
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-021-08503-3

ORIGINAL ARTICLE

Design and implementation of multi‑axis real‑time synchronous
look‑ahead trajectory planning algorithm

Yanyang Liang1 · Chaozhi Yao1 · Wei Wu1 · Li Wang1 · Qiongyao Wang1

Received: 10 May 2021 / Accepted: 4 December 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Multi-joint industrial robots are widely used in many fields such as transportation, welding, and assembling. In order to meet
the requirements of efficient and synchronous robot motion, a multi-axis real-time synchronous look-ahead trajectory plan-
ning algorithm is proposed based on dynamically given position and velocity sequences under the constraint of maximum
velocity and acceleration of each joint axis. In addition, an efficient transition processing method is proposed to satisfy the
smooth transition between adjacent trajectory segments. Furthermore, the trajectory planning methods of real-time velocity
tuning is further investigated to meet the requirements in practical application of industrial robot. At last, the performance
of the proposed algorithm is verified by simulation, and the feasibility of the algorithm in practical applications is demon-
strated experimentally.

Keywords  Multi axis synchronization · Look ahead · Trajectory planning · Real-time velocity tuning

1  Introduction

Trajectory planning, as the core technology of industrial
robots and CNC machine tool control, has been studied by
a large number of researchers and achieved certain results
[1–3]. With the extensive demand and application of indus-
trial robots and machine tools, trajectory planning technol-
ogy has gradually become mature. Currently, most com-
mon research on trajectory planning technology focuses on
achieving smooth transition at the corner of space trajectory,
minimum contour error under various kinematic constraints
or the shortest time of space trajectory planning, etc. By
improving smoothness and continuity of machine trajectory,
the stability and reliability of robot motion control can be
improved.

Industrial robots account for more than 50% of the global
robot market. Guan et al. planned the trajectory of the robot
by combining the third-order and the fourth-order polyno-
mials to smooth the robot trajectory [4]. The fourth-order
polynomial was used to interpolate the trajectory segments
at both ends, and the third-order polynomial was used to

interpolate the middle trajectory segment. In order to
improve the level of industrial manufacturing, the role of
robot trajectory planning technology cannot be ignored. In
order to realize fast and smooth motion of industrial robots,
Wang et al. adopted four-order polynomial to plan the accel-
eration curve between adjacent two points under kinematic
constraints [5]. Similarly, the method of trajectory planning
for jerk curve of robot motion is quite common in relevant
fields. Fang et al. have proposed two different trajectory
planning algorithms successively by this method [6, 7].
One was to divide the jerk curve into acceleration section,
constant section, and deceleration section. Under the con-
straints of velocity, acceleration, and jerk, the acceleration
section and deceleration section of jerk curve were planned
with S-curve, and a new jerk curve was established by the
integration of S-curve and straight line of constant section.
The other was to construct the jerk curve of robot motion
using sine function and established a new constraint crite-
rion, which enabled the proposed algorithm to achieve the
adjustability of velocity and smoothness of trajectory. This
kind of method avoids the chattering caused by the change
of velocity during the movement of the robot and keeps the
motion process with maximum velocity, acceleration, and
jerk as possible, so as to ensure the stability of the motion
process and improve the working efficiency of the robot.
In order to improve the production efficiency of industrial

 *	 Yanyang Liang
	 liangyanyang@163.com

1	 Wuyi University, Jiangmen 529020, China

/ Published online: 14 January 2022

The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-021-08503-3&domain=pdf

1 3

manufacturing, optimization of the time-consuming of tra-
jectory is also one of the hot topics in related fields. Liu et al.
used spline curves to plan the trajectory in Cartesian space,
then used B-spline curves to plan the trajectory in the joint
space, and finally used the SQP method to plan the trajectory
with minimum time [8]. Gao et al. optimized the trajectory
with particle swarm optimization (PSO) and 4–3-4 polyno-
mial interpolation [9]. Fares et al. constructed the trajec-
tory of the robot with third-order polynomial and optimized
it with genetic algorithm under three different constraints:
kinematics, dynamics, and effective load, and the optimal
time trajectory planning algorithm was proposed finally
[10]. Huang et al. [11] constructed the optimal trajectory
with fifth-order B-spline applying the NSGA-II algorithm
proposed by Deb et al. [12]. The resulting motion trajectory
algorithm also achieves the continuity of jerk curve. Unlike
above literature, Paolo and Dario [13] carried out trajectory
planning from the point of view of energy consumption. In
addition, there are also some algorithms for specific robots,
such as Liu et al. and Wu et al. also proposed different trajec-
tory planning algorithms for Delta robot [14, 15].

Trajectory planning of CNC machine tool with high
velocity and precision promotes the efficiency and quality of
industrial manufacturing. Zhao et al. put forward a two-stage
velocity planning algorithm, reducing the motion time and
velocity fluctuation by secondary optimization of a mini-
mum time trajectory planning [16]. Zhang et al. attempted
to solve the problem of excessive fluctuation of velocity,
acceleration, and jerk at the corner between adjacent straight
segments. Under the jerk constraint, to realize smooth tran-
sition of motion path, a transition curve with smooth cur-
vature between adjacent straight segments was constructed
using fifth-order B-spline curve with constraint on kinematic
parameters of the robot. In the subsequent study, a new tra-
jectory planning algorithm with the optimal velocity was
proposed based on the linear programming algorithm [17,
18]. Constructing smooth transition at the corner between
adjacent straight segments is one of the main methods to
improve the smoothness of machine tool movement, and the
searchers in related fields have also given many different
solutions [19–21]. Besides, the machining accuracy is also
a frequent consideration in trajectory planning. In order to
reduce the chord height error caused by trajectory planning,
Liu et al. constructed a smooth transition trajectory with
NURBS curves at the sharp corners of the continuous path
[22]. Li et al. and Chen et al. also proposed different solu-
tions to reduce contour error [23, 24].

Most of the algorithms mentioned in the above litera-
tures are trajectory planning for the current segment or
adjacent two segments of the robot motion path. Although
the planned trajectory can satisfy the constraints on veloc-
ity, acceleration, and jerk in the current segment, for multi-
segment continuous trajectory planning, the current segment

planning is affected by all the previous and afterward seg-
ments. In recent years, look-ahead trajectory planning
technology has gradually become a research focus, such
as Tajima and Sencer [25] and Huang [26], respectively,
carried out corresponding research. In this paper, a real-
time multi-axis synchronous look-ahead trajectory planning
algorithm for a large number of sequentially connected path
segments under the kinematic constraints. The planned tra-
jectory is further processed with S-shape-type filter, and a
real-time velocity tuning algorithm is proposed to meet the
requirements of industrial applications. Finally, simulation is
carried out in MATLAB environment to verify the feasibility
of the algorithm, and experiments are conducted to verify
the performance of the algorithm.

2 � Multi‑axis synchronous look‑ahead
trajectory planning

2.1 � Problem description

In order to control the industrial robot with multiple joints,
the path likes line or arc in task space should be interpo-
lated with a large number of sampling points which lie in
the line or arc path, and then these points are converted into
multi-axis position sequence in the joint space by inverse
kinematic of the industrial robot. All the successively adja-
cent two positions constitute a segment sequence, and the
velocity of each segment can be set by the robot operator or
simply general distance dividing sampling period.

Suppose there are m positions in the position sequence Q ,
which can be defined as Q =

[
q⃗1, q⃗2,⋯ , q⃗m

]
 , and each posi-

tion is a n-dimensional vector, namely, q⃗i =
[
qi1,⋯ , qin

]T ,
where n is the number of robot’s joints, that is, n axes.
The adjacent positions q⃗i and q⃗i+1 constitute the segment i
(where 1 ≤ i ≤ m − 1 ), and the generalized setting velocity
of the segment i is VFi

 . The constraints on maximum velocity
and acceleration of each axis are Vj

max and Aj
max , respectively

( 1 ≤ j ≤ n).
Briefly, given m positions Q , which constitute m − 1 seg-

ments, and the setting velocity sequence of segments VF,
under the maximum velocity Vj

max and acceleration Aj
max

( 1 ≤ j ≤ n ), n axis synchronous look-ahead trajectory plan-
ning algorithm is required, and the algorithm must support
real-time planning applying the dynamic sliding window
technique while the robot is operating and real-time veloc-
ity tuning.

2.2 � Transition between two adjacent segments

As shown in Fig. 1, the adjacent two segments consist of three
adjacent positions, and the generalized length of the two seg-
ments is defined as Li = ‖‖q⃗i+1 − q⃗i

‖‖ and Li+1 = ‖‖q⃗i+2 − q⃗i+1
‖‖ .

4992 The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

The radius of transition zone is Ls ≤ 1

2
min

(
Li, Li+1

)
 and the

transition velocity is vt.
Define the cosine ratio of each axis of each segment as

The maximum generalized velocity and the maximum gen-
eralized acceleration in the segment i are shown in Eq. (3).

Then the cosine ratio difference between two adjacent seg-
ments is calculated and normalized. Equation is as follows:
�����⃗ΔR = R⃗i+1 − R⃗i , and normalize �����⃗ΔR to ��������⃗ΔDR = �����⃗ΔR∕

‖‖
‖
�����⃗ΔR

‖‖
‖
.

The generalized acceleration of the transition zone is
Ap = min

1≤j≤n{
A
j
max

ΔDRj

} ; then, the acceleration vector of the transi-

tion zone is A⃗t =
��������⃗ΔDR ⋅ Ap.

Let the transition time be tm , and the generalized veloc-
ity at the start and end point of the transition zone remains
unchanged, and it leads to Eq. (4).

That is, vt�����⃗ΔR = A⃗ttm = ��������⃗ΔDR ⋅ Aptm , so we have Eq. (5).

Thus, there is vt ∝ tm.

(1)

R⃗i =
[
Ri1,⋯ ,Rin

]T

= [cos 𝜃i1,⋯ , cos 𝜃in]
T

=
q⃗i+1 − q⃗i

Li

(2)R⃗i+1 =
q⃗i+2 − q⃗i+1

Li+1

(3)Vmax,j = min
1≤j≤n{

V
j
max

Ri,j

},Amax,j = min
1≤j≤n(

A
j
max

Ri,j

)

(4)vtR⃗i+1 = vtR⃗i + A⃗ttm

(5)vt =
1

‖
‖‖
�����⃗ΔR

‖
‖‖

Aptm

The trajectory equation of the transition curve is shown in
Eq. (6).

And then there is

Therefore, Eq. (7) can be deduced.

Thus, there are Ls ∝ t2
m
.

According to the above analysis, if the transition radius Ls
is given, then there is tm ∝

√
Ls and vt ∝

√
Ls.

2.3 � Determination of maximum allowable
transition velocity

•	 Special situation �����⃗ΔR = �⃗0

	  In this case, it means that the cosine ratio of the two
adjacent segments is the same, and Ls = 0 . There is no
transition zone, and the maximum transition velocity can
be set as vt = min(Vmax,i,Vmax,i+1,VFi

,VFi+1
).

•	 �����⃗ΔR ≠ �⃗0

First, the transition radius is given as Ls = 1
/
2min(Li, Li+1) ,

and calculate the transition time by Eq. (8).

Then the maximum transition velocity is calculated as
Eq. (9).

If vt > min(VFi
,VFi+1

) , then take vt = min(VFi
,VFi+1

) , and
the transition radius is calculated by Eq. (10).

2.4 � Reverse velocity planning

Suppose k (k < m) segments need to be looked ahead, that
is the length of sliding window is k. In the reverse velocity

(6)
LsR⃗i+1 = −LsR⃗i + ∫

tm

0

(vtR⃗i + A⃗tt)dt

= −LsR⃗i + vtR⃗itm + 0.5A⃗tt
2

m

Ls(R⃗i+1 + R⃗i) = vtR⃗itm + 0.5A⃗tt
2

m

= 0.5(R⃗i+1 + R⃗i)Apt
2

m
∕
‖‖
‖
�����⃗ΔR

‖
‖
‖

(7)2Ls = Apt
2

m
∕
‖
‖
‖
�����⃗ΔR

‖
‖
‖

(8)tm =

√√√
√2

‖
‖‖
�����⃗ΔR

‖
‖‖
Ls

Ap

(9)vt =
Aptm

‖‖
‖
�����⃗ΔR

‖‖
‖

=

√√√
√

2ApLs

‖‖
‖
�����⃗ΔR

‖‖
‖

(10)Ls = vt
‖‖
‖
�����⃗ΔR

‖‖
‖
∕(2Ap)

Fig. 1   Transition curve construction between two adjacent segments

4993The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

planning stage, the final velocity of the last segment (seg-
ment k) is set to be zero, and then velocity planning is con-
ducted from segment k to segment k − 1, …, until from
segment 2 to segment 1. Take segment i + 1 and segment i
as example for detailing the reverse velocity planning algo-
rithm, as shown in Fig. 2.

If vs ≥ vt , then vt is reachable and no further processing
is required. If vs < vt , then it is necessary to determine
whether vt can be reached. Firstly, v�

t
=
√

v2
s
+ 2AmaxLc is

calculated. If v′

t
≥ vt , then vt is reachable. Otherwise, it is

necessary to calculate the maximum transition velocity that
can be reached and revise transition radius.

Let the maximum allowable transition velocity be v′′

t
 .

According to Fig. 2, there is Eq. (11).

Since v��

t
= vt

√
1 − a , Eq. (12) is obtained.

Then the transition length and transition velocity can be
updated by Eq. (13).

Taking vtn as vs of the previous segment (segment i − 1),
the reverse velocity planning continues until to the segment
1.

2.5 � Forward velocity planning

Forward velocity planning is carried out for the first seg-
ment, as shown in Fig. 3, which is mainly divided into two
cases.

1.	 vs ≥ vt

(11)v
��2

t
− v

�2

t
= 2AmaxaLs = 2aAmaxLs

(12)
a = (v2

t
− v

�2

t
)
/
(2AmaxLs + v2

t
)

= (v2
t
− v2

s
− 2AmaxLc)

/
(2AmaxLc + v2

t
)

(13)Lsn = (1 − a)Ls, vtn = vt

√
1 − a

Reverse velocity planning already ensures that vs can
slow down to vt and vs ≤ VF . Firstly, the critical velocity
vc is calculated by the following equation:

Thus Eq. (14) can be obtained.

If vc ≤ VF , the velocity curve is shown in the first figure
in Fig. 4. If vc > VF , the velocity curve is shown in the
second figure in Fig. 4. If vs = vc , the velocity curve is
shown in the third figure in Fig. 4.

2.	 vs < vt

v2
c
− v2

s
+ v2

c
− v2

t
= 2AmaxLc

(14)vc =

√
(v2

s
+ v2t + 2AmaxLc)

/
2

Fig. 2   Reverse look-ahead trajectory planning

Fig. 3   Forward velocity planning

Fig. 4   Deceleration case

4994 The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

This situation can be further divided into two cases.

2.1	v2
t
− v2

s
< 2AmaxLc

This situation indicates that the velocity can be raised to
vt , and the critical speed is calculated as Eq. (15).

If vc ≤ VF , the velocity curve is shown in the left figure
in Fig. 5. If vc > VF , the velocity curve is shown in the
right figure in Fig. 5.

2.2	v2
t
− v2

s
> 2AmaxLc

This situation indicates that the velocity cannot be
raised to vt . If the transition radius is 0, namely, Ls = 0 , the
velocity can be increased directly. The maximum velocity
can be calculated by Eq. (16).

The velocity curve is shown in Fig. 6.
If Ls ≠ 0 , it is necessary to reduce the transition radius

and increase the velocity as much as possible. As shown
in Fig. 7, if the ratio of reducing the length of the transi-
tion section is a , there are the following three equations:

By solving the above three equations, Eq. (20) can be
obtained.

Then Eq. (21) can be obtained to update the transition
radius and transition velocity.

(15)vc =

√(
v2t + v2

s
+ 2AmaxLc

)/
2

(16)vtn =

√
v2
s
+ 2AmaxLc

(17)v
�

t
=

√
v2
s
+ 2AmaxLc

(18)v
��

t
= vt

√
1 − a

(19)v
��2

t
− v

�2

t
= 2AmaxaLs

(20)a =
(
v2
t
− v2

s
− 2AmaxLc

)/(
2AmaxLs + v2

t

)

The velocity curve obtained is shown in Fig. 6.

2.6 � Transition trajectory planning

There is no transition zone while in the last segment or the
direction cosine vectors of two adjacent segments are equal.
Otherwise, if the transition zone exists, that is, Ls ≠ 0,then
trajectory planning for the transition zone is required. Since
the generalized velocity of the transition zone is constant,
the transition trajectory can be calculated easily.

As shown in Fig. 8, q⃗ts and q⃗te are the starting and ending
velocity vector of the transition zone, vt is the generalized
velocity, Ls is the transition radius, Ap is the generalized
acceleration, and A⃗t =

��������⃗ΔDR ⋅ Ap is the acceleration vector.
According to Eq. (5) and Eq. (7), the transition duration is
tm = 2Ls

/
vt , and the velocity of all the axis at the given time

can be obtained from Eq. (22).

The corresponding position of all the axis at the given time
can be obtained from Eq. (23).

(21)
Lcn = Lc + aLs
Lsn = (1 − a)Ls

vtn = vt

√
1 − a

(22)V⃗(t) = vtR⃗i + A⃗t ⋅ t

(23)q⃗(t) = q⃗ts + ∫
t

0

V⃗(t)dt = q⃗ts + vtR⃗i ⋅ t + 0.5A⃗t ⋅ t
2

Fig. 5   Acceleration case 1

Fig. 6   Acceleration case 2

Fig. 7   The transition radius and transition velocity revise

4995The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

2.7 � Multi‑axis synchronous look‑ahead trajectory
planning algorithm

2.7.1 � [Algorithm 1] Multi‑axis synchronous look‑ahead
trajectory planning (MSLTP)

The flowchart of the algorithm, shown in Fig. 9, can be
described as the following:

1.	 Given k + 1 positions, every position is a vector with
dimension n, constituting k segments, given feed veloc-
ity sequence VF = [VF1

, ...,VFk
] , the maximum velocity

bound Vj
max1 ≤ j ≤ n) , and the maximum acceleration

bound Aj
max1 ≤ j ≤ n).

2.	 Construct the transition zones between all the adjacent
segments and determinate the maximum allowable tran-
sition velocity according to Sects. 2.2 and 2.3.

3.	 Set the velocity of the last position (the velocity usu-
ally sets as zero), conduct reverse velocity look-ahead
planning from the segment k to segment 1, and revise
transition zones and the maximum allowable transition
velocity according to Sect. 2.4.

4.	 Forward trajectory planning for the first segment and
transition trajectory planning for the first transition zone
according to Sects. 2.5 and 2.6.

3 � Dynamic real‑time velocity tuning

3.1 � Dynamic real‑time acceleration
and deceleration

Real-time velocity tuning is designed to improve dynamic per-
formance and flexibility. It is the basis for dynamic tracking, such
as visual tracking, weld tracking, or other guidance functions.

Real-time velocity change mainly includes real-time
velocity increase and real-time velocity decrease. Real-time
velocity increase can be realized only by updating the target
feed velocity VFi

(1 ≤ i ≤ m − 1) of all segments and execute
the MSLTP algorithm again immediately.

In order to achieve real-time deceleration, firstly, update
the feed velocity VFi

(1 ≤ i ≤ m − 1) ; secondly, recalculate
the first transition zone and the maximum transition velocity
by the following methods; and finally, execute the MSLTP
algorithm again.

As shown in Fig. 10, the absolute values of the general-
ized length, the initial generalized velocity, and the gen-
eralized maximum acceleration of the current segment are
set as Lc , vs , and Am , respectively. The allowable transition
radius, transition velocity, and generalized maximum accel-
eration of the transition segment are set as Ls , vt , and Ap ,
respectively. The feed velocities of the current and the next
segment are VF1

 and VF2
 , respectively, and the cosine ratios

of the two adjacent segments are R⃗1 and R⃗2 , respectively.
Set vtm = min

(
vt,VF1

,VF2

)
 and �����⃗ΔR = R⃗2 − R⃗1 , then equa-

tions Lsn =
‖
‖‖
�����⃗ΔR

‖
‖‖
v2
tm

/(
2Ap

)
 and Lcn = Lc + Ls − Lsn can be

calculated, update Ls = Lsn, Lc = Lcn.
If vs > vtm , calculate v�

tm
=
√

v2
s
− 2AmLc . If v

′

tm
≤ vtm ,

update the data according to Eq. (24).

(24)vtn = vtm,VF = vtn

Fig. 8   Trajectory planning in the transition zone

Fig. 9   Flowchart of multi-axis synchronous look-ahead trajectory
planning algorithm

4996 The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

If v′

tm
> vtm , then Lc and Ls need to be revised and transition

velocity must be recalculated. As shown in Fig. 11, since the
velocity cannot be reduced to vtm , Lc needs to be reduced. Let
the reduction ratio be a ; there is the following equation:

According to Eq. (25) and Eq. (26), Eq. (27) can be
obtained.

Then the corresponding data can be updated according to
the following formula:

(25)v
�2

t
− v2

tm
= 2ApaLc

/
‖‖
‖
�����⃗ΔR

‖‖
‖

(26)v2
s
− v

�2

t
= 2Am(1 − a)Lc

(27)a =
(
v2
s
− v2

tm
− 2AmLc

)/(
2Lc

(
Ap

/
‖‖
‖
�����⃗ΔR

‖‖
‖
− Am

))

(28)Lsn = aLc + Ls, Lcn = (1 − a)Lc

(29)vtn = v
�

t
=

√

2ApLsn

/
‖‖
‖
�����⃗ΔR

‖‖
‖
,VF = vtn

3.2 � Real‑time trajectory planning for stop
command

When receiving the stop command, the first step is to judge
whether the actuator can stop in the current segment. Calculate
L = Lc + Ls and L�

= v2
s

/(
2Am

)
 . If L′ ≤ L , it means that the

velocity can be reduced to 0 in the current segment, then only
this segment needs trajectory planning. Otherwise, the transi-
tion zone should be revised to reduce the velocity as much
as possible. Set the velocity after deceleration (the transition
velocity) as vtm , then the following equation can be obtained.

Then Eq. (30) is obtained from above.

Let vt = vtm, Ls = L
�

s
 , and continue to plan the next seg-

ment using the same trajectory planning method until the
velocity in a segment can be reduced to 0 (Fig. 12).

4 � Digital simulation and result analysis

4.1 � S‑type digital filtering

The velocity curve obtained by algorithm MSLTP is trap-
ezoidal, which can be transformed into S-type velocity
curve through an S-type digital filter. S-type digital filter is
designed based on the principle of digital convolution, which
is very suitable for the application of real-time planners.

L
�

s
= v2

tm

‖
‖
‖
�����⃗ΔR

‖
‖
‖

2Ap

, L
�

c
= L − L

�

s
=

v2
s
− v2

tm

2Am

(30)v2
tm

=
v2
s
− 2AmL

1 − Am

/(
Ap

/
‖‖
‖
�����⃗ΔR

‖‖
‖

) , L
�

s
=

‖‖‖
�����⃗ΔR

‖‖‖
2Ap

v2
tm

sv tv

tvpA

sL

cL

mA

1F
V

2F
V

Fig. 10   Trajectory planning for the first and second segments

Fig. 11   Real-time deceleration for the first transition zone

sv tv

tv
pA

sL

cL

mA

Fig. 12   Real-time trajectory planning for stop command response

4997The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

S-type digital filter is realized by series connection of two
linear-type filters. The discrete transfer function of linear-
type filters is shown in the following formula:

The transfer function of S-type digital filter is shown in
Eq. (32).

The effect of linear-type filter and S-type filter on input
step signals is shown in Fig. 13. If the input signal is set to
Vi(k), k = 1, 2,… , Vi(k)

|
|k≤0 = 0 , the digital implementation

of S-type filter can adopt the following way:

4.2 � Multi‑axis real‑time synchronous look‑ahead
trajectory planning algorithm

4.2.1 � [Algorithm 2] multi‑axis real‑time synchronous
look‑ahead trajectory planning (MRTSLTP)

The flowchart of the algorithm, shown in Fig. 14, can be
described as the following:

(31)HL(z) =
1

m

1 − z−m

1 − z−1

(32)
Hs(z) = HL(z) ∗ HL(z)

=
1

m

1 − z−m

1 − z−1
∗

1

m

1 − z−m

1 − z−1

(33)
Vot(k) =

1

m

(
Vi(k) − Vi(k − m)

)
+ Vot(k − 1)

Vo(k) =
1

m

(
Vot(k) − Vot(k − m)

)
+ Vo(k − 1)

Fig. 13   Linear-type and S-type digital filters Fig. 14   Flowchart of multi-axis real-time synchronous look-ahead
trajectory planning algorithm

4998 The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

1.	 Given m positions, every position is a vector with dimen-
sion n, constituting m − 1 segments, given feed velocity
sequence VF = [VF1

, ...,VFm−1
] , the maximum velocity

bound Vj
max(1 ≤ j ≤ n) , and the maximum acceleration

bound Aj
max1 ≤ j ≤ n) , the number of segments to look-

ahead k.
2.	 If the look-ahead segment number k is larger

than the number of total segment m − 1, let
k = m − 1. Get the 1 ~ k + 1 positions from position
sequenceQ =

[
�⃗q1, �⃗q2,⋯ , �⃗qm

]
 , which constitute k seg-

ments. And then execute the MSLTP algorithm.
3.	 According to the MSLTP algorithm, trajectory of the

first segment and transition zone is obtained, then the
positions of multi-axis can be sampled periodically from
the trajectory, push them into a FIFO buffer. These posi-
tions will pass through the S-type filter and feed into the
servo device finally.

4.	 If velocity tuning command is received while sampling,
then update feed velocity according to Sect. 3.1, and
execute the MSLTP algorithm again. If the stop com-
mand is received while sampling, then begin the trajec-
tory planning according to Sect. 3.2, and the algorithm
will terminate sampling is finished.

5.	 When the first segment and the transition zone are sam-
pled finished, the segment and transition zone will be
deleted, the positions Q will be updated. If Q is not
empty, then return to step (2); otherwise, the algorithm
will terminate.

4.3 � Simulation

Each joint of a 6-DOF serial industrial robot corresponds to
a motion axis. The coordinate system configuration of the
robot is shown in Fig. 15, and the corresponding robot DH
parameters are shown in Table 1. The ai and di in Fig. 15
correspond to the ai and di in Table 1, respectively, and the

rightmost column of Table 1 is the range of joint angles. The
velocity range of the six axes is set to [− 4,4] rad/s, and the
acceleration range is [− 30,30] rad/s2.

The orientation and position of a rigid body can
be represented as a 4 × 4 homogeneous matrix T = [R,
p; 0, 0, 0, 1], where R is the 3 × 3 orthogonal orienta-
tion matrix and p is the 3 × 1 position vector. Construct
an arc path with start point [− 0.898, 0.066, 0.435,
98.09; − 0.215, 0.798, − 0.563, 55.47; − 0.385, − 0.599, − 
0.702, − 537.73; 0, 0, 0, 1], middle point [− 0.901, − 0.001,
0.434, 53.26; 0.003, 1.000, 0.009, 380.43; − 0.434,
0.009, − 0.901, − 419.81; 0, 0, 0, 1], and end point
[− 0.898, − 0.066, 0.435, 228.00; 0.215, 0.797, 0.564,
87.47; − 0.384, 0.600, − 0.702, − 396.72; 0, 0, 0, 1]. Firstly,
without considering the velocity and acceleration limits of
axes, the EOT (end of tool) of the robot moves along the
arc path with a S-type velocity profile in the task space.
Secondly, 202 points in the path are obtained by sampling
with 2-ms period. The corresponding position sequence
of the six axes is obtained with inverse kinematics, as
shown in Fig. 16. The corresponding velocity and accel-
eration sequences can also be calculated easily, as shown
in Figs. 17 and 18.

z0
z1

x0 x1

y0
y1 x2

z2

y2

a1

x3
z3

y3

a2

a3

x4
x5
x6

z4 y5 z6
y4

y6

z5
d4

xt

yt
zt

d7

Fig. 15   Coordinate system configuration of 6-DOF serial robot

Table1   DH parameters of 6-DOF serial robot

Link i a
i−1(mm) �

i−1(°) �
i
(°) d

i
(mm) Angle range

i = 1 0 0 �
1
0 0  −170 ~ 170

i = 2 85  −90 θ2 (−90) 0  −92 ~ 135
i = 3 380 0 �

3
0 0  − 129 ~ 116

i = 4 85  −90 �
4
0 425  −160 ~ 160

i = 5 0 90 �
5
0 0  −120 ~ 120

i = 6 0  −90 �
6
0 0  −360 ~ 360

i = 7 0 0 0 85 0

Fig. 16   Displacement curve of original target trajectory

4999The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

The 202 positions constitute 201 segments; the feed veloc-
ity of every segment can be set as length of the segment divid-
ing 2 ms, look-ahead 100 segments, a fine interpolation period
of 1 ms. The MRTSLTP algorithm is carried out; the posi-
tion, velocity, and acceleration obtained after planning are
shown in Figs. 19, 20, and 21. If the velocity is dynamically
reduced to 1/10 of the original at 400 ms and then increased
to 10 times of the current at 1500 ms, MRTSLTP algorithm
can response immediately, and the velocity and acceleration
curves obtained are shown in Figs. 22, 23, and 24.

It can be seen from Fig. 17 and Fig. 18 that the velocity
and acceleration of the given target trajectory are far beyond
the given range of velocity and acceleration. After trajectory
planning with MRTSLTP algorithm under the constraints
of velocity and acceleration, the target trajectory is signifi-
cantly improved, which are shown in Fig. 20 and Fig. 21;
the velocity and acceleration of the planned target trajectory

are effectively constrained within the given range, and both
curves are very smooth, which can make the robot move
more stable in practical applications. Figure 23 shows the
velocity curve of the target trajectory after real-time veloc-
ity tuning; the MRTSLTP algorithm can respond to velocity
tuning command very quickly.

5 � Algorithm implementation
and experiments

5.1 � Control schemes and implementation
of MRTSLTP algorithm

The industrial six-axis motion control platform is built
to test the practicability of the algorithm. The hardware

Fig. 17   Velocity curve of the original target trajectory

Fig. 18   Acceleration curve of original target trajectory

Fig. 19   Displacement curve planned by MRTSLTP algorithm

Fig. 20   Velocity curve planned by MRTSLTP algorithm

5000 The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

platform of the control system consists of one master sta-
tion equipment and multiple slave station equipment. The
CTH3-C series motion controller of Hexin is selected as
the master station equipment, the H1A servo driver of
Hexin is selected as the slave station equipment, and the
M series servo motor is selected as the driving device. The
communication between the master station and the slave
station is carried out through EtherCAT (Ethernet Control
Automation Technology). Figure 25 is the overall frame-
work of the control system. Figure 26 shows the hardware
platform of the industrial six-axis motion control system.

Figure 27 is the framework diagram of the control sys-
tem software platform; the software develop environment
is CODESYS (V3.5 sp11 version) in the industrial per-
sonal computer. The control system software consists two
modules, including the human–computer interface module

and the task module. The human–computer interface mod-
ule provides the parameter input, system operation state
information, and system control buttons. The task module
composes two sub-tasks: one is the trajectory planning task
whose cycle is 20 ms and the other is the communication
task whose cycle is 1 ms. The communication task feeds
position data to servo device every 1 ms periodically, and
has the highest priority.

Figure 28 is the control system data flow diagram. There
are four buffers in this system. The buffer1 mainly consists
all the position sequence needed to be planned and feed
velocity sequence, buffer2 mainly consists the current k seg-
ments to be planned, buffer3 consists the sampling positions
after the trajectory planning, and buffer4 consists the smooth
positions after passing through the S-type filter.

Fig. 21   Acceleration curve planned by MRTSLTP algorithm

Fig. 22   Displacement curve planned by MRTSLTP with velocity tun-
ing

Fig. 23   Velocity curve planned by MRTSLTP with velocity tuning

Fig. 24   Acceleration curve planned by MRTSLTP with velocity tun-
ing

5001The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

5.2 � Experiment and analysis

According to the same DH model, let the orientation be
R = [− 0.8979, 0.0653, 0.4354; − 0.2155, 0.7972, − 0.5640
; − 0.3839, − 0.6002, − 0.7017]; construct an arc path with

start point [98.09, 55.47, − 537.7], middle point [161.6,
3.531, − 407.3], and end point [245.8, 17.6, − 270.1]; and
construct a line path with start point [93.59, 214, − 63.34]
and end point [98.09, 55.47, − 537.7]. 1.25 m/s is used as the
generalized velocity of line path, and 0.8 m/s is used as the
generalized velocity of arc path, taking the line and arc in
the task space as the target path, respectively. The target path
is rough interpolated, and the positions in joint space are
obtained by inverse kinematics of the interpolation points.
Taking the position sequence as input, the servo motors are
controlled by the control system software to track the posi-
tions with feed generalized velocity.

Figures 29, 30, 31, 32, 33, and 34 show the original dis-
placement, velocity, and acceleration curves of the joints by
rough interpolation and inverse kinematics along the line
and arc path, respectively. Figures 35, 36, 37, and 38 show
the results obtained by experiment. The preset values shown
in Figs. 35, 36, 37, and 38 are the theoretical value obtained
by the MRTSLTP algorithm, and the actual values are the
feedback of the servo motor.

5.3 � Analysis of path error

Figures 35, 36, 37, and 38 show that the preset and the
actual trajectories of all the joints are nearly coincident.
The differences between the preset and the actual values are
calculated for comparison and analysis. The error curves of
joint displacement corresponding to the two trajectories are
shown in Figs. 39 and 40. The error of joint displacement
is effectively controlled, and the maximum error is within
0.001 rad.

PC+

CODESYS

Controller

Servo Driver1

Servo Driver2

Servo Driver3

Servo Driver4

Servo Driver5

Servo Driver6

Servo Motor1

Servo Motor2

Servo Motor3

Servo Motor4

Servo Motor5

Servo Motor6

TCP/IP

EtherCAT

EtherCAT

EtherCAT

EtherCAT

EtherCAT

Fig. 25   Overall diagram of the control system

Fig. 26   Hardware platform of six-axis motion control system

1) DH Parameters, maximum velocity and

acceleration of each joint ;

2) Parameters of Line or arc path which the robot

move along, velocity sequence or time sequence;

3) Position sequence in joint sapce, velocity

sequence or time sequence;

4) The number of look ahead segments, sample

period, fine interpolation period;

5) system operation states information;

6) system control buttons.

Human-computer
interface

1) Obtain the position sequence,

velocity sequence and

constrains directly;

2) Real-time synchronous look

ahead trajectory planning.

1) Sample the planned

position in joint space;

2) Filter the positions by S-

type filter and feed them

into the servo device.

Task 1
(trajectory planning task)

Cycle: 20ms

Task 2
(communication task)

Cycle: 1ms

Fig. 27   Control system software platform block diagram

5002 The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

To further verify the performance of tracking line and arc
paths in task space, the joint trajectories are converted into
space trajectories by the robot forward kinematics, and the
results are shown in Figs. 41, 42, 43, and 44.

Figures 41 and 43 show that the initial paths, preset paths,
and actual paths of both line and arc trajectories have good
overlap. It can be seen from Figs. 42 and 44 that the maxi-
mum errors of the line and the arc path are around 1 mm and
0.6 mm, respectively.

The errors shown in Figs. 42 and 44 are relatively large.
The length of the line path is 500 mm, and the actual mov-
ing time is around 0.8 s; it is inferred that the large error is
caused by the high velocity. If the rough interpolation period

is set to 10 ms, that is slowing down the velocity five times.
The experiments are conducted again according to the above
conditions, and the results are shown in Figs. 45, 46, 47, 48,
49, 50, 51, 52, 53, and 54.

As can be seen from Figs. 45, 46, 47, 48, 49, and 50,
the trajectories of each joint under the above conditions
almost completely overlap, and the joint angle errors are
constrained to be within [− 0.0004, 0.0003] radians. As
can be seen from Figs. 51, 52, 53, and 54, the initial, pre-
set, and actual trajectories also have very good overlap,
and the maximum position errors of the line and arc paths
are constrained to be below 0.1 mm and 0.06 mm, respec-
tively. It can be concluded that the proposed MRTSLTP
algorithm can meet the performance requirements of robot
trajectory planning, and has good executability in practical
applications.

Operator Buffer1

Motor drive

Real-time synchronous look ahead

trajectory palnning

Calculate the transition zone between

adjacent trajectory segments

S-type filter

Buffer4

Buffer2

Buffer3

-Position sequence

-Feed velocity sequence

-Number of look ahead segments

-Maximum velocity and acceleration of each axis

-Position sequence with k+1 elements

-Segment sequence with k elements

-Feed generalized velocity sequence with k elements

-Maximum velocity and acceleration of each axis

-Transition radius and transition velocity

-Position sequence sampled from the

planned trajectory

-Position sequence passed through the

S-type filter

Fig. 28   Control system data flow diagram

Fig. 29   Joint displacement curve of the original line path

Fig. 30   Joint velocity curve of the original line path

5003The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

Fig. 31   Joint acceleration curve of the original line path

Fig. 32   Joint displacement curve of the original arc path

Fig. 33   Joint velocity curve of the original arc path

Fig. 34   Joint acceleration curve of the original arc path

Fig. 35   Joint displacement curve of the line path by experiment

Fig. 36   Joint velocity curve of the straight path by experiment

5004 The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

Fig. 37   Joint displacement curve of the arc path by experiment

Fig. 38   Joint velocity curve of the arc path by experiment

Fig. 39   Error curve of joint displacement of line path

Fig. 40   Error curve of joint displacement of arc path

Fig. 41   Line path obtained by forward kinematics of joint displace-
ment

Fig. 42   Error curve of line path obtained by forward kinematics of
joint displacement

5005The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

Fig. 43   Arc path obtained by forward kinematics of joint displacement

Fig. 44   Error curve of arc path obtained by forward kinematics of
joint displacement

Fig. 45   Joint displacement curve of the line path obtained by the
experiment with low velocity

Fig. 46   Joint velocity curve of the line path obtained by the experi-
ment with low velocity

Fig. 47   Joint displacement curve of the arc path obtained by the
experiment with low velocity

Fig. 48   Joint velocity curve of the arc path obtained by the experi-
ment with low velocity

5006 The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

Fig. 49   Error curve of joint displacement of line path with low velocity

Fig. 50   Error curve of joint displacement of arc path with low velocity

Fig. 51   Line path obtained by forward kinematics of joint displace-
ment with low velocity

Fig. 52   Error curve of line path obtained by forward kinematics of
joint displacement with low velocity

Fig. 53   Arc path obtained by forward kinematics of joint displace-
ment with low velocity

Fig. 54   Error curve of arc path obtained by forward kinematics of
joint displacement with low velocity

5007The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

1 3

6 � Conclusion

Focus on kinematic constraints and smooth transition of
a large number of continuous segments in trajectory plan-
ning, a multi-axis real-time synchronous look-ahead tra-
jectory planning algorithm is proposed. The algorithm
performs multi-axis look-ahead trajectory planning in real
time according to given position sequence, feed velocity
sequence under the constraints on maximum velocity, and
acceleration of the axes. The algorithm also supports online
real-time velocity tuning and real-time stop command
response. Experiments show that the trajectory planned by
the proposed algorithm can satisfy the constraints very well
whatever the feed velocity and acceleration of the given ini-
tial trajectory are. In addition, the experimental results also
show that the algorithm can respond to the velocity increas-
ing and decreasing in real time. The subsequent work is to
optimize the algorithm considering the position error of the
robot in the actual trajectory tracking, and to connect the
servo motor to the load for further experimental verification.

Author contribution  Yanyang Liang performed the design of the algo-
rithm and the writing of the manuscript. Chaozhi Yao and Wei Wu
performed the code writing and experimental analysis. Li Wang and
Qiongyao Wang organized the paper and revised the manuscript.

Funding  This study is supported by the National Natural Science
Foundation of China (No. 51905384) and Research Initiation Fund of
Wuyi University (No. 409170190241).

Availability of data and materials  All data generated or analyzed during
this study are included in this published article.

Declarations 

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Conflict of interest  The authors declare no competing interests.

References

	 1.	 Ji W, Wang LH (2019) Industrial robotic machining: a review. Int
J Adv Manuf Technol 103:1239–1255. https://​doi.​org/​10.​1007/​
s00170-​019-​03403-z

	 2.	 Gasparetto A, Zanotto V (2008) A technique for time-jerk opti-
mal planning of robot trajectories. Robot Comput Integr Manuf
24:415–426. https://​doi.​org/​10.​1016/j.​rcim.​2007.​04.​001

	 3.	 Guan XQ, Wang JD (2011) Trajectory planning theory and method
of industrial robot. Int Conf Comput Res Dev 340–343. https://​
doi.​org/​10.​1109/​ICCRD.​2011.​57641​46

	 4.	 Guan YS, Yokoi K, Stasse O, Kheddar A (2005) On robotic tra-
jectory planning using polynomial interpolations. IEEE Int Conf
Robot Biomim 111–116. https://​doi.​org/​10.​1109/​ROBIO.​2005.​
246411

	 5.	 Wang H, Wang H, Huang JH, Zhao B, Quan L (2019) Smooth point-
to-point trajectory planning for industrial robots with kinematical
constraints based on high-order polynomial curve. Mech Mach
Theor 139:284–293. https://​doi.​org/​10.​1016/j.​mechm​achth​eory.​
2019.​05.​002

	 6.	 Fang Y, Hu J, Liu WH, Shao QQ, Qi J, Peng YH (2019) Smooth
and time-optimal S-curve trajectory planning for automated robots
and machines. Mech Mach Theor 137:127–153. https://​doi.​org/​
10.​1016/j.​mechm​achth​eory.​2019.​03.​019

	 7.	 Fang Y, Qi J, Hu J, Wang WM, Peng YH (2020) An approach for
jerk-continuous trajectory generation of robotic manipulators with
kinematical constraints. Mech Mach Theory 153:103957. https://​
doi.​org/​10.​1016/j.​mechm​achth​eory.​2020.​103957

	 8.	 Liu HS, Lai XB, Wu WX (2013) Time-optimal and jerk-continuous
trajectory planning for robot manipulators with kinematic con-
straints. Robot Comput Integr Manuf 29:309–317. https://​doi.​org/​
10.​1016/j.​rcim.​2012.​08.​002

	 9.	 Gao MY, Ding P, Yang YX (2015) Time-optimal trajectory plan-
ning of industrial robots based on particle swarm optimization. Int
Conf Instrum Meas Comput Commun Control 1934–1939. https://​
doi.​org/​10.​1109/​IMCCC.​2015.​410

	10.	 Fares JA, Iyad FA, Rasha MA, Mohamed A (2017) Statistical
evaluation of an evolutionary algorithm for minimum time tra-
jectory planning problem for industrial robots. Int J Adv Manuf
Technol 89:389–406. https://​doi.​org/​10.​1007/​s00170-​016-​9050-1

	11.	 Huang JS, Hu PF, Wu KY, Zeng M (2018) Optimal time-jerk
trajectory planning for industrial robots. Mech Mach Theory
121:530–544. https://​doi.​org/​10.​1016/j.​mechm​achth​eory.​2017.​
11.​006

	12.	 Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-
ist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol
Comput 6:182–197

	13.	 Paolo B, Dario R (2019) Energy-efficient design of multipoint tra-
jectories for Cartesian robots. Int J Adv Manuf Technol 102:1853–
1870. https://​doi.​org/​10.​1007/​s00170-​018-​03234-4

	14.	 Liu C, Cao GH, Qu YY, Cheng YM (2020) An improved PSO
algorithm for time-optimal trajectory planning of Delta robot in
intelligent packaging. Int J Adv Manuf Technol 107:1091–1099.
https://​doi.​org/​10.​1007/​s00170-​019-​04421-7

	15.	 Wu MK, Mei JP, Zhao YQ, Niu WT (2020) Vibration reduction
of delta robot based on trajectory planning. Mech Mach Theory
153:104004. https://​doi.​org/​10.​1016/j.​mechm​achth​eory.​2020.​
104004

	16.	 Zhao K, Li SR, Kang ZJ (2019) Smooth minimum time trajectory
planning with minimal feed fluctuation. Int J Adv Manuf Technol
105:1099–1111. https://​doi.​org/​10.​1007/​s00170-​019-​04308-7

	17.	 Zhang Y, Zhao MY, Ye PQ, Jiang JL, Zhang H (2018) Optimal
curvature-smooth transition and efficient feedrate optimiza-
tion method with axis kinematic limitations for linear toolpath.
Int J Adv Manuf Technol 99:169–179. https://​doi.​org/​10.​1007/​
s00170-​018-​2496-6

	18.	 Zhang Y, Ye PQ, Wu JQ, Zhang H (2018) An optimal curvature-
smooth transition algorithm with axis jerk limitations along linear
segments. Int J Adv Manuf Technol 95:875–888. https://​doi.​org/​
10.​1007/​s00170-​017-​1274-1

	19.	 Wang H, Wu JH, Liu C, Xiong ZH (2018) A real-time interpola-
tion strategy for transition tool path with C2 and G2 continuity.
Int J Adv Manuf Technol 98:905–918. https://​doi.​org/​10.​1007/​
s00170-​018-​2242-0

	20.	 Zhang Q, Gao XS, Li HB, Zhao MY (2017) Minimum time corner
transition algorithm with confined feedrate and axial acceleration

5008 The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

https://doi.org/10.1007/s00170-019-03403-z
https://doi.org/10.1007/s00170-019-03403-z
https://doi.org/10.1016/j.rcim.2007.04.001
https://doi.org/10.1109/ICCRD.2011.5764146
https://doi.org/10.1109/ICCRD.2011.5764146
https://doi.org/10.1109/ROBIO.2005.246411
https://doi.org/10.1109/ROBIO.2005.246411
https://doi.org/10.1016/j.mechmachtheory.2019.05.002
https://doi.org/10.1016/j.mechmachtheory.2019.05.002
https://doi.org/10.1016/j.mechmachtheory.2019.03.019
https://doi.org/10.1016/j.mechmachtheory.2019.03.019
https://doi.org/10.1016/j.mechmachtheory.2020.103957
https://doi.org/10.1016/j.mechmachtheory.2020.103957
https://doi.org/10.1016/j.rcim.2012.08.002
https://doi.org/10.1016/j.rcim.2012.08.002
https://doi.org/10.1109/IMCCC.2015.410
https://doi.org/10.1109/IMCCC.2015.410
https://doi.org/10.1007/s00170-016-9050-1
https://doi.org/10.1016/j.mechmachtheory.2017.11.006
https://doi.org/10.1016/j.mechmachtheory.2017.11.006
https://doi.org/10.1007/s00170-018-03234-4
https://doi.org/10.1007/s00170-019-04421-7
https://doi.org/10.1016/j.mechmachtheory.2020.104004
https://doi.org/10.1016/j.mechmachtheory.2020.104004
https://doi.org/10.1007/s00170-019-04308-7
https://doi.org/10.1007/s00170-018-2496-6
https://doi.org/10.1007/s00170-018-2496-6
https://doi.org/10.1007/s00170-017-1274-1
https://doi.org/10.1007/s00170-017-1274-1
https://doi.org/10.1007/s00170-018-2242-0
https://doi.org/10.1007/s00170-018-2242-0

1 3

for nc machining along linear tool path. Int J Adv Manuf Technol
89:941–956. https://​doi.​org/​10.​1007/​s00170-​016-​9144-9

	21.	 Zhang LQ, Du JF (2018) Acceleration smoothing algorithm based
on jounce limited for corner motion in high-speed machining.
Int J Adv Manuf Technol 95:1487–1504. https://​doi.​org/​10.​1007/​
s00170-​017-​1272-3

	22.	 Liu XH, Peng JQ, Si L, Wang ZB (2017) A novel approach
for NURBS interpolation through the integration of acc-jerk-
continuous-based control method and look-ahead algorithm.
Int J Adv Manuf Technol 88:961–969. https://​doi.​org/​10.​1007/​
s00170-​016-​8785-z

	23.	 Li BR, Zhang H, Ye PQ (2018) Error constraint optimization for
corner smoothing algorithms in high-speed CNC machine tools.
Int J Adv Manuf Technol 99:635–646. https://​doi.​org/​10.​1007/​
s00170-​018-​2489-5

	24.	 Chen WC, Chen CS, Lee FC, Chen LY (2019) High speed blend-
ing motion trajectory planning using a predefined absolute accu-
racy. Int J Adv Manuf Technol 104:2179–2193. https://​doi.​org/​10.​
1007/​s00170-​019-​03973-y

	25.	 Tajima S, Sencer B (2020) Real-time trajectory generation for
5-axis machine tools with singularity avoidance. CIRP Ann
69:349–352. https://​doi.​org/​10.​1016/j.​cirp.​2020.​04.​050

	26.	 Huang HM (2018) An adjustable look-ahead acceleration/decel-
eration hybrid interpolation technique with variable maximum
feedrate. Int J Adv Manuf Technol 95:1521–1538. https://​doi.​org/​
10.​1007/​s00170-​017-​1277-y

Publisher's note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

5009The International Journal of Advanced Manufacturing Technology (2022) 119:4991–5009

https://doi.org/10.1007/s00170-016-9144-9
https://doi.org/10.1007/s00170-017-1272-3
https://doi.org/10.1007/s00170-017-1272-3
https://doi.org/10.1007/s00170-016-8785-z
https://doi.org/10.1007/s00170-016-8785-z
https://doi.org/10.1007/s00170-018-2489-5
https://doi.org/10.1007/s00170-018-2489-5
https://doi.org/10.1007/s00170-019-03973-y
https://doi.org/10.1007/s00170-019-03973-y
https://doi.org/10.1016/j.cirp.2020.04.050
https://doi.org/10.1007/s00170-017-1277-y
https://doi.org/10.1007/s00170-017-1277-y

	Design and implementation of multi-axis real-time synchronous look-ahead trajectory planning algorithm
	Abstract
	1 Introduction
	2 Multi-axis synchronous look-ahead trajectory planning
	2.1 Problem description
	2.2 Transition between two adjacent segments
	2.3 Determination of maximum allowable transition velocity
	2.4 Reverse velocity planning
	2.5 Forward velocity planning
	2.6 Transition trajectory planning
	2.7 Multi-axis synchronous look-ahead trajectory planning algorithm
	2.7.1 [Algorithm 1] Multi-axis synchronous look-ahead trajectory planning (MSLTP)

	3 Dynamic real-time velocity tuning
	3.1 Dynamic real-time acceleration and deceleration
	3.2 Real-time trajectory planning for stop command

	4 Digital simulation and result analysis
	4.1 S-type digital filtering
	4.2 Multi-axis real-time synchronous look-ahead trajectory planning algorithm
	4.2.1 [Algorithm 2] multi-axis real-time synchronous look-ahead trajectory planning (MRTSLTP)

	4.3 Simulation

	5 Algorithm implementation and experiments
	5.1 Control schemes and implementation of MRTSLTP algorithm
	5.2 Experiment and analysis
	5.3 Analysis of path error

	6 Conclusion
	References

