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Abstract
Multi-joint industrial robots are widely used in many fields such as transportation, welding, and assembling. In order to meet 
the requirements of efficient and synchronous robot motion, a multi-axis real-time synchronous look-ahead trajectory plan-
ning algorithm is proposed based on dynamically given position and velocity sequences under the constraint of maximum 
velocity and acceleration of each joint axis. In addition, an efficient transition processing method is proposed to satisfy the 
smooth transition between adjacent trajectory segments. Furthermore, the trajectory planning methods of real-time velocity 
tuning is further investigated to meet the requirements in practical application of industrial robot. At last, the performance 
of the proposed algorithm is verified by simulation, and the feasibility of the algorithm in practical applications is demon-
strated experimentally.

Keywords  Multi axis synchronization · Look ahead · Trajectory planning · Real-time velocity tuning

1  Introduction

Trajectory planning, as the core technology of industrial 
robots and CNC machine tool control, has been studied by 
a large number of researchers and achieved certain results 
[1–3]. With the extensive demand and application of indus-
trial robots and machine tools, trajectory planning technol-
ogy has gradually become mature. Currently, most com-
mon research on trajectory planning technology focuses on 
achieving smooth transition at the corner of space trajectory, 
minimum contour error under various kinematic constraints 
or the shortest time of space trajectory planning, etc. By 
improving smoothness and continuity of machine trajectory, 
the stability and reliability of robot motion control can be 
improved.

Industrial robots account for more than 50% of the global 
robot market. Guan et al. planned the trajectory of the robot 
by combining the third-order and the fourth-order polyno-
mials to smooth the robot trajectory [4]. The fourth-order 
polynomial was used to interpolate the trajectory segments 
at both ends, and the third-order polynomial was used to 

interpolate the middle trajectory segment. In order to 
improve the level of industrial manufacturing, the role of 
robot trajectory planning technology cannot be ignored. In 
order to realize fast and smooth motion of industrial robots, 
Wang et al. adopted four-order polynomial to plan the accel-
eration curve between adjacent two points under kinematic 
constraints [5]. Similarly, the method of trajectory planning 
for jerk curve of robot motion is quite common in relevant 
fields. Fang et al. have proposed two different trajectory 
planning algorithms successively by this method [6, 7]. 
One was to divide the jerk curve into acceleration section, 
constant section, and deceleration section. Under the con-
straints of velocity, acceleration, and jerk, the acceleration 
section and deceleration section of jerk curve were planned 
with S-curve, and a new jerk curve was established by the 
integration of S-curve and straight line of constant section. 
The other was to construct the jerk curve of robot motion 
using sine function and established a new constraint crite-
rion, which enabled the proposed algorithm to achieve the 
adjustability of velocity and smoothness of trajectory. This 
kind of method avoids the chattering caused by the change 
of velocity during the movement of the robot and keeps the 
motion process with maximum velocity, acceleration, and 
jerk as possible, so as to ensure the stability of the motion 
process and improve the working efficiency of the robot. 
In order to improve the production efficiency of industrial 
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manufacturing, optimization of the time-consuming of tra-
jectory is also one of the hot topics in related fields. Liu et al. 
used spline curves to plan the trajectory in Cartesian space, 
then used B-spline curves to plan the trajectory in the joint 
space, and finally used the SQP method to plan the trajectory 
with minimum time [8]. Gao et al. optimized the trajectory 
with particle swarm optimization (PSO) and 4–3-4 polyno-
mial interpolation [9]. Fares et al. constructed the trajec-
tory of the robot with third-order polynomial and optimized 
it with genetic algorithm under three different constraints: 
kinematics, dynamics, and effective load, and the optimal 
time trajectory planning algorithm was proposed finally 
[10]. Huang et al. [11] constructed the optimal trajectory 
with fifth-order B-spline applying the NSGA-II algorithm 
proposed by Deb et al. [12]. The resulting motion trajectory 
algorithm also achieves the continuity of jerk curve. Unlike 
above literature, Paolo and Dario [13] carried out trajectory 
planning from the point of view of energy consumption. In 
addition, there are also some algorithms for specific robots, 
such as Liu et al. and Wu et al. also proposed different trajec-
tory planning algorithms for Delta robot [14, 15].

Trajectory planning of CNC machine tool with high 
velocity and precision promotes the efficiency and quality of 
industrial manufacturing. Zhao et al. put forward a two-stage 
velocity planning algorithm, reducing the motion time and 
velocity fluctuation by secondary optimization of a mini-
mum time trajectory planning [16]. Zhang et al. attempted 
to solve the problem of excessive fluctuation of velocity, 
acceleration, and jerk at the corner between adjacent straight 
segments. Under the jerk constraint, to realize smooth tran-
sition of motion path, a transition curve with smooth cur-
vature between adjacent straight segments was constructed 
using fifth-order B-spline curve with constraint on kinematic 
parameters of the robot. In the subsequent study, a new tra-
jectory planning algorithm with the optimal velocity was 
proposed based on the linear programming algorithm [17, 
18]. Constructing smooth transition at the corner between 
adjacent straight segments is one of the main methods to 
improve the smoothness of machine tool movement, and the 
searchers in related fields have also given many different 
solutions [19–21]. Besides, the machining accuracy is also 
a frequent consideration in trajectory planning. In order to 
reduce the chord height error caused by trajectory planning, 
Liu et al. constructed a smooth transition trajectory with 
NURBS curves at the sharp corners of the continuous path 
[22]. Li et al. and Chen et al. also proposed different solu-
tions to reduce contour error [23, 24].

Most of the algorithms mentioned in the above litera-
tures are trajectory planning for the current segment or 
adjacent two segments of the robot motion path. Although 
the planned trajectory can satisfy the constraints on veloc-
ity, acceleration, and jerk in the current segment, for multi-
segment continuous trajectory planning, the current segment 

planning is affected by all the previous and afterward seg-
ments. In recent years, look-ahead trajectory planning 
technology has gradually become a research focus, such 
as Tajima and Sencer [25] and Huang [26], respectively, 
carried out corresponding research. In this paper, a real-
time multi-axis synchronous look-ahead trajectory planning 
algorithm for a large number of sequentially connected path 
segments under the kinematic constraints. The planned tra-
jectory is further processed with S-shape-type filter, and a 
real-time velocity tuning algorithm is proposed to meet the 
requirements of industrial applications. Finally, simulation is 
carried out in MATLAB environment to verify the feasibility 
of the algorithm, and experiments are conducted to verify 
the performance of the algorithm.

2 � Multi‑axis synchronous look‑ahead 
trajectory planning

2.1 � Problem description

In order to control the industrial robot with multiple joints, 
the path likes line or arc in task space should be interpo-
lated with a large number of sampling points which lie in 
the line or arc path, and then these points are converted into 
multi-axis position sequence in the joint space by inverse 
kinematic of the industrial robot. All the successively adja-
cent two positions constitute a segment sequence, and the 
velocity of each segment can be set by the robot operator or 
simply general distance dividing sampling period.

Suppose there are m positions in the position sequence Q , 
which can be defined as Q =

[
q⃗1, q⃗2,⋯ , q⃗m

]
 , and each posi-

tion is a n-dimensional vector, namely, q⃗i =
[
qi1,⋯ , qin

]T , 
where n is the number of robot’s joints, that is, n axes. 
The adjacent positions q⃗i and q⃗i+1 constitute the segment i 
(where 1 ≤ i ≤ m − 1 ), and the generalized setting velocity 
of the segment i is VFi

 . The constraints on maximum velocity 
and acceleration of each axis are Vj

max and Aj
max , respectively 

( 1 ≤ j ≤ n).
Briefly, given m positions Q , which constitute m − 1 seg-

ments, and the setting velocity sequence of segments VF, 
under the maximum velocity Vj

max and acceleration Aj
max 

( 1 ≤ j ≤ n ), n axis synchronous look-ahead trajectory plan-
ning algorithm is required, and the algorithm must support 
real-time planning applying the dynamic sliding window 
technique while the robot is operating and real-time veloc-
ity tuning.

2.2 � Transition between two adjacent segments

As shown in Fig. 1, the adjacent two segments consist of three 
adjacent positions, and the generalized length of the two seg-
ments is defined as Li = ‖‖q⃗i+1 − q⃗i

‖‖ and Li+1 = ‖‖q⃗i+2 − q⃗i+1
‖‖ . 
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The radius of transition zone is Ls ≤ 1

2
min

(
Li, Li+1

)
 and the 

transition velocity is vt.
Define the cosine ratio of each axis of each segment as

The maximum generalized velocity and the maximum gen-
eralized acceleration in the segment i are shown in Eq. (3).

Then the cosine ratio difference between two adjacent seg-
ments is calculated and normalized. Equation is as follows: 
�����⃗ΔR = R⃗i+1 − R⃗i , and normalize �����⃗ΔR to ��������⃗ΔDR = �����⃗ΔR∕

‖‖
‖
�����⃗ΔR

‖‖
‖
.

The generalized acceleration of the transition zone is 
Ap = min

1≤j≤n{
A
j
max

ΔDRj

} ; then, the acceleration vector of the transi-

tion zone is A⃗t =
��������⃗ΔDR ⋅ Ap.

Let the transition time be tm , and the generalized veloc-
ity at the start and end point of the transition zone remains 
unchanged, and it leads to Eq. (4).

That is, vt�����⃗ΔR = A⃗ttm = ��������⃗ΔDR ⋅ Aptm , so we have Eq. (5).

Thus, there is vt ∝ tm.

(1)

R⃗i =
[
Ri1,⋯ ,Rin

]T

= [cos 𝜃i1,⋯ , cos 𝜃in]
T

=
q⃗i+1 − q⃗i

Li

(2)R⃗i+1 =
q⃗i+2 − q⃗i+1

Li+1

(3)Vmax,j = min
1≤j≤n{

V
j
max

Ri,j

},Amax,j = min
1≤j≤n(

A
j
max

Ri,j

)

(4)vtR⃗i+1 = vtR⃗i + A⃗ttm

(5)vt =
1

‖
‖‖
�����⃗ΔR

‖
‖‖

Aptm

The trajectory equation of the transition curve is shown in 
Eq. (6).

And then there is

Therefore, Eq. (7) can be deduced.

Thus, there are Ls ∝ t2
m
.

According to the above analysis, if the transition radius Ls 
is given, then there is tm ∝

√
Ls and vt ∝

√
Ls.

2.3 � Determination of maximum allowable 
transition velocity

•	 Special situation �����⃗ΔR = �⃗0

	   In this case, it means that the cosine ratio of the two 
adjacent segments is the same, and Ls = 0 . There is no 
transition zone, and the maximum transition velocity can 
be set as vt = min(Vmax,i,Vmax,i+1,VFi

,VFi+1
).

•	 �����⃗ΔR ≠ �⃗0

First, the transition radius is given as Ls = 1
/
2min(Li, Li+1) , 

and calculate the transition time by Eq. (8).

Then the maximum transition velocity is calculated as 
Eq. (9).

If vt > min(VFi
,VFi+1

) , then take vt = min(VFi
,VFi+1

) , and 
the transition radius is calculated by Eq. (10).

2.4 � Reverse velocity planning

Suppose k (k < m) segments need to be looked ahead, that 
is the length of sliding window is k. In the reverse velocity 

(6)
LsR⃗i+1 = −LsR⃗i + ∫

tm

0

(vtR⃗i + A⃗tt)dt

= −LsR⃗i + vtR⃗itm + 0.5A⃗tt
2

m

Ls(R⃗i+1 + R⃗i) = vtR⃗itm + 0.5A⃗tt
2

m

= 0.5(R⃗i+1 + R⃗i)Apt
2

m
∕
‖‖
‖
�����⃗ΔR

‖
‖
‖

(7)2Ls = Apt
2

m
∕
‖
‖
‖
�����⃗ΔR

‖
‖
‖

(8)tm =

√√√
√2

‖
‖‖
�����⃗ΔR

‖
‖‖
Ls

Ap

(9)vt =
Aptm

‖‖
‖
�����⃗ΔR

‖‖
‖

=

√√√
√

2ApLs

‖‖
‖
�����⃗ΔR

‖‖
‖

(10)Ls = vt
‖‖
‖
�����⃗ΔR

‖‖
‖
∕(2Ap)

Fig. 1   Transition curve construction between two adjacent segments

4993The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009



1 3

planning stage, the final velocity of the last segment (seg-
ment k) is set to be zero, and then velocity planning is con-
ducted from segment k to segment k − 1, …, until from 
segment 2 to segment 1. Take segment i + 1 and segment i 
as example for detailing the reverse velocity planning algo-
rithm, as shown in Fig. 2.

If vs ≥ vt , then vt is reachable and no further processing 
is required. If vs < vt , then it is necessary to determine 
whether vt can be reached. Firstly, v�

t
=
√

v2
s
+ 2AmaxLc is 

calculated. If v′

t
≥ vt , then vt is reachable. Otherwise, it is 

necessary to calculate the maximum transition velocity that 
can be reached and revise transition radius.

Let the maximum allowable transition velocity be v′′

t
 . 

According to Fig. 2, there is Eq. (11).

Since v��

t
= vt

√
1 − a , Eq. (12) is obtained.

Then the transition length and transition velocity can be 
updated by Eq. (13).

Taking vtn as vs of the previous segment (segment i − 1), 
the reverse velocity planning continues until to the segment 
1.

2.5 � Forward velocity planning

Forward velocity planning is carried out for the first seg-
ment, as shown in Fig. 3, which is mainly divided into two 
cases.

1.	 vs ≥ vt

(11)v
��2

t
− v

�2

t
= 2AmaxaLs = 2aAmaxLs

(12)
a = (v2

t
− v

�2

t
)
/
(2AmaxLs + v2

t
)

= (v2
t
− v2

s
− 2AmaxLc)

/
(2AmaxLc + v2

t
)

(13)Lsn = (1 − a)Ls, vtn = vt

√
1 − a

Reverse velocity planning already ensures that vs can 
slow down to vt and vs ≤ VF . Firstly, the critical velocity 
vc is calculated by the following equation:

Thus Eq. (14) can be obtained.

If vc ≤ VF , the velocity curve is shown in the first figure 
in Fig. 4. If vc > VF , the velocity curve is shown in the 
second figure in Fig. 4. If vs = vc , the velocity curve is 
shown in the third figure in Fig. 4.

2.	 vs < vt

v2
c
− v2

s
+ v2

c
− v2

t
= 2AmaxLc

(14)vc =

√
(v2

s
+ v2t + 2AmaxLc)

/
2

Fig. 2   Reverse look-ahead trajectory planning

Fig. 3   Forward velocity planning

Fig. 4   Deceleration case
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This situation can be further divided into two cases.

2.1	v2
t
− v2

s
< 2AmaxLc

This situation indicates that the velocity can be raised to 
vt , and the critical speed is calculated as Eq. (15).

If vc ≤ VF , the velocity curve is shown in the left figure 
in Fig. 5. If vc > VF , the velocity curve is shown in the 
right figure in Fig. 5.

2.2	v2
t
− v2

s
> 2AmaxLc

This situation indicates that the velocity cannot be 
raised to vt . If the transition radius is 0, namely, Ls = 0 , the 
velocity can be increased directly. The maximum velocity 
can be calculated by Eq. (16).

The velocity curve is shown in Fig. 6.
If Ls ≠ 0 , it is necessary to reduce the transition radius 

and increase the velocity as much as possible. As shown 
in Fig. 7, if the ratio of reducing the length of the transi-
tion section is a , there are the following three equations:

By solving the above three equations, Eq. (20) can be 
obtained.

Then Eq. (21) can be obtained to update the transition 
radius and transition velocity.

(15)vc =

√(
v2t + v2

s
+ 2AmaxLc

)/
2

(16)vtn =

√
v2
s
+ 2AmaxLc

(17)v
�

t
=

√
v2
s
+ 2AmaxLc

(18)v
��

t
= vt

√
1 − a

(19)v
��2

t
− v

�2

t
= 2AmaxaLs

(20)a =
(
v2
t
− v2

s
− 2AmaxLc

)/(
2AmaxLs + v2

t

)

The velocity curve obtained is shown in Fig. 6.

2.6 � Transition trajectory planning

There is no transition zone while in the last segment or the 
direction cosine vectors of two adjacent segments are equal. 
Otherwise, if the transition zone exists, that is, Ls ≠ 0,then 
trajectory planning for the transition zone is required. Since 
the generalized velocity of the transition zone is constant, 
the transition trajectory can be calculated easily.

As shown in Fig. 8, q⃗ts and q⃗te are the starting and ending 
velocity vector of the transition zone, vt is the generalized 
velocity, Ls is the transition radius, Ap is the generalized 
acceleration, and A⃗t =

��������⃗ΔDR ⋅ Ap is the acceleration vector. 
According to Eq. (5) and Eq. (7), the transition duration is 
tm = 2Ls

/
vt , and the velocity of all the axis at the given time 

can be obtained from Eq. (22).

The corresponding position of all the axis at the given time 
can be obtained from Eq. (23).

(21)
Lcn = Lc + aLs
Lsn = (1 − a)Ls

vtn = vt

√
1 − a

(22)V⃗(t) = vtR⃗i + A⃗t ⋅ t

(23)q⃗(t) = q⃗ts + ∫
t

0

V⃗(t)dt = q⃗ts + vtR⃗i ⋅ t + 0.5A⃗t ⋅ t
2

Fig. 5   Acceleration case 1

Fig. 6   Acceleration case 2

Fig. 7   The transition radius and transition velocity revise
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2.7 � Multi‑axis synchronous look‑ahead trajectory 
planning algorithm

2.7.1 � [Algorithm 1] Multi‑axis synchronous look‑ahead 
trajectory planning (MSLTP)

The flowchart of the algorithm, shown in Fig. 9, can be 
described as the following:

1.	 Given k + 1 positions, every position is a vector with 
dimension n, constituting k segments, given feed veloc-
ity sequence VF = [VF1

, ...,VFk
] , the maximum velocity 

bound Vj
max1 ≤ j ≤ n) , and the maximum acceleration 

bound Aj
max1 ≤ j ≤ n).

2.	 Construct the transition zones between all the adjacent 
segments and determinate the maximum allowable tran-
sition velocity according to Sects. 2.2 and 2.3.

3.	 Set the velocity of the last position (the velocity usu-
ally sets as zero), conduct reverse velocity look-ahead 
planning from the segment k to segment 1, and revise 
transition zones and the maximum allowable transition 
velocity according to Sect. 2.4.

4.	 Forward trajectory planning for the first segment and 
transition trajectory planning for the first transition zone 
according to Sects. 2.5 and 2.6.

3 � Dynamic real‑time velocity tuning

3.1 � Dynamic real‑time acceleration 
and deceleration

Real-time velocity tuning is designed to improve dynamic per-
formance and flexibility. It is the basis for dynamic tracking, such 
as visual tracking, weld tracking, or other guidance functions.

Real-time velocity change mainly includes real-time 
velocity increase and real-time velocity decrease. Real-time 
velocity increase can be realized only by updating the target 
feed velocity VFi

(1 ≤ i ≤ m − 1) of all segments and execute 
the MSLTP algorithm again immediately.

In order to achieve real-time deceleration, firstly, update 
the feed velocity VFi

(1 ≤ i ≤ m − 1) ; secondly, recalculate 
the first transition zone and the maximum transition velocity 
by the following methods; and finally, execute the MSLTP 
algorithm again.

As shown in Fig. 10, the absolute values of the general-
ized length, the initial generalized velocity, and the gen-
eralized maximum acceleration of the current segment are 
set as Lc , vs , and Am , respectively. The allowable transition 
radius, transition velocity, and generalized maximum accel-
eration of the transition segment are set as Ls , vt , and Ap , 
respectively. The feed velocities of the current and the next 
segment are VF1

 and VF2
 , respectively, and the cosine ratios 

of the two adjacent segments are R⃗1 and R⃗2 , respectively.
Set vtm = min

(
vt,VF1

,VF2

)
 and �����⃗ΔR = R⃗2 − R⃗1 , then equa-

tions Lsn =
‖
‖‖
�����⃗ΔR

‖
‖‖
v2
tm

/(
2Ap

)
 and Lcn = Lc + Ls − Lsn can be 

calculated, update Ls = Lsn, Lc = Lcn.
If vs > vtm , calculate v�

tm
=
√

v2
s
− 2AmLc . If v

′

tm
≤ vtm , 

update the data according to Eq. (24).

(24)vtn = vtm,VF = vtn

Fig. 8   Trajectory planning in the transition zone

Fig. 9   Flowchart of multi-axis synchronous look-ahead trajectory 
planning algorithm
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If v′

tm
> vtm , then Lc and Ls need to be revised and transition 

velocity must be recalculated. As shown in Fig. 11, since the 
velocity cannot be reduced to vtm , Lc needs to be reduced. Let 
the reduction ratio be a ; there is the following equation:

According to Eq.  (25) and Eq.  (26), Eq.  (27) can be 
obtained.

Then the corresponding data can be updated according to 
the following formula:

(25)v
�2

t
− v2

tm
= 2ApaLc

/
‖‖
‖
�����⃗ΔR

‖‖
‖

(26)v2
s
− v

�2

t
= 2Am(1 − a)Lc

(27)a =
(
v2
s
− v2

tm
− 2AmLc

)/(
2Lc

(
Ap

/
‖‖
‖
�����⃗ΔR

‖‖
‖
− Am

))

(28)Lsn = aLc + Ls, Lcn = (1 − a)Lc

(29)vtn = v
�

t
=

√

2ApLsn

/
‖‖
‖
�����⃗ΔR

‖‖
‖
,VF = vtn

3.2 � Real‑time trajectory planning for stop 
command

When receiving the stop command, the first step is to judge 
whether the actuator can stop in the current segment. Calculate 
L = Lc + Ls and L�

= v2
s

/(
2Am

)
 . If L′ ≤ L , it means that the 

velocity can be reduced to 0 in the current segment, then only 
this segment needs trajectory planning. Otherwise, the transi-
tion zone should be revised to reduce the velocity as much 
as possible. Set the velocity after deceleration (the transition 
velocity) as vtm , then the following equation can be obtained.

Then Eq. (30) is obtained from above.

Let vt = vtm, Ls = L
�

s
 , and continue to plan the next seg-

ment using the same trajectory planning method until the 
velocity in a segment can be reduced to 0 (Fig. 12).

4 � Digital simulation and result analysis

4.1 � S‑type digital filtering

The velocity curve obtained by algorithm MSLTP is trap-
ezoidal, which can be transformed into S-type velocity 
curve through an S-type digital filter. S-type digital filter is 
designed based on the principle of digital convolution, which 
is very suitable for the application of real-time planners.

L
�

s
= v2

tm

‖
‖
‖
�����⃗ΔR

‖
‖
‖

2Ap

, L
�

c
= L − L

�

s
=

v2
s
− v2

tm

2Am

(30)v2
tm

=
v2
s
− 2AmL

1 − Am

/(
Ap

/
‖‖
‖
�����⃗ΔR

‖‖
‖

) , L
�

s
=

‖‖‖
�����⃗ΔR

‖‖‖
2Ap

v2
tm

sv tv

tvpA

sL

cL

mA

1F
V

2F
V

Fig. 10   Trajectory planning for the first and second segments

Fig. 11   Real-time deceleration for the first transition zone

sv tv

tv
pA

sL

cL

mA

Fig. 12   Real-time trajectory planning for stop command response
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S-type digital filter is realized by series connection of two 
linear-type filters. The discrete transfer function of linear-
type filters is shown in the following formula:

The transfer function of S-type digital filter is shown in 
Eq. (32).

The effect of linear-type filter and S-type filter on input 
step signals is shown in Fig. 13. If the input signal is set to 
Vi(k), k = 1, 2,… , Vi(k)

|
|k≤0 = 0 , the digital implementation 

of S-type filter can adopt the following way:

4.2 � Multi‑axis real‑time synchronous look‑ahead 
trajectory planning algorithm

4.2.1 � [Algorithm 2] multi‑axis real‑time synchronous 
look‑ahead trajectory planning (MRTSLTP)

The flowchart of the algorithm, shown in Fig. 14, can be 
described as the following:

(31)HL(z) =
1

m

1 − z−m

1 − z−1

(32)
Hs(z) = HL(z) ∗ HL(z)

=
1

m

1 − z−m

1 − z−1
∗

1

m

1 − z−m

1 − z−1

(33)
Vot(k) =

1

m

(
Vi(k) − Vi(k − m)

)
+ Vot(k − 1)

Vo(k) =
1

m

(
Vot(k) − Vot(k − m)

)
+ Vo(k − 1)

Fig. 13   Linear-type and S-type digital filters Fig. 14   Flowchart of multi-axis real-time synchronous look-ahead 
trajectory planning algorithm
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1.	 Given m positions, every position is a vector with dimen-
sion n, constituting m − 1 segments, given feed velocity 
sequence VF = [VF1

, ...,VFm−1
] , the maximum velocity 

bound Vj
max(1 ≤ j ≤ n) , and the maximum acceleration 

bound Aj
max1 ≤ j ≤ n) , the number of segments to look-

ahead k.
2.	 If the look-ahead segment number k is larger 

than the number of total segment m − 1, let 
k = m − 1. Get the 1 ~ k + 1 positions from position 
sequenceQ =

[
�⃗q1, �⃗q2,⋯ , �⃗qm

]
 , which constitute k seg-

ments. And then execute the MSLTP algorithm.
3.	 According to the MSLTP algorithm, trajectory of the 

first segment and transition zone is obtained, then the 
positions of multi-axis can be sampled periodically from 
the trajectory, push them into a FIFO buffer. These posi-
tions will pass through the S-type filter and feed into the 
servo device finally.

4.	 If velocity tuning command is received while sampling, 
then update feed velocity according to Sect. 3.1, and 
execute the MSLTP algorithm again. If the stop com-
mand is received while sampling, then begin the trajec-
tory planning according to Sect. 3.2, and the algorithm 
will terminate sampling is finished.

5.	 When the first segment and the transition zone are sam-
pled finished, the segment and transition zone will be 
deleted, the positions Q will be updated. If Q is not 
empty, then return to step (2); otherwise, the algorithm 
will terminate.

4.3 � Simulation

Each joint of a 6-DOF serial industrial robot corresponds to 
a motion axis. The coordinate system configuration of the 
robot is shown in Fig. 15, and the corresponding robot DH 
parameters are shown in Table 1. The ai and di in Fig. 15 
correspond to the ai and di in Table 1, respectively, and the 

rightmost column of Table 1 is the range of joint angles. The 
velocity range of the six axes is set to [− 4,4] rad/s, and the 
acceleration range is [− 30,30] rad/s2.

The orientation and position of a rigid body can 
be represented as a 4 × 4 homogeneous matrix T = [R, 
p; 0, 0, 0, 1], where R is the 3 × 3 orthogonal orienta-
tion matrix and p is the 3 × 1 position vector. Construct 
an arc path with start point [− 0.898, 0.066, 0.435, 
98.09; − 0.215, 0.798, − 0.563, 55.47; − 0.385, − 0.599, − 
0.702, − 537.73; 0, 0, 0, 1], middle point [− 0.901, − 0.001, 
0.434, 53.26; 0.003, 1.000, 0.009, 380.43; − 0.434, 
0.009, − 0.901, − 419.81; 0, 0, 0, 1], and end point 
[− 0.898, − 0.066, 0.435, 228.00; 0.215, 0.797, 0.564, 
87.47; − 0.384, 0.600, − 0.702, − 396.72; 0, 0, 0, 1]. Firstly, 
without considering the velocity and acceleration limits of 
axes, the EOT (end of tool) of the robot moves along the 
arc path with a S-type velocity profile in the task space. 
Secondly, 202 points in the path are obtained by sampling 
with 2-ms period. The corresponding position sequence 
of the six axes is obtained with inverse kinematics, as 
shown in Fig. 16. The corresponding velocity and accel-
eration sequences can also be calculated easily, as shown 
in Figs. 17 and 18.
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z5
d4

xt
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zt

d7

Fig. 15   Coordinate system configuration of 6-DOF serial robot

Table1   DH parameters of 6-DOF serial robot

Link i a
i−1(mm) �

i−1(°) �
i
(°) d

i
(mm) Angle range

i = 1 0 0 �
1
0 0  −170 ~ 170

i = 2 85  −90 θ2 (−90) 0  −92 ~ 135
i = 3 380 0 �

3
0 0  − 129 ~ 116

i = 4 85  −90 �
4
0 425  −160 ~ 160

i = 5 0 90 �
5
0 0  −120 ~ 120

i = 6 0  −90 �
6
0 0  −360 ~ 360

i = 7 0 0 0 85 0

Fig. 16   Displacement curve of original target trajectory
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The 202 positions constitute 201 segments; the feed veloc-
ity of every segment can be set as length of the segment divid-
ing 2 ms, look-ahead 100 segments, a fine interpolation period 
of 1 ms. The MRTSLTP algorithm is carried out; the posi-
tion, velocity, and acceleration obtained after planning are 
shown in Figs. 19, 20, and 21. If the velocity is dynamically 
reduced to 1/10 of the original at 400 ms and then increased 
to 10 times of the current at 1500 ms, MRTSLTP algorithm 
can response immediately, and the velocity and acceleration 
curves obtained are shown in Figs. 22, 23, and 24.

It can be seen from Fig. 17 and Fig. 18 that the velocity 
and acceleration of the given target trajectory are far beyond 
the given range of velocity and acceleration. After trajectory 
planning with MRTSLTP algorithm under the constraints 
of velocity and acceleration, the target trajectory is signifi-
cantly improved, which are shown in Fig. 20 and Fig. 21; 
the velocity and acceleration of the planned target trajectory 

are effectively constrained within the given range, and both 
curves are very smooth, which can make the robot move 
more stable in practical applications. Figure 23 shows the 
velocity curve of the target trajectory after real-time veloc-
ity tuning; the MRTSLTP algorithm can respond to velocity 
tuning command very quickly.

5 � Algorithm implementation 
and experiments

5.1 � Control schemes and implementation 
of MRTSLTP algorithm

The industrial six-axis motion control platform is built 
to test the practicability of the algorithm. The hardware 

Fig. 17   Velocity curve of the original target trajectory

Fig. 18   Acceleration curve of original target trajectory

Fig. 19   Displacement curve planned by MRTSLTP algorithm

Fig. 20   Velocity curve planned by MRTSLTP algorithm
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platform of the control system consists of one master sta-
tion equipment and multiple slave station equipment. The 
CTH3-C series motion controller of Hexin is selected as 
the master station equipment, the H1A servo driver of 
Hexin is selected as the slave station equipment, and the 
M series servo motor is selected as the driving device. The 
communication between the master station and the slave 
station is carried out through EtherCAT (Ethernet Control 
Automation Technology). Figure 25 is the overall frame-
work of the control system. Figure 26 shows the hardware 
platform of the industrial six-axis motion control system.

Figure 27 is the framework diagram of the control sys-
tem software platform; the software develop environment 
is CODESYS (V3.5 sp11 version) in the industrial per-
sonal computer. The control system software consists two 
modules, including the human–computer interface module 

and the task module. The human–computer interface mod-
ule provides the parameter input, system operation state 
information, and system control buttons. The task module 
composes two sub-tasks: one is the trajectory planning task 
whose cycle is 20 ms and the other is the communication 
task whose cycle is 1 ms. The communication task feeds 
position data to servo device every 1 ms periodically, and 
has the highest priority.

Figure 28 is the control system data flow diagram. There 
are four buffers in this system. The buffer1 mainly consists 
all the position sequence needed to be planned and feed 
velocity sequence, buffer2 mainly consists the current k seg-
ments to be planned, buffer3 consists the sampling positions 
after the trajectory planning, and buffer4 consists the smooth 
positions after passing through the S-type filter.

Fig. 21   Acceleration curve planned by MRTSLTP algorithm

Fig. 22   Displacement curve planned by MRTSLTP with velocity tun-
ing

Fig. 23   Velocity curve planned by MRTSLTP with velocity tuning

Fig. 24   Acceleration curve planned by MRTSLTP with velocity tun-
ing
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5.2 � Experiment and analysis

According to the same DH model, let the orientation be 
R = [− 0.8979, 0.0653, 0.4354; − 0.2155, 0.7972, − 0.5640
; − 0.3839, − 0.6002, − 0.7017]; construct an arc path with 

start point [98.09, 55.47, − 537.7], middle point [161.6, 
3.531, − 407.3], and end point [245.8, 17.6, − 270.1]; and 
construct a line path with start point [93.59, 214, − 63.34] 
and end point [98.09, 55.47, − 537.7]. 1.25 m/s is used as the 
generalized velocity of line path, and 0.8 m/s is used as the 
generalized velocity of arc path, taking the line and arc in 
the task space as the target path, respectively. The target path 
is rough interpolated, and the positions in joint space are 
obtained by inverse kinematics of the interpolation points. 
Taking the position sequence as input, the servo motors are 
controlled by the control system software to track the posi-
tions with feed generalized velocity.

Figures 29, 30, 31, 32, 33, and 34 show the original dis-
placement, velocity, and acceleration curves of the joints by 
rough interpolation and inverse kinematics along the line 
and arc path, respectively. Figures 35, 36, 37, and 38 show 
the results obtained by experiment. The preset values shown 
in Figs. 35, 36, 37, and 38 are the theoretical value obtained 
by the MRTSLTP algorithm, and the actual values are the 
feedback of the servo motor.

5.3 � Analysis of path error

Figures 35, 36, 37, and 38 show that the preset and the 
actual trajectories of all the joints are nearly coincident. 
The differences between the preset and the actual values are 
calculated for comparison and analysis. The error curves of 
joint displacement corresponding to the two trajectories are 
shown in Figs. 39 and 40. The error of joint displacement 
is effectively controlled, and the maximum error is within 
0.001 rad.

PC+

CODESYS

Controller

Servo Driver1

Servo Driver2

Servo Driver3

Servo Driver4

Servo Driver5

Servo Driver6

Servo Motor1

Servo Motor2

Servo Motor3

Servo Motor4

Servo Motor5

Servo Motor6

TCP/IP

EtherCAT

EtherCAT

EtherCAT

EtherCAT

EtherCAT

Fig. 25   Overall diagram of the control system

Fig. 26   Hardware platform of six-axis motion control system

1) DH Parameters, maximum velocity and

acceleration of each joint ;

2) Parameters of Line or arc path which the robot

move along, velocity sequence or time sequence;

3) Position sequence in joint sapce, velocity

sequence or time sequence;

4) The number of look ahead segments, sample

period, fine interpolation period;

5) system operation states information;

6) system control buttons.

Human-computer
interface

1) Obtain the position sequence,

velocity sequence and

constrains directly;

2) Real-time synchronous look

ahead trajectory planning.

1) Sample the planned

position in joint space;

2) Filter the positions by S-

type filter and feed them

into the servo device.

Task 1
(trajectory planning task)

Cycle: 20ms

Task 2
(communication task)

Cycle: 1ms

Fig. 27   Control system software platform block diagram
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To further verify the performance of tracking line and arc 
paths in task space, the joint trajectories are converted into 
space trajectories by the robot forward kinematics, and the 
results are shown in Figs. 41, 42, 43, and 44.

Figures 41 and 43 show that the initial paths, preset paths, 
and actual paths of both line and arc trajectories have good 
overlap. It can be seen from Figs. 42 and 44 that the maxi-
mum errors of the line and the arc path are around 1 mm and 
0.6 mm, respectively.

The errors shown in Figs. 42 and 44 are relatively large. 
The length of the line path is 500 mm, and the actual mov-
ing time is around 0.8 s; it is inferred that the large error is 
caused by the high velocity. If the rough interpolation period 

is set to 10 ms, that is slowing down the velocity five times. 
The experiments are conducted again according to the above 
conditions, and the results are shown in Figs. 45, 46, 47, 48, 
49, 50, 51, 52, 53, and 54.

As can be seen from Figs. 45, 46, 47, 48, 49, and 50, 
the trajectories of each joint under the above conditions 
almost completely overlap, and the joint angle errors are 
constrained to be within [− 0.0004, 0.0003] radians. As 
can be seen from Figs. 51, 52, 53, and 54, the initial, pre-
set, and actual trajectories also have very good overlap, 
and the maximum position errors of the line and arc paths 
are constrained to be below 0.1 mm and 0.06 mm, respec-
tively. It can be concluded that the proposed MRTSLTP 
algorithm can meet the performance requirements of robot 
trajectory planning, and has good executability in practical 
applications.

Operator Buffer1

Motor drive

Real-time synchronous look ahead

trajectory palnning

Calculate the transition zone between

adjacent trajectory segments

S-type filter

Buffer4

Buffer2

Buffer3

-Position sequence

-Feed velocity sequence

-Number of look ahead segments

-Maximum velocity and acceleration of each axis

-Position sequence with k+1 elements

-Segment sequence with k elements

-Feed generalized velocity sequence with k elements

-Maximum velocity and acceleration of each axis

-Transition radius and transition velocity

-Position sequence sampled from the

planned trajectory

-Position sequence passed through the

S-type filter

Fig. 28   Control system data flow diagram

Fig. 29   Joint displacement curve of the original line path

Fig. 30   Joint velocity curve of the original line path
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Fig. 31   Joint acceleration curve of the original line path

Fig. 32   Joint displacement curve of the original arc path

Fig. 33   Joint velocity curve of the original arc path

Fig. 34   Joint acceleration curve of the original arc path

Fig. 35   Joint displacement curve of the line path by experiment

Fig. 36   Joint velocity curve of the straight path by experiment
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Fig. 37   Joint displacement curve of the arc path by experiment

Fig. 38   Joint velocity curve of the arc path by experiment

Fig. 39   Error curve of joint displacement of line path

Fig. 40   Error curve of joint displacement of arc path

Fig. 41   Line path obtained by forward kinematics of joint displace-
ment

Fig. 42   Error curve of line path obtained by forward kinematics of 
joint displacement
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Fig. 43   Arc path obtained by forward kinematics of joint displacement

Fig. 44   Error curve of arc path obtained by forward kinematics of 
joint displacement

Fig. 45   Joint displacement curve of the line path obtained by the 
experiment with low velocity

Fig. 46   Joint velocity curve of the line path obtained by the experi-
ment with low velocity

Fig. 47   Joint displacement curve of the arc path obtained by the 
experiment with low velocity

Fig. 48   Joint velocity curve of the arc path obtained by the experi-
ment with low velocity
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Fig. 49   Error curve of joint displacement of line path with low velocity

Fig. 50   Error curve of joint displacement of arc path with low velocity

Fig. 51   Line path obtained by forward kinematics of joint displace-
ment with low velocity

Fig. 52   Error curve of line path obtained by forward kinematics of 
joint displacement with low velocity

Fig. 53   Arc path obtained by forward kinematics of joint displace-
ment with low velocity

Fig. 54   Error curve of arc path obtained by forward kinematics of 
joint displacement with low velocity
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6 � Conclusion

Focus on kinematic constraints and smooth transition of 
a large number of continuous segments in trajectory plan-
ning, a multi-axis real-time synchronous look-ahead tra-
jectory planning algorithm is proposed. The algorithm 
performs multi-axis look-ahead trajectory planning in real 
time according to given position sequence, feed velocity 
sequence under the constraints on maximum velocity, and 
acceleration of the axes. The algorithm also supports online 
real-time velocity tuning and real-time stop command 
response. Experiments show that the trajectory planned by 
the proposed algorithm can satisfy the constraints very well 
whatever the feed velocity and acceleration of the given ini-
tial trajectory are. In addition, the experimental results also 
show that the algorithm can respond to the velocity increas-
ing and decreasing in real time. The subsequent work is to 
optimize the algorithm considering the position error of the 
robot in the actual trajectory tracking, and to connect the 
servo motor to the load for further experimental verification.
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