuming the fixed 
inspection interval policy, other inspection policies can be 
applied. One of the advantages and contributions of the 
proposed model is that no restrictive assumptions are made 
regarding the process failure mechanism. In other words, the 
proposed model can be applied considering different failure 
mechanisms including but not limited to Weibull, exponen-
tial, Gamma, and Lognormal distributions. As Weibull is a 
widely used distribution in maintenance literature due to its 
versatility and flexibility, we have performed our analysis 
based on Weibull distribution in Section 10.

Data analysis  To validate the developed models, we con-
sider a practical application, i.e., cotton yarn manufacturing 
process. In this context, root-cause analysis is performed to 
determine the main factors affecting failure of each under-
lying system/equipment. Based on such analysis, process 
prediction is performed based on the historical data where 
the failure distributions of the failure root causing system/
equipment are determined. By incorporating the failure 
probability, and by considering occurrence of different 
scenarios within an inspection interval, the probability of 
conducting different maintenance policies is computed to 
minimize the long-run expected average cost of the process. 

A regression model is then established to predict the quality 
characteristic of the second stage from the quality char-
acteristic of the first stage using historical data while the 
process is in the in-control state. It is worth mentioning 
that within the targeted application, availability of modern 
testing devices such as Uster Advanced Information System 
(AFIS) and High Volume Instrument (HVI) [20] makes it 
possible to collect the parameters regarding the quality of 
cotton fiber relatively quickly. These devices are suitable 
for obtaining large quantity of data allowing the quality 
and process engineers to develop and compute statistics and 
regression models to predict yarn properties from cotton 
fiber property parameter.

4 � Industrial context and problem 
description

Within manufacturing and industrial sectors, typically, one 
deals with applications consisting of more than one unit/
stage, where dependencies exist between the underlying 
stages. In this section, description of the problem at hand is 
provided before which potential industrial applications are 
discussed in Sub-section 4.1.

4.1 � Industrial context

There are various examples of multi-stage dependent (and 
particularly two-stage dependent) manufacturing processes 
(such as brazing process) in different industries including but 
not limited to tool industry, textile industry, and automobile 
industry. For the first category, according to [53], the gold 
concentration (X) in the first process step had the greatest 
impact on the thickness of the thin golden films (Y) in the 
second process step. The thickness variation increases as 
the concentration increased. Another example is the cotton 
yarn factory within textile industry that manufactures cotton 
yarn in two processes, as explained in [13]. The quality vari-
able Y, which is produced in the current process, denotes the 
skein strength of the cotton yarn. The most essential single 
indicator of spinning quality is yarn strength. Good yarn 
strength indicates good spinning and weaving performance 
as well as increasing the range of usefulness of given cotton. 
The fiber length of the cotton yarn is denoted by the quality 
variable X, which is produced in the first process. The skein 
strength can be determined using fiber length, and the rela-
tionship between the two quality variables can be discovered 
by studying historical data.

Another example is the automobile crankshaft machin-
ing process includes two stages, an automobile body assem-
bly that has multiples elements assembled in a couple of 
stations, and print circuit board manufacturing that contain 
exposure to black oxide, lay-up, hot press, cutting, drilling, 
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and inspection [41]. Reference [30] discussed an interrela-
tion among the stages of a multi-stage manufacturing process 
known as quality-dependent failure. It means the failure of 
downstream levels caused by the defective product manufac-
tured in the upstream stages. For example, in the automotive 
industry, the car body assembly line includes several serial 
stations that typically collect a 150 to 250 sheet metallic ele-
ments. A meeting station can fail because of catastrophic tool-
ing failures as a result of defective products. Certainly, big 
dimensional errors associated with the locating holes of one 
sheet metal part may also lead to locating tool failures such as 
locating pin being broken during the part loading process, a 
part being stuck at pins, or a part being unable to be correctly 
positioned by the locators. Reference [34] presented exam-
ples from automated paint shops where vehicles need to go 
through the phosphate, sanding, sealing, and multiple cleaning 
and coating operations. Multiple inspections are carried out 
after these operations.

4.2 � Problem description

Consider a production process producing items in two suc-
cessive stages as shown in Figure 1. The following general 
regression model is utilized to represent this relation:

where subscripts i and j represent the sampling epoch and 
item number in a sample, respectively. Term �ij is a random 
error, which follows a Gaussian distribution, i.e., 
�ij ∼ N(0, �2

�
) . As stated previously, process monitoring is 

conducted using four control charts at the same time. Spe-
cifically, the X̄ − S2 control charts are jointly used to monitor 
the mean and variance of the process in Stage 1, while the 
ē − S2

e
 control charts are jointly used to monitor the process 

in Stage 2. The X̄ − S2 control charts are Shewhart control 
charts that are set up based on the X̄ and S2 statistics. The 
ē − S2

e
 charts are Cause-Selecting Control Charts (CSCC) 

that are set up based on the mean and the variance of cause-
selecting values.

A sample of size n is collected from Stage 2 at time 
t1, t2,… , tm−1 . Therefore, the observation pair (Xi1, Yi1), (Xi2,

(1)
Yij ∣ Xij = f (Xij) + �ij, for i = 1, 2,… ,m − 1, and; j = 1, 2, ..., n

Yi2),… , (Xin,Yin) is available at sampling time ti . Based on the 
collected observations, the statistics X̄i, S

2

i
, ēi , and S2

ei
 are cal-

culated as follows:

where eij = Yij ∣ Xij − Ŷij ∣ Xij and Ŷij ∣ Xij is the fitted value 
of Yij ∣ Xij . The values of (X̄i, S

2

i
) and (ēi, S2ei) are plotted on 

X̄ − S2 and ē − S2
e
 control charts such that the control limits 

of X̄ − S2 are given by:

The control limits of ē − S2
e
 are given by:

When an assignable cause happens, the process is said to 
be in the “out-of-control” state and before such an event the 
process is assumed to be in the “in-control” state. Here, it is 
assumed that the process can be affected by two assignable 
causes, namely, AC1 and AC2. The AC1 affects the mean and 
variance of the process in Stage 1 such that the distribution 
of X̄ changes from X̄∼N(𝜇,

𝜎2

X

n
) to X̄∼N(𝜇 +

𝛿1𝜎X
√

n
,
𝛿2
2
𝜎2

X

n
) . 

Similarly, AC2 affects the process in the second stage such 
that the distribution of ē shifts from ē∼N(0,

𝜎2

𝜉

n
) to 

ē∼N(
𝛿3𝜎𝜉
√

n
,
𝛿2
4
𝜎2

𝜉

n
) such that 𝛿1, 𝛿3 > 0 and 𝛿2, 𝛿4 > 1.

The probabilities associated with Type I ( � ) and Type II 
( � ) errors are computed using the following equations [53]:

and

(2)
X̄i =

∑n

j=1
Xij

n
; ēi =

∑n

j=1
eij

n
;

S2
i
=

∑n

j=1
(Xij − X̄ij)

2

n − 1
; S2

ei
=

∑n

j=1
(eij − ēij)

2

n − 1
,

(3)

LCLX̄ =𝜇 −
k1𝜎x
√

n
,

UCLX̄ =𝜇 +
k1𝜎x
√

n
,

UCLS2 =k2𝜎
2

x
.

(4)

LCLē = −
k3𝜎𝜉
√

n
,

UCLē =
k3𝜎𝜉
√

n
,

UCLS2
e
=k4𝜎

2

𝜉
.

(5)

𝛼X̄ =2𝜙(−k1)

𝛼S2 =1 − FX2

(

(n − 1)k2
)

,

𝛼ē =2𝜙(−k3),

𝛼S2
e
=1 − FX2

(

(n − 1)k4
)

,

Fig. 1   A two-stage series production process
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where �(⋅) and Fx2 (⋅) indicate the Cumulative Density Func-
tion (CDF) of a standard Gaussian distribution and a Chi-
square distribution with n − 1 degrees of freedom, respec-
tively. Next, different maintenance actions during process 
evaluation in a production cycle are discussed.

5 � Maintenance actions during a production 
cycle in the OMIM

According to the observations obtained in the sampling time 
point ti (i = 1, 2,… ,m − 1) , Eq.  (2) computes the corre-
sponding statistics of each control chart. If at time point ti , at 
least one of the control charts signals, according to the OM 
policy, both stages of the process will be investigated, which 
takes TI time units with the cost of CI . If the investigation 
result indicates the true alarm, corrective maintenance will 
be performed; otherwise, if it is a false alarm, the process 
will be continued. Similarly, if none of the control charts 
issue a signal, the process continues its operation.

For the two-stage manufacturing process and based on the 
above-mentioned discussion, the state-space is defined by 
pair (u, �) , for ( u, � = {0, 1} ), such that the first component 
indicates the state of the process in Stage 1, and the second 
component indicates the state of the process in Stage 2. The 
process in each stage can be either in the “in-control” state, 
denoted by 0, or in the “out-of-control” state denoted by 
1. Therefore, the process is characterized by the following 
states:

•	 State (0,0): In this state, the process is not affected by 
ACs, and both stages are in the in-control state. No main-
tenance action is required, and the production cycle con-
tinues. In this state, indeed, the control charts may issue 
false alarms due to Type I error.

•	 State (1,0): In this state, Stage 1 is affected by AC1 while 
the distribution of ē remains unchanged. In this state, a 
Reactive Maintenance (RM) action denoted by RM(1, 0) 
is conducted, which renews the process, and the cycle is 
terminated.

•	 State (0,1): In this state, Stage 2 is affected by AC2 while 
the distribution of X̄ remains unchanged. In this state, a 
corrective maintenance action denoted by RM(0, 1) is 

(6)

𝛽X̄ =𝜙(
k1

𝛿2
−

𝛿1

𝛿2
) − 𝜙(−

k1

𝛿2
−

𝛿1

𝛿2
),

𝛽S2 =FX2

( (n − 1)k2

𝛿2
2

)

,

𝛽ē =𝜙(
k3

𝛿4
−

𝛿3

𝛿4
) − 𝜙(−

k3

𝛿4
−

𝛿3

𝛿4
),

𝛽S2
e
=FX2

( (n − 1)k4

𝛿2
4

)

,

conducted, which renews the process and the cycle is 
terminated.

•	 State (1,1): In this state, both stages are affected by 
AC1 and AC2 where corrective maintenance denoted by 
RM(1, 1) is conducted, which renews the process, and the 
cycle is terminated.

Preventive/Planned Maintenance (PM) is applied at tm if the 
process is not affected by the RMs in the previous inspection 
intervals. This terminates the production cycle and renews 
the process. Based on the above description, each production 
cycle starts in the in-control state with zero age and termi-
nates due to the effect of one type of RM or PM.

The main objective is to jointly optimize the integrated 
SPC and MP model for a two-stage dependent process in 
order to minimize the long-run expected average cost per 
unit time. The computational algorithm is formulated based 
on the renewal theory, and the optimal control chart parame-
ters, namely the sample size, sampling intervals, and control 
limits, are obtained. This completes the model description. 
In the next section, details of the computation procedure 
will be discussed.

6 � OMIM: Integrated SPC and MP model 
considering the OM policy

In this section, we proceed to develop the main proposed 
integrated SPC and MP model, referred to as the OMIM. 
Let E(CL) and E(TC) be the expected cycle length and the 
expected total cost incurred in one cycle, respectively. From 
the renewal theory, for any stationary policy � determined by 
t1, t2,… , tm, k1, k2, k3, k4, n,m , the long-run Expected average 
Cost per unit time (ECC) can be computed as follows:

where the expected total cost is computed as follows:

Terms on the Right Hands Side (RHS) of Eq. (8) rep-
resent the expected total quality cost, corrective mainte-
nance cost, preventive maintenance cost, sampling cost, and 
inspection cost, respectively. It is worth mentioning that as 
stated in the previous section, at time tm if the process is 
renewed due to the PM action, the investigation will not 
be performed; therefore, the last term in Eq. (8) is added. 
Similarly, the expected cycle length is calculated as follows:

(7)ECCOMIM(�) =
E�(TC)

E�(CL)
,

(8)

E(TC) =
∑

�=0,1

∑

u=0,1

C
u,�

QC
E(Tu,�) +

∑

�=0,1

∑

u=0,1

u+�≠0
C
u,�

RM
P
u,�

RM
+ CPMPPM

+CQE(QC) + CIE(�) + CI(1 − PPM).
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(9)

E(CL) =
∑

�=0,1

∑

u=0,1

E(Tu,�) +
∑

�=0,1

∑

u=0,1

u+�≠0
T
u,�

RM
P
u,�

RM
+ TPMPPM

+TIE(�) + TI(1 − PPM).

Terms on the RHS of Eq. (9) represent the expected in-
control and out-of-control times in each production cycle, 
expected time to perform corrective and preventive mainte-
nance, and expected time to perform investigation. To be able 
to calculate Eqs. (8)-(9), we need to compute E(Tu,�) , P

u,�

RM
 , 

Fig. 2   (a,b) Possible scenarios 
during a sampling inspection 
interval

(a)

(b)
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PPM , E(QC) and E(�) . Before proceeding with calculations of 
the required components, different scenarios that may occur 
during an inspection interval should be investigated. These 
scenarios are discussed in the next subsection followed by a 
detailed calculation of each required component.

6.1 � Possible scenarios within an interval

During each inspection interval, e.g., (ti−1, ti) for 
i = 0, 1,… ,m , ten different scenarios may occur. Figure 2 
illustrates these scenarios along with their corresponding 
details. It is assumed that the number of sampling periods, 
m, is larger than 1.

The probability of occurrence of each scenario is denoted 
by P(Ssti−1 ) , for s ∈ {1, 2,… , 10} . For example, P(S1ti−1) is the 
probability that both stages are in the in-control state at the 
beginning of the sampling inspection, i.e., ti−1 , and remain in 
this state until ti . Let T1 and T2 denote the time of the quality 
shift of Stages 1 and 2, respectively. Furthermore, let (u, �)ti−1 
represent the state of the process at time ti−1 . The probability 
of occurrence for Scenario 1 can be written as follows:

[26] provides the derivation of all the above-mentioned 
probabilities. This completes our discussion on the process 
evolution within a single interval. Next, we need to compute 
the process’s state at the beginning of an interval.

6.2 � State of the process at the start of a sampling 
period

In this subsection, we compute the probability that the pro-
cess operates in a special State (u, �);u, � ∈ {0, 1} at the 
start of an inspection period. Let Pu,�

ti
 denote the probabil-

ity of being in State (u, �) immediately after an inspection 
performed at ti . The required probabilities are computed as 
follows:

and for i ∈ {1, 2,… ,m − 1}

 

(10)

P(S1ti−1) = P
(

T1 > ti, T2 > ti ∣ (u, 𝜈)ti−1 = (0, 0)
)

=
F̄1(ti)

F̄1(ti−1)

F̄2(ti)

F̄2(ti−1)
.

(11)P0,0

ti
=F̄1(ti)F̄2(ti), for i ∈ {1, 2,… ,m},

(12)
P1,0

ti
=𝛽X̄𝛽S2 (1 − 𝛼ē)(1 − 𝛼S2

e
)
[

P0,0

ti−1
× P(S2ti−1) + P1,0

ti−1
× P(S8ti−1)

]

,

(13)
P0,1

ti
=𝛽ē𝛽S2

e
(1 − 𝛼X̄)(1 − 𝛼S2 )

[

P0,0

ti−1
× P(S3ti−1) + P0,1

ti−1
× P(S6ti−1)

]

,

(14)
P1,1

ti
=𝛽X̄𝛽S2𝛽ē𝛽S2

e

[

P0,0

ti−1
× P(S4ti−1) + P0,0

ti−1
× P(S5ti−1)

+P0,1

ti−1
× P(S7ti−1) + P1,0

ti−1
× P(S9ti−1) + P1,1

ti−1
× 1

]

.

Equation (11) indicates that the process will be in State 
(0,0) at time ti if the occurrence times of both types of 
ACs are greater than ti . The term inside the bracket on 
the RHS of Eq. (12) indicates the probability of being in 
State (1,0) just before the inspection time ti . These two 
terms are obtained based on Scenarios 2 and 8. The first 
term on the RHS of Eq. (12) is the probability that no 
alarm is triggered by the control charts after inspection 
time ti given that the process is in State (1,0). Similarly, 
Eqs. (13) and (14) represent the probability of being in 
States (0,1) and (1,1) at time ti , respectively. Computa-
tion of expected in-control and out-of-control times will 
be discussed next.

6.3 � Computation of E(T
u,�)

In this subsection, we derive the required expressions 
to compute the expected in-control and out-of-control 
times, i.e., E(Tu,�) , in one production cycle. Let Ti

u,�
 be the 

expected time length in interval (ti−1, ti) , while the process 
operates in State (u, �) . Therefore, E(Tu,�) can be computed 
as follows:

where

Equation (16) is obtained based on Scenarios S1 to S5 
where the process starts in the in-control state at time ti−1 . 
More specifically, if Scenario S1 occurs, the process oper-
ates in State (0,0) during the whole interval of (ti−1, ti) . We 
note that although a simpler equation can be derived for Ti

0,0
 , 

to be consistent with other equations, instead, Eq. (16) is 
considered. On the other hand, if S2, S3, S4 or S5 occurs, the 
system operates in State (0,0) for a duration within t − ti−1 . 
Similarly, the remaining expected times are computed as 
follows:

(15)E(Tu,�) =

m
∑

i=1

Ti
u,�
, for u, � ∈ {0, 1},

(16)

Ti
0,0

= P0,0

ti−1

[ F̄1(ti)

F̄1(ti−1)

F̄2(ti)

F̄2(ti−1)
(ti − ti−1)

+
F̄2(ti)

F̄2(ti−1)
∫

ti

ti−1

f1(t)

F̄1(ti−1)
(t − ti−1)dt

+
F̄1(ti)

F̄1(ti−1)
∫

ti

ti−1

f2(t)

F̄2(ti−1)
(t − ti−1)dt

+ ∫
ti

ti−1

f1(t)

F̄1(ti−1)
∫

ti

t

f2(t
�)

F̄2(t)
(t − ti−1)dt

�dt

+ ∫
ti

ti−1

f2(t)

F̄2(ti−1)
∫

ti

t

f1(t
�)

F̄1(t)
(t − ti−1)dt

�dt

]

,

for i = 1, 2,… ,m.
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This completes the calculations required for Eq. (15). Next, 
derivations for computation of the required components in 
Eqs. (8) and (9) are presented.

6.4 � Computation of E(QC)

Let Pi
QC

 be the probability of performing a sampling inspec-
tion at ti . Therefore, E(QC) is calculated as follows:

6.5 � Computation of E(˛)

At a given sampling time, a false alarm is issued from the 
control charts if both stages are in the in-control state and at 
least one of the control charts issues a false alarm. Therefore, 
the expected number of false alarms during a production cycle 
can be calculated as follows:

(17)

Ti
0,1

=P0,0

ti−1

[ F̄1(ti)

F̄1(ti−1)
∫

ti

ti−1

f2(t)

F̄2(ti−1)
(ti − t)dt

+ ∫
ti

ti−1

f2(t)

F̄2(ti−1)
∫

ti

t

(t� − t)
f1(t

�)

F̄1(t)
dt�dt

]

+ P0,1

ti−1

[ F̄1(ti)

F̄1(ti−1)
(ti − ti−1) + ∫

ti

ti−1

f1(t)

F̄1(ti−1)
(t − ti−1)dt

]

,

for i = 1, 2, ...,m.

(18)

Ti
1,0

=P0,0

ti−1

[ F̄2(ti)

F̄2(ti−1)
∫

ti

ti−1

f1(t)

F̄1(ti − 1)
(ti − t)dt

+ ∫
ti

ti−1

f1(t)

F̄1(ti−1)
∫

ti

t

(t� − t)
f2(t

�)

F̄2(t)
dt�dt

]

+ P1,0

ti−1

[ F̄2(ti)

F̄2(ti−1)
(ti − ti−1) + ∫

ti

ti−1

f2(t)

F̄2(ti−1)
(t − ti−1)dt

]

,

for i = 1, 2, ...,m.

(19)

Ti
1,1

=P
1,1

ti−1
× (ti − ti−1) + P

0,0

ti−1

[

∫
ti

ti−1

f1(t)

F̄1(ti−1)
∫

ti

t

(ti − t�)
f2(t

�)

F̄2(t)
dt�dt

+∫
ti

ti−1

f2(t)

F̄2(ti−1)
∫

ti

t

(ti − t�)
f1(t

�)

F̄1(t)
dt�dt

]

+ P
1,0

ti−1 ∫
ti

ti−1

f2(t)

F̄2(ti−1)
(ti − t)dt

+P
0,1

ti−1 ∫
ti

ti−1

f1(t)

F̄1(ti−1)
(ti − t)dt. for i = 1, 2,… ,m.

(20)E(QC) =

m−1
∑

i=1

Pi
QC

=

m−1
∑

i=1

P0,0

ti−1
+ P1,0

ti−1
+ P0,1

ti−1
+ P1,1

ti−1
.

(21)E(𝛼) =

m−1
∑

i=1

Pi
𝛼
=

m−1
∑

i=1

F̄1(ti)F̄2(ti)𝛼.

where Pi
�
 indicates the probability of issuing a false alarm at 

time ti . The probability that at least one of the control charts 
issues a false alarm, i.e., � , is computed as follows:

6.6 � Computation of Pu,�
RM

 and P
PM

For u, � ∈ {0, 1}, u + � ≠ 0 , the probabilities of conducting 
PM and RM actions for a production cycle are as follows:

where Pi
RM(u,�)

 is the probability of conducting RM in State 
(u, v) after performing the inspection at time ti . For each 
possible state and, for 1 ≤ i ≤ m − 1 , Term Pi

RM(u,�)
 can be 

calculated as follows:

Term I on the RHS of Eq. (24) is the probability that at 
least one of the control charts releases an alarm when the 
process operates in State (1,0) just after the inspection at ti . 
Term II on the RHS of Eq. (24) is the probability of the pro-
cess operating in State (1,0) just before the inspection time 
ti , which is achieved based on Scenarios 2 and 8. Similarly, 
for 1 ≤ i ≤ m − 1 , we have:

This completes all the calculations required for comput-
ing the long-run expected average cost per unit time defined 
in Eq. (7). Next, we present the optimization problem for 
the proposed model.

(22)𝛼 = 1 − (1 − 𝛼X̄)(1 − 𝛼S2 )(1 − 𝛼ē)(1 − 𝛼S2
e
).

(23)
P
u,�

RM
=

m−1
∑

i=1

Pi
RM(u,�)

,

PPM =1 −
∑

�=0,1

∑

u=0,1

Pi
RM(u,�)

,

(24)

Pi
RM(1,0)

=
[

1 − 𝛽X̄𝛽S2 (1 − 𝛼ē)(1 − 𝛼S2
e
)
]

�����������������������������������������
Term I

×
[

P0,0

ti−1
× P(S2ti−1) + P1,0

ti−1
× P(S8ti−1)

]

���������������������������������������������������
Term II

.

(25)
Pi
RM(0,1)

=
[

1 − 𝛽ē𝛽S2
e
(1 − 𝛼X̄)(1 − 𝛼S2 )

]

×
[

P0,0

ti−1
× P(S3ti−1) + P0,1

ti−1
× P(S6ti−1 )

]

,

(26)

Pi
RM(1,1)

=
[

1 − 𝛽X̄𝛽S2
e
𝛽ē𝛽S2

][

P0,0

ti−1
× P(S4ti−1) + P0,0

ti−1
× P(S5ti−1)

+P0,1

ti−1
× P(S7ti−1) + P1,0

ti−1
× P(S9ti−1) + P1,1

ti−1
× P(S10ti−1)

]

.
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7 � Optimization procedure for OMIM

In the above sections, the expected cycle length and cycle 
cost are calculated. The optimization problem for the pro-
posed OMIM can be formulated as follows:

Terms E(TC) and E(CL) are calculated based on Eqs. (8) 
and (9). The first three constraints guarantee existence of 
suitable statistical characteristics for the control charts in 
the in-control and out-of-control states. The last constraint 
is added to avoid very short planned maintenance interval. 
The optimal policy �∗ is obtained, which is characterized 
by the optimal values of inspection times (t1, t2,… , tm−1) , 
time of performing PM actions, control limit parameters 
k1, k2, k3, k4 , sample size n, and finally, the maximum num-
ber of inspection periods m.

This completes our discussion of the proposed compu-
tational algorithm. Next, we present the second integrated 
model by considering the policy that only one stage of the 
process is stopped for investigation.

8 �  NOMIM: Integrated model of SPC and MP 
without considering OM policy

In this section, another integrated model referred to as 
the NOMIM is presented. The core of this policy is that 
sampling inspection is conducted similarly to that of the 
OMIM policy; however, if the control chart associated 
with one of the stages signals an alarm, that particular 
stage is investigated to verify the correctness of the signal 
with the cost of C′

I
 taking T ′

I
 time units. The result of the 

investigation will be either a true or a false alarm. In a 
sampling time point, one of the following four scenarios 
may happen:

•	 None of the control charts signals an out-of-control 
condition. In this case, the process continues its opera-
tion without any interruption.

•	 At least one of the control charts associated with Stage 
1 signals an out-of-control condition while there is no 
alarm produced by the control charts corresponding to 

(27)

Minimize ECCOMIM(𝜂) =
E𝜂(TC)

E𝜂(CL)
,

Subject to ARL0 <
1

𝛼

ARL1 >
1

1 − 𝛽X̄𝛽S2

ARL1 >
1

1 − 𝛽ē𝛽S2
e

tm >tmin.

Stage 2. In this case, Stage 1 is investigated to verify 
the correctness of the received signal. If a false alarm 
is investigated, the production cycle continues; other-
wise, a minimal maintenance action denoted by MM1 
is conducted with the cost of CMM1 , which takes TMM1 
time unit bringing the first stage of the process to the 
in-control state.

•	 At least one of the control charts associated with Stage 
2 signals an out-of-control condition while there is no 
alarm produced by the control charts corresponding to 
Stage 1. In this case, Stage 2 is investigated to verify 
the correctness of the received signal. If a false alarm is 
investigated, the production cycle continues; otherwise, 
a minimal maintenance action denoted by MM2 will 
be conducted with the cost of CMM2 , which takes TMM2 
time units bringing the second stage of the process to 
the in-control state.

•	 In both stages, at least one of the control charts releases 
a signal. In this case, both stages are investigated. If 
there is a false alarm in both stages, the production 
cycle continues. If the signal of the first stage indicates 
the true alarm and the signal of the second stage indi-
cates the false alarm, MM1 is conducted, which brings 
the first stage to the in-control state. Conversely, if the 
signal associated with the first stage indicates the false 
alarm and the signal corresponding to the second stage 
indicates true alarm, MM2 , is conducted, which brings 
Stage 2 to the in-control state. Finally, if the signals 
indicate true alarms, it means that both ACs affect the 
process and the state of the process is (1, 1). Corrective 
maintenance action should be performed to bring back 
the whole process to the in-control state.

•	 If the process is not renewed during the previous inspec-
tion epochs due to the performance of RM actions, PM 
is conducted at time point tm.

It is worth mentioning that, in this policy, conducting RM or 
PM terminates the production cycle and renews the process, 
while minimal maintenance actions just bring back the cor-
responding stage to the in-control state and does not termi-
nate the production cycle. Thus, during a production cycle, 
MM1 or MM2 may be performed more than once. Similar to 
the previous policy, let E(CL) and E(TC) be the expected 
cycle length and the expected total cost incurred in one 
cycle, respectively. From renewal theory, for any stationary 
policy � determined by t1, t2,… , tm, k1, k2, k3, k4, n,m , the 
long-run expected average cost per unit time for this inte-
grated model represented by ECCNOMIM can be computed 
as follows:

(28)ECCNOMIM(�) =
E�(TC)

E�(CL)
,
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where the expected total cost and cycle length for this policy 
are computed as follows:

 
Similar to the previous developments, in order to calcu-

late Eqs. (29)-(30), first we need to compute the closed-form 
expressions for each component, which are presented in the 
following subsections.

8.1 � Different scenarios within an interval 
in the NOMIM

The possible scenarios in a sampling period are the same as 
those of the OMIM approach presented in Section 6. Thus, 
different scenarios for the evolution can be derived from 
Fig. 2.

8.2 � Process state at the start of the sampling period

Term P̂u,𝜈
ti

 is defined as the probability of operating the pro-
cess in State (u, �) just before performing an inspection at ti . 
Therefore, the probabilities of being in a particular state at the 
beginning of the sampling inspection interval are given by the 
following recursive formulas:

Equation (33) is obtained based on Scenarios 2 and 8. 
Derivation of Eq. (34) is based on the following two pos-
sible cases: (i) The process operates in State (1,0) before 
performing an inspection at ti , and the control charts of Stage 

(29)

E(TC) =
∑

�,u=0,1

C
u,�

QC
E(Tu,�) + CRMPRM

+ C�
I

[

E(MM1) + E(MM2) + E(�)
]

+ CPMPPM + CIPRM + CQE(QC)

+ CMM1E(MM1) + CMM2E(MM2).

(30)

E(CL) =
∑

�,u=0,1

E(Tu,�) + TRMPRM + T �
I

[

E(MM1) + E(MM2) + E(�)
]

+ TPMPPM + TIPRM + TMM1E(MM1) + TMM2E(MM2).

(31)P0,0

ti
=P̂0,0

ti
for 1 ≤ i ≤ m

(32)P0,0

ti
=F̄1(ti)F̄2(ti), for 1 ≤ i ≤ m

(33)
P̂1,0

ti
=P0,0

ti−1
× P(S2ti−1 ) + P1,0

ti−1
× P(S8ti−1 ), for 1 ≤ i ≤ m − 1

(34)
P1,0

ti
=𝛽X̄𝛽S2 × P̂1,0

ti
+ 𝛽X̄𝛽S2(1 − 𝛽ē𝛽S2

e
) × P̂1,1

ti
. for 1 ≤ i ≤ m − 1

1 cannot detect the shift in the process, and; (ii) The process 
operates in State (1,1) before the inspection at ti , while the 
control charts of Stage 2 release a signal and detect the shift 
in Stage 2. The control charts of Stage 1 cannot detect the 
shift of Stage 1. Similarly, for 1 ≤ i ≤ m − 1 , the remaining 
probabilities are given by:

8.3 � Computation of E(T
u,�)

Expected in-control and out-of-control time durations in 
each production cycle can be computed using equations 
presented in Subsection 6.3.

8.4 � Computation of E(QC)

The expected number of sampling periods in each produc-
tion cycle can be calculated similarly to those presented in 
Subsection 6.4.

8.5 � Computation of E(˛)

The expected number of false alarms in each production 
cycle is derived as follows:

 
The first, second, and third terms on the RHS of Eq. (39) 

represent the probability of issuing a false alarm while the 
process is in State (0,0), (1,0), and (0,1), respectively.

8.6 � Computation of E(MM)

In this subsection, a closed-form expression for the 
expected number of minimal maintenance actions in a 
production cycle is derived, which is given by:

(35)P̂0,1

ti
=P0,0

ti−1
× P(S3ti−1) + P0,1

ti−1
× P(S6ti−1),

(36)P0,1

ti
=𝛽ē𝛽S2

e
× P̂0,1

ti
+ 𝛽ē𝛽S2

e
(1 − 𝛽X̄𝛽S2) × P̂1,1

ti
.

(37)

P̂1,1

ti
=P0,0

ti−1
× P(S4ti−1) + P0,0

ti−1
× P(S5ti−1) + P0,1

ti−1
× P(S7ti−1)

+P1,0

ti−1
× P(S9ti−1) + P1,1

ti−1
× P(S10ti−1),

(38)P1,1

ti
=𝛽X̄𝛽S2𝛽ē𝛽S2

e
× P̂1,1

ti
.

(39)

E(𝛼) =

m−1
∑

i=1

Pi
𝛼 =

m−1
∑

i=1

[

1 − (1 − 𝛼X̄)(1 − 𝛼S2 )(1 − 𝛼ē)(1 − 𝛼
S2e
)
]

× P̂
0,0

ti

+
[

1 − (1 − 𝛼ē)(1 − 𝛼
S2e
)
]

× P̂
1,0

ti
+
[

1 − (1 − 𝛼X̄)(1 − 𝛼S2 )
]

× P̂
0,1

ti
.
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 where Pi

MM1
 and Pi

MM2
 denote the probabilities of performing 

minimal maintenance of Type 1 and Type 2, respectively, 
after inspection at time ti . Next, we calculate the final term 
required for computation of Eq. (28).

8.7 � Probability of Conducting PM or RM

As mentioned previously, the process will be renewed 
when either PM or RM is performed. Thus, the cycle ends 
with the following probabilities:

At this point, all the required components for the calcu-
lation of the long-run expected average cost per unit time 
are derived. Next, the NOMIM optimization model will 
be presented.

9 � Optimization procedure for NOMIM

The NOMIM optimization can be presented as follows:

This completes the derivation of the proposed integrated 
models. In the next section, we provide numerical examples 
to evaluate the performance of the proposed OMIM and 
NOMIM integrated models.

(40)
E(MM1) =

m−1
∑

i=1

Pi

MM1
=

m−1
∑

i=1

(1 − 𝛽X̄𝛽S2 ) × P̂1,0

ti

+ 𝛽ē𝛽S2
e
(1 − 𝛽X̄𝛽S2 ) × P̂1,1

ti
,

(41)
E(MM2) =

m−1
∑

i=1

Pi

MM2
=

m−1
∑

i=1

(1 − 𝛽ē𝛽S2
e
) × P̂0,1

ti

+ 𝛽X̄𝛽S2 (1 − 𝛽ē𝛽S2
e
) × P̂1,1

ti
,

(42)
PPM =P0,0

tm−1
+ P1,0

tm−1
+ P0,1

tm−1
+ P1,1

tm−1
,

PRM =1 − PPM .

(43)

Minimize ECCNOMIM(𝜂) =
E𝜂(TC)

E𝜂(CL)
,

Subject to ARL0 <
1

1 − (1 − 𝛼X̄)(1 − 𝛼S2 )

ARL0 <
1

1 − (1 − 𝛼ē)(1 − 𝛼S2
e
)

ARL1 >
1

1 − 𝛽ē𝛽S2
e

ARL1 >
1

1 − 𝛽X̄𝛽S2

tm >tmin.

10 � Numerical examples

In this section, we present different numerical examples to 
evaluate the proposed methodologies and illustrate their 
innovative aspects. It should be noted that although the pro-
posed models have the versatility to conform with different 
inspection processes and different failure mechanisms, for 
illustration purposes, some assumptions regarding inspec-
tion scheme and failure mechanism are considered in the 
numerical examples.

10.1 � Numerical illustration of the proposed 
integrated models

To emphasize the application of the proposed inte-
grated models, a real example from the textile industry is 
considered.

Cotton yarn manufacturing process consists of different 
systems and equipment including but not limited to woolen 
mill machines, thread winding machines, and spinning 
machine. Each system is subject to degradation and failure 
due to different factors, where root-cause analysis can be per-
formed to determine the main factors affecting each failure. 
For example, one of the factors that influence the spinning 
machine failure is bearing degradation/failure, which conse-
quently leads to poor quality of the manufactured product and 
process stoppage. Therefore, accurate bearing degradation 
process prediction is key to effectively implement preventive 
maintenance and can prevent unexpected failures in the pro-
cess and minimize the overall maintenance costs. In the pro-
posed model, the failure distributions of the failure root caus-
ing system/equipment are determined based on the historical 
data. In the case study, it is observed that the failure root 
causing system follows Weibull distribution. By incorporat-
ing the failure probability, and by considering occurrence of 
different scenarios within an inspection interval, the probabil-
ity of conducting different maintenance policies is computed 
in order to minimize the long-run expected average cost of 
process. More specifically, Cotton yarn factory produces 
cotton yarn in the two-stage dependent process. The quality 
characteristic of the first stage X is the fiber length of the cot-
ton yarn, while the quality characteristic of the second stage 
Y is the skein strength of the cotton yarn, which is affected by 
fiber length [13]. Samples are taken at the end of the second 
stage, and observations are measured on the same item of the 
production. According to the historical data of the process in 
the in-control state, variables X and Y follow normal distri-
butions with the following parameters: X ∼ N(77.05, 4.82) , 
and Y ∼ N(95.755, 82) . The relationship between them is 
Y = 11 + 1.1X + � . Failure mechanism associated with the 
equipment in each stage follows the Weibull distribution with 
the following cumulative distribution function:
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where � and � are the shape and scale parameters of the 
Weibull distribution, respectively. We consider periodic 
sampling inspection policy such that samples are collected at 
time epochs ti = i × t1 , for ( 1 ≤ i ≤ m − 1 ). The costs of con-
ducting different maintenance actions are reported in Table 2 
in dollars. The duration of the time to conduct maintenance 
actions as well as other parameters related to time is reported 
in hour in Table 2. For example, the cost of conducting reac-
tive maintenance while both stages of the process are in the 
out-of-control state is $5, 000 and it takes 4 hours.

In order to find the optimum values for the proposed mod-
els, at first and as an exact method, a full enumeration algo-
rithm coded in MATLAB software is employed. As the run 
time of the full enumeration algorithm is long, in the next 
step, the Genetic Algorithm (GA) is applied. GA is a well-
established metaheuristic method to optimize complex math-
ematical models. It has broadly been employed to optimize 
the integrated models of maintenance and quality [18, 55]. 
The parameters of the GA, e.g., mutation rate and crossover 
rate, are determined based on the full enumeration algorithm. 
Several simulations are conducted with different parameters, 
where the performance of the GA was compared with that of 
the exact full enumeration algorithm. The result of the com-
parison for the example of Table 2 is provided in Table 3.

The GA is applied based on the following steps:

(44)F(t) = 1 − e−(�t)
�

,

•	 Step 1. Initialization: 20 solutions are randomly generated. 
The following constraints are considered in producing the 
population: 1 ≤ ki ≤ 5 for i = {1, 2, 3, 4} ; 2 ≤ n ≤ 30 ; 
2 ≤ m ≤ 100.

•	 Step 2. Fitness Function Computation: The value of the 
ECC is considered as the fitness function.

•	 Step 3. Parent Chromosome Selection: A solution with a 
better fitness function has a greater chance to be selected 
as a parent chromosome. We used a roulette rule to select 
a chromosome.

•	 Step 4. Crossover: The crossover rate is considered as 0.4; 
therefore, 20.4 = 8 chromosomes are used for crossover 
operation, and cross position is randomly selected.

•	 Step 5. Mutation: The mutation rate is considered as 0.1, 
and the mutation position is randomly selected.

•	 Step 6. Children Replacement in the Population: In this 
step, a roulette rule is applied to replace the children in the 
population.

•	 Step 7. Repeat step 2 to 6 until a termination criterion is 
satisfied. The termination criterion is considered as 100 
iterations of Steps 2 to 6.

The results are reported in Table 3. As the results of Table 3 
show, under the OM policy, the values of ECC for the GA and 
the full enumeration algorithm are 110 and 105.68, respec-
tively, which have a little difference. The long-run expected 
average cost without considering the OM policy is consider-
ably higher than that of the NOMIM. The time to perform PM 
based on the NOMIM model is considerably lower than the 
time to perform PM based on the OM policy, i.e., 118.4 < 176 . 
The cost reduction achieved by the OMIM is 26%. More spe-
cifically, based on Table 3, for the OMIM policy, at equal time 
intervals of 4.4, a sample with the size of 16 is taken from the 
second stage of the system. For each item in the sample, a 
paired observation is obtained as (x, y), i.e., observations 
(xi1, yi1),… , (xi16, yi16) are collected at sampling time ti . The 
values of four statistics including x̄i, S2i , ēi , and S2

ei
 are com-

puted based on the developments of Subsection 3.2 and plotted 
on the corresponding control charts. Then, Eqs. 3 and 4 are 
used to compute the upper and lower control limits of the cor-
responding charts. At a given sampling time point, if at least 
one of the control charts releases an alarm, according to the 

Table 2   Input Parameters

Parameters Values Parameters Values Parameters Values

�1 1.5 C00

QC
50 CMM1 1000

�2 2.5 C10

QC
600 CMM2 1000

�3 1.5 C01

QC
400 C

1,0

RM
3000

�4 2.5 C11

QC
2000 C

0,1

RM
3000

�1;�2 2 a 5 TI 0.5
�1 120 b 1 T ′

I
0.25

�2 90 CI 200 T
1,1

RM
4

ARL0 200 C′
I

100 T
1,0

RM
;T

0,1

RM
2

ARL1 10 CPM 4000 TMM1 ;TMM2 1
tmin 20 C

(1,1)

RM
5000 TPM 3

Table 3   The Results of 
Optimization

t1 k1 k2 k3 k4 n m tm ECC

OMIM (GA) 4.4 3.63 3.58 4.29 2.52 16 40 176 110
OMIM (Exact Method) 2.1 3.4 3.6 3.6 3.4 7 80 165.9 105.68
NOMIM 1.48 3.58 2.75 3.45 4.45 10 80 118.4 148.25
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opportunistic maintenance policy, both stages of the process 
are investigated. This inspection may be followed by RMs, 
which renew the process. The maximum number of inspection 
periods is 40. In other words, if the process is not renewed due 
to the performance of RMs in the previous 39 inspection peri-
ods, PM is implemented at the time point of 176. Based on 
Table 3, for the OMIM policy, the control limit parameters of 
X̄, S2, ē , and S2

ei
 are 3.63, 3.58, 4.29, and 2.52, respectively. 

Applying this policy minimizes the long-run ECC, which 
equals ECC = 110 . For the NOMIM policy, at equal time 
intervals of 1.48, a sample with the size of 10 is taken from the 
second stage of the system. In this scenario, the control limit 
parameters of X̄, S2, ē , and S2

ei
 are 3.58, 2.75, 3.45, and 4.45, 

respectively. The minimized long-term ECC under the 
NOMIM policy is 148.25.

10.2 � Comparison with the no‑sampling inspection 
policy

In this subsection, we compare the performance of our pro-
posed maintenance policies with the no-sampling inspection 
policy, which does not take into account sampling informa-
tion, i.e., a stand-alone conventional maintenance policy. In 
the stand-alone maintenance model, it is assumed that no 
control charts and no sampling inspections are employed 
to monitor the state of the process. In other words, in each 
production cycle, the process starts its operation at zero-
age (in the as-good-as-new state), while both stages of the 
process are in the in-control states. After a specific point 
of time, which is denoted by tm , i.e., decision variable of 

the model, the process is stopped and preventive/planned 
maintenance is conducted on the process. In the stand-alone 
maintenance model, therefore, the process is only renewed 
based on PM actions. Here, we consider the conventional 
maintenance policy where regardless of the state of the pro-
cess, PM actions are performed at time tm . From renewal 
theory, the expected average cost per unit time for this policy 
is given by:

The optimal time to perform PM action for this policy is 
achieved, which is equal to 47.2 with a total cost of 166.30. 
As it is observed, the cost of the no-sampling inspection 
policy is considerably higher than the cost of the two pro-
posed models.

10.3 � Designed experiment

In this subsection, we perform a Designed Experiment (DE) 
to investigate which input parameters have significant effects 
on the model outputs considering the OM policy. For this 
purpose, a fractional factorial design with 11 factors and 32 
runs is employed. More specifically, a 211−6 factorial design 
with resolution IV is conducted. For this experiment, we 
have selected input parameters at two levels in the DE, 
which are shown in Tables 4-6. The design is generated in 
MINITAB according to the parameters of each experiment, 
and the GA code of the models is implemented in MATLAB 
software for 32 runs. The results of the runs are analyzed in 

(45)ECC(tm) =

∑

�=0,1

∑

u=0,1 C
u,�

QC
E(Tu,�) + CPM

tm + TPM
.

Table 4   The high and low levels of each factor in the DE

Factors 1 2 3 4 5 6 7 8 9 10 11

Parameters �1 , �3 �2 , �4 �1, �2 �1,�2 C00

QC
C01

QC
 , C10

QC
 , C11

QC
a,b CI C

1,0

RM
 , C0,1

RM
 , C1,1

RM
 , CPM

TI T
1,0

RM
,T

0,1

RM
,T

1,1

RM
,TPM

Low level (-) 0.5 1.5 2 50 50 350, 600, 1200 5,0.5 150 2000, 2000,4000, 3000 0 1.5, 1.5,3,2
High Level(+) 2 3.5 4 150 200 600, 900, 2000 10,2 300 3000,3000 ,6000,4500 1 3,3,6,4

Table 5   The results of the DE Factors 1 2 3 4 5 6 7 8 9 10 11

ECC - - - + + + +
t1 + +
k1

k2 +
k3 + + +
k4 - +
n -
m + - -
tm + + -
IF - - -
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MINITAB, and the main findings are reported in Table 5 
as well as Fig. 3. The main findings of the DE are reported 
here, and details of each run, which are not included here to 
save on space, are available upon request.

The “+” and “-” signs in each cell indicate the effect 
of each factor on response variables. For example, plus 
sign indicates a positive correlation between factors and 
response variables. A blank cell means that the correspond-
ing response variable is insensitive to the factor. According 
to the results of the DE, for example, the values related to 
the magnitude of the shift of variance of both stages, i.e., 
�2, �4 and the values that characterize the failure mecha-
nism of the equipment, i.e., the shape and mean parameter 
of Weibull distribution, have a negative effect on the value 
of the ECC. On the other hand, the value of the cost of the 
process operating in the in-control and out-of-control states, 
the cost of sampling, and the cost of maintenance actions 
have an increasing effect on the value of the ECC. The 
results obtained from the factorial design are intuitive to 

some extent, e.g., as the results indicate, it is expected that 
increasing the value of the mean of failure mechanism leads 
to a decrease in the value of the ECC.

Table 5 summarizes the result of DE using Minitab soft-
ware illustrating the effects of each factor on the response 
variables. Additionally, a normal probability plot associated 
with each effect on tm is obtained as shown in Fig. 3, which is 
conducted to determine significant effects. The cut-off point 
of p-value is set to 0.05 to determine the significant factors. 
From the normal probability plot, it can be observed that 
the square points, which are colored in red, are significant 
factors as they appear far from the noise line. The points 
close to the noise line indicate the nonsignificant factors. 
According to Fig. 3, �2, �4 and �1,�2 have positive effects 
on tm , while costs associated with quality have negative 
effects on tm . Figure 4 illustrates the effects of change in the 
shape parameter � of the Weibull distribution and the mean 
of Probability Failure Mechanism (PFM) � on the ECC for 
three maintenance models, i.e., OMIM, NOMIM, and stand-
alone policy. In this analysis, without loss of generality, the 
same value is used for the mean of the PFM for both stages. 
In summary, the following conclusions are obtained:

•	 As Fig. 4(a) indicates, increasing the value of � leads to 
a decrease in the value of ECC for all three policies. In 
other words, the shape parameter of the Weibull distri-
bution has a negative effect on ECC. This result is well-
aligned with the results of DE summarized in Table 5.

•	 As Fig. 4(a) indicates, increasing the value of � decreases 
the differences between ECC of OMIM and NOMIM pol-
icies. In other words, the shape parameter has a negative 
effect on IF. This is an expected observation as the result 
of DE in Table 5 indicates the same behavior.

•	 As can be observed in Fig. 4(b), increasing the mean, 
significantly decreases the ECC for all three policies. 
This means that �1 and �2 have a negative effect on ECC, 

Fig. 3   Normal probability plot associated with different effects on the 
tm

Fig. 4   (a) Effect of shape 
parameter on the total cost. (b) 
Effect of mean on total cost
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which is also observable from the results of the DE. 
The reason for this behavior is that when the value of 
� is small, the meantime which the process is in control 
becomes smaller indicating a less stable process. Fur-
thermore, it means that the time duration that the process 
spends in the in-control state is short. As such in the long 
run, the process spends more time in the out-of-control 
state, which eventually increases the long-run expected 
average cost. On the other hand, when � is large, the 
process is more stable; therefore, the low cost will be 
incurred.

•	 The results also show that the proposed OMIM policy 
has a superior performance in terms of cost reduction in 
comparison with its counterparts.

10.4 � Comparison of the OMIM and the NOMIM

In this subsection, we compare the two proposed integrated 
models based on the Improvement Factor (IF), which is 
defined as follows:

The value of the IF indicates the reduction in the operational 
cost due to the performance of the opportunistic policy. The 
DE is again employed for the NOMIM, and the value of the 
ECCNOMIM(�) is computed in each run. Note that in order to 
perform the DE for the NOMIM model, the following addi-
tional factors introduced in Table 6 are considered:

Using Eq. (46), the values of the IF can be obtained for 32 
runs considering both the OMIM and the NOMIM models. 
The results are summarized in Table 5. According to the 
results, the following factors have significant effects on the 
value of the IF: (i) The values related to the shape and the 
mean of the Weibull distribution, and; (ii) The value of the 
process operation cost in the in-control state. These factors 
have a negative effect on the IF, meaning that for the smaller 
values of the process operational cost in the in-control state, 
the OM policy leads to more improvement with respect to 
the NOMIM policy. Also, utilization of the OM policy for 
the equipment that has a larger failure rate is more effective. 
Furthermore, the result of 32 runs of the DE shows that 
the OM policy leads to an average decrease of 15% in the 
expected total cost. Although in some cases, a 35% reduction 
in the operational cost is observed. From the analyses of this 
section, three main findings can be summarized as follows:

(46)IF =
(

1 −
ECCOMIM(�)

ECCNOMIM(�)

)

× 100.

•	 Conducting OM policy significantly decreases the opera-
tional costs of the system. As the failure rate of the sys-
tem increases, more savings can be expected from the 
implementation of OM.

•	 The effectiveness of the OM policy in reducing opera-
tional costs of the system increases as the variation in the 
failure mechanism of the system increases.

•	 Coordination of the decision of maintenance and quality 
control in multi-stage manufacturing systems noticeably 
decreases the cost of the system in comparison with stan-
dalone models.

11 � Conclusion

Most of advanced manufacturing systems, such as the 
process assembly of automobile bodies, involve several 
stages where operations are sequentially conducted to 
manufacture the final product. Such dependent multi-stage 
manufacturing processes heavily rely on the operation of 
their constituent technical components and systems, which 
are subject to degradation and unexpected failures. In this 
context, we considered a two-stage dependent process 
and have developed two innovative integrated SPC and 
MP models to minimize the long-run expected average 
cost per unit time. The proposed models can be applied 
to a wide range of industries within manufacturing such 
as tool industry, textile industry, and automobile industry 
to name but a few, and other sectors such as healthcare 
and transportation with some modifications. Develop-
ments of the paper are, therefore, of practical importance 
for industrial practitioners who aim to jointly incorporate 
proper maintenance and control strategies to achieve cost 
minimization. More specifically, we assumed the presence 
of two types of assignable causes each associated with 
one of the two stages of the underlying process, which 
affect both the mean and the variance of the process. Four 
control charts, X̄ − S2 , ē − S2

e
 are simultaneously designed 

and applied for process monitoring. Two main integrated 
SPC and MP models namely the OMIM and NOMIM are 
developed such that the former is developed based on the 
OM concept. On the other hand, to see the effectiveness 
of the OM policy within an integrated model, the NOMIM 
is also developed considering no opportunistic mainte-
nance. Besides, the proposed models are compared with a 
no-sampling inspection policy. The proposed models are 
formulated in the renewal theory framework, and GA is 

Table 6   The high and low levels 
associated with each factor in 
the DE for the NOMIM model

Factors C′
I

CMM1 CMM2 T ′
I

TMM1 TMM2

Low level (-) 50 1000 1000 0 1 1
High Level(+) 150 2000 2000 0.5 2 2
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applied to obtain the optimal values of decision variables 
minimizing the long-run expected average cost per unit 
time. The models are developed based on recursive equa-
tions and considering different scenarios in an inspection 
interval rather than different scenarios in a production 
cycle, which strengthens the proposed models.

The results of 32 runs of the DE show that the OM policy 
leads to an average decrease of 15% in the expected total 
cost, although in some cases, a 35% reduction in the opera-
tional cost is observed. It is concluded that utilization of the 
OM policy for the equipment that has a larger failure rate 
is more effective. Furthermore, for the production process 
with Weibull distributed failure mechanism, as the shape 
parameter of the distribution decreases and approaches to an 
exponential distribution, more savings can be expected by 
employing the OM policy. Finally, integration of the deci-
sions of the maintenance and quality yields a noticeable 
decrease in the total expected cost of multi-stage production 
systems. These results illustrate the superior performance of 
the newly developed OMIM model, which can be considered 
as a major step forward contribution within the context of 
integrated SPC and MP modeling.
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