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Abstract
In terms of CNC machining task, high feedrate and high accuracy are of great significance. In this paper, an integrated jerk-
limited method of minimal time trajectory planning with confined contour error (IJLMTPC) is proposed. Firstly, an optimal
control method is utilized to obtain the minimal time feedrate profile. To compensate the contour error, it is added into the
optimal control framework as a constraint. Based on the high-order transfer functions of every axis servo model, the contour
errors constraint is formulated as the function of tracking errors. However, the optimal control problem (OCP) is difficult
to be solved. Hence, the OCP is transformed into two convex subproblems. Since the axial jerk elements are included
in the contour error constraint, they are no longer considered as dependent constraints in the two subproblems specially.
Afterwards, two subproblems are discretized with control vector parameterization. Consequently, two subproblems are more
efficient to be solved with nonlinear programming, and the minimal time feedrate is obtained. Secondly, considering that the
OCP is solved on the domain of curve parameter, it is inconvenient for real-time interpolation. The resulting feedrate from
solving the OCP is transformed into the corresponding profile on time domain, while the limited tangent jerk is imposed
on. Hence, the feedrate is smoothed. Finally, to alleviate the fluctuation of feedrate, the real-time interpolation is performed
based on the parameter correction b-spline. Two benchmark tool paths are adopted to test the proposed scheme, and the
effectiveness is verified.

Keywords Parameter correction b-spline · Computer numerical control · Control vector parameterization · Interpolation ·
Smooth trajectory planning · Contour error constraint

1 Introduction

In general, the high-quality machining of a complex curve
consists of two aspects, i.e., high speed and high accuracy.

In terms of high speed machining, it means that a
machine tool can processing a complex curve in the shortest
cycle time. An appropriate feedrate scheduling method
guarantees short cycle time. For example, in view of a
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long tool path, an interval adaptive feedrate scheduling
method based on a dynamic moving look-ahead window
is proposed [1]. This method divides a long spline into
several intervals, and generates the smooth s-shape feedrate
profile for each interval successively based on limited
jerks. The finite impulse response filter (FIR) is another
efficient smooth feedrate scheduling method. Based on FIR-
chain techniques, the smooth and accurate reference motion
profile can be generated, as well as the acceleration and jerk
continuous motion profiles [2]. For a blend path, it is of
significance with an efficient feedrate scheduling method.
A typical blend path consists of small line segments and
small parametric curves. And the sharp corners formed by
the intersection of two line segments are smoothed with
parametric curves which have C2 [3] or C3 continuity [4].
The feedrate of this kind of blend curve can be planned with
the bidirectional scan algorithm [5].

More recently, for pursuing short cycle time, the
optimization method is introduced to feedrate scheduling.
For example, a heuristic trajectory planning algorithm is
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proposed [6]. It can provide a near-optimal minimum time
trajectory for problems with higher order dynamic states.
To suppress the unwanted vibration in the processing of
parts, motion commands are generated based on optimal
frequency spectra of each axial acceleration [7]. In this
method, kinematic limits are considered to constrain the
frequency spectra, and the Quadratic programming is used
to obtain the optimal solution. In addition, optimization
methods also play an important role in the corner blending
problems. Especially, mixing linear path with polynomial
curves can be formulated as a convex optimization problem
[8].

Since the optimal control has inherent advantages in
path planning [9, 10] and trajectory generation [11, 12],
it has attracted more and more attentions. A Bang-Bang
control is adopted to plan the feedrate for a multi-axis
system in Frenet-Serret frame [13]. Afterwards, linear pro-
gramming is used to solve the optimal control problem
restrained by kinematic constraints. And a feedback inter-
polation method is developed for real-time interpolation.
Meanwhile, a parallel windowing (PWin) algorithm is also
integrated into the process of feedrate optimization [14].
Considering dynamics constraints, the path tracking task
of a manipulator is formulated as an optimal control prob-
lem [15]. In this literature, to reduce the solution difficulty,
the optimal control problem is transformed into a con-
vex optimization problem. Since the feedrate profile of
a machine tool is optimized, the cycle time is signifi-
cantly reduced with these methods. However, to improve
optimization efficiency, appropriate solving techniques
should be adopted during applying optimization-based
methods.

In terms of the high-precision machining, there are
many ways to realize this objective. For example, through
restraining some indexes, high accuracy machining results
can be gained. Tracking errors of a multi-axis machine
tool are usually considered as constraints of an optimal
control problem except kinematic ones, such as jerks,
accelerations, and feedrate [16]. Then machining accuracy
can be improved by restraining tracking errors below
permissible value. However, the tracking error reduction is
an indirect way to improve accuracy, whereas the contour
error is a direct manner. Here is a simple explanation. In
general, a machining task is implemented in cartesian space.
Taking a 3-axis machine tool for example, a processed
curve is the synthesis of displacement of the tool tip
on three axes. Three independent servo systems work in
coordination to drive the tool tip to the reference position.
Even if tracking errors on all axes are small, the contour
error is not necessarily small, and vice versa. Therefore,

an appropriate controller can be designed to control the
contour error directly, such as cross coupling controller
(CCC). For example, a single-input fuzzy-logic controller is
taken as the CCC to improve the contouring accuracy [17].
Except CCC strategy, the model predictive control (MPC)-
based scheme is also used for contour error suppression. In
each receding optimization, both contour error components
and tracking errors are taken into performance index, with
assigning the former greater weight than the latter [18].
For a dual 5-dof manipulator, a MPC-based controller is
adopted to reduce the equivalent contour error [19], and the
integral sliding mode control [20] is integrated to improve
robustness.

From above, contour error reduction and feedrate
optimization are generally implemented alone. Actually,
we can perform both at the same time. For instance,
through introducing contour error constraints, servo error
pre-compensation and time optimal feed optimization are
performed synchronously [21]. Under the optimal control
framework, this kind of synchronous optimization is more
easily to be realized.

The real-time interpolation is another significant factor
which affects the machining accuracy. For parameter tool
paths, there are many mature interpolation methods, such
as Taylor expansion-based interpolator [22], predictor–
corrector-based interpolator [23], and Adams–Bashforth
methods [24]. However, there are some drawbacks needed
to be overcome for these methods. For instance, some
methods may lead to the fluctuation of feedrate. Some other
methods may take longer time than interpolation period
to obtain a next interpolation point. Hence, some scholars
proposed minimal fluctuation methods to suppress feedrate
fluctuation. A polynomial equation-based interpolation
method for Nurbs tool paths is proposed [25]. According
to sample step size, this method formulates the polynomial
equation with respect to the curve parameter. Afterwards,
the Newton’s method is used to obtain numerical solution
of the next interpolation point. Nurbs curves can be
also used to construct the relationship between curve
parameter and arc length of a tool path [26]. It is a
key point of the minimal fluctuation methods that the
exact functional relationship should be determined in
advance.

In this paper, we propose an integrated jerk-limited
method of minimal time trajectory planning with confined
contour error (IJLMTPC). Firstly, considering the OCP
of feed planning, we adopt the CVP technique to solve
the convex optimization problems. To improve solving
efficiency, the jerk constraints are replaced with contour
error ones, because they are included in the contour error
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deduced based on high-order transfer function. Secondly,
since the feedrate profile obtained from the first stage is
the function of curve parameter, it is mapped into time
domain to adapting with six types of forward planning
profiles. The limited tangent jerk is also used to further
smooth the feed. The distance constraints are introduced
into the backward planning to ensure that the deceleration
can be forecast. Finally, a minimal fluctuation methods is
used in the real-time interpolation. In order to accurately
describe the functional relationship between arc length and
curve parameter, we propose parameter correction b-spline
and corresponding refining algorithm. The outline of the
proposed scheme is elaborated with following diagram in
Fig. 1.

The remainder of this paper is arranged as follows. For
convenience, Section 2 introduces the parameter correction
b-spline, as well as the refining algorithm. The basic optimal
control formulation known as nominal problem of smooth
trajectory generation (NPSTG) is investigated in Section 3.
And the simplification of NPSTG is also described. Our
proposed scheme, i.e., the integrated jerk-limited method
of minimal time trajectory planning with confined contour
error, is addressed in Section 4. The scheme is also named
IJLMTPC for short. Section 5 illustrates the proposed
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Fig. 1 The architecture of proposed IJLMTPC

method with two benchmark tool paths. Finally, conclusions
are given in Section 6.

2 Parameter correction b-spline

Since most free curves are of non-arc-length parame-
terization, researchers proposed many available methods
for obtaining the relationship between parameters and arc
lengths [27]. Herein, a quintic b-spline is adopted to realize
the mapping between the arc length and the parameter of a
free curve.

Given a free parameter curve C(q) = [x(q), y(q)]T , q ∈
[0, 1], the approximation arc length Λ(qa, qb) on the
interval [qa, qb] can be calculated with the Simpson rule,
i.e.,

Λ(qa, qb) = h̄

3
(l(qa) + 4l(qc) + l(qb)), (1)

where qc = (qa + qb), h̄ = (qb − qa)/2, and l = ‖C′(q)‖2
denotes the 2-norm. Given predefined arc length tolerance
error ε1, Λ(qa, qb) is considered as the arc length, if it
satisfies the following condition [28],

|Λ(qa, qc) + Λ(qc, qb) − Λ(qa, qb)| < 10 ∗ ε1. (2)

If (2) is not satisfied, the interval [qa, qb] is split into two
equal parts, i.e., [qa, qc] and [qc, qb]. Then, (1) and (2) are
applying to the two intervals, respectively.

By applying above operations iteratively, the whole
interval [0, 1] is split into many subintervals, and (2) holds
on each subinterval. All the endpoints of these subintervals
form a set Ξ1 = {q0, q1, · · · , qN−1, qN }, where 0 = q0 <

q1 < · · · < qN−1 < qN = 1. Accordingly, at each qi(i =
0, 1, · · · , N), the corresponding arc length Λi is obtained.
Note that Λi is arc length on the interval [q0, qi], which
can be easily computed through simple addition. If the
interpolation technology was used to gain the relationship
between qi and Λi at this time, the interpolation accuracy
would not be guaranteed.

To guarantee the accuracy, although (2) has been satisfied
on each subinterval, we still construct another set Ξ2 =
{q(0,1), · · · , q(N−1,N)} as a test data set, where q(i,i+1)(i =
0, · · · , N − 1) is the midpoint of interval [qi, qi+1]. Define
Ξ = Ξ1 ∪ Ξ2, and arrange the elements in ascending
order in set Ξ . Equation (1) is adopted to compute the arc
length of C(q) on each interval defined by any two adjacent
elements of Ξ . As a result, a series of value pair (Λj , qj )

are obtained, where qj (j = 0, · · · , 2N) ∈ Ξ , and Λj is the
arc length on the interval [q0, qj ]. To avoid ill-conditioning,
Λj is normalized through

τ
f
j = (Λj − Λ0)/(Λ2N − Λ0). (3)

4361Int J Adv Manuf Technol (2022) 119:4359–4373



A 5th-degree b-spline is interpolated to value pairs
(τ

f
j , qj ), qj ∈ Ξ1, which is expressed as

qj = Q
(
τ

f
j

)
=

L∑
l=0

Fl,5

(
τ

f
j

)
Pl, (4)

where Pl denotes the control point sequence, and Fl,5

(
τ

f
j

)

is the basis function.
The knots vector SX = [0, · · · , 0︸ ︷︷ ︸

5+1

, sx6, sx7, · · · ,

sxM−p−1, 1, · · · , 1︸ ︷︷ ︸
5+1

] is calculated through average method

according to qj ∈ Ξ1, and M = N + p + 1. Define
� = [q0, · · · , qj , · · · ]T , qj ∈ Ξ1. From (4), the following
linear equations are obtained,

TP = �, (5)

where

T(N+1)×(N+1) =⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
F0,5(q1) F1,5(q1) · · · · · · 0

...
...

...
...

...
0 0 · · · FL−1,5(qN−1) FL,5(qN−1)

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

,

P(N+1)×1 = [
P0 P1 · · · PN−1 PN

]T
,

and

�(N+1)×1 = [
�0 �1 · · · �L−1 �L

]T
.

Equation (5) can be solved efficiently with some
methods, such as least square and LU decomposition.
In this paper, the Bragman iteration algorithm is utilized
to solve (5), in order to avoid possible ill-condition
and to gain sparse solution. Once control points vector
is obtained, the quintic b-spline is expressed. However,
the initial interpolation curve Q0(τ ) is not necessarily
satisfactory. We propose Algorithm 1 to refine the
interpolation curve with test value pairs[τ t

j , qj ], qj ∈
Ξ2. The final output qj = Qf

(
τ

f
j

)
is the parameter

correction b-spline, which is used to obtain precise
parameter values during the interpolation stage of CNC
machining.

Likewise, the mapping function from parameter to
normalized arc length can also be interpolated to value pairs

τ
f
j = Q−1(qj ) =

L∑
l=0

Fl,5(qj )P l . (6)

This quintic b-spline function, i.e., τ
f
j = Q−1(qj ), is

known as the inverse function of parameter correction b-
spline, which can be used to calculate the arc lengths.

3 Problem of smooth time optimal feedrate
scheduling

The problem of smooth time optimal feedrate scheduling
(PSTOF) is usually formulated as an optimization problem.
To realize high speed machining, the time optimal objective
function is given as

OBJ = min
V

∫ tf

0
1dt, (7)

where V is the optimal feedrate profile. When machining a
planar curveC(q), the motion of a machine tool is restrained
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by its kinematic abilities, such as command feedrate, axial
accelerations, and axial jerks, which are written as

V 2(t) ≤ F 2
B, |Ah(t)| ≤ ABh, |Jh(t)| ≤ JBh, (8)

where FB is the command feedrate bound, ABh are axial
acceleration bounds, JBh are axial jerk bounds, and h ∈
{x, y}. Nevertheless, the final time is free, which makes the
PSTOF difficult to be solved.

The tool path C(q) = [x(q), y(q)]T is a free parametric
curve. Assume that C(q) has a third-order continuous
derivative at least. Let the symbol “·” be a derivative with
respect to time. And Define that “′” denotes a derivative with
respect to parameter q. After introducing parameter q into
velocity, acceleration, and jerk, they can be written as [29]

⎧⎪⎪⎨
⎪⎪⎩

v = Ċ = C′q̇,

A = v̇ = C′q̈ + C′′q̇2,

J = Ȧ = C′ ...q + 3C′′q̈q̇ + C′′′q̇3,

(9)

where

C′ = dC
dq

,C′′ = d2C
dq2

,C′′′ = d3C
dq3

,

with parameter being neglected for simplification.
Define state variables as b = q̇2 and α = q̈. Let the

control variable be β =
...
q

q̇
[30]. The PSTOF is transformed

into an optimal control problem. Obviously, the system
dynamics are expressed as

{
b′(q) = 2α(q), b(0) = q̇2

0 ,

α′(q) = β(q), α(0) = q̈0,
(10)

with a path constraint and final time constraints,

b(q) > 0, q ∈ [0, 1],
b(1) = q̇2

f , α(1) = q̈f .
(11)

Since q̇ = dq
dt
, we have dt = dq

q̇
[31]. Through replacing

variable t with q, (7) can be transformed into following cost
function

OBJ = min
b,α,β

∫ 1

0

1

q̇
dq = min

b,α,β

∫ 1

0

1√
b
dq, (12)

where q̇ is known as the parameter velocity. Likewise,
after introducing state variables and control variable, the
constraints (8) are rewritten as

V 2 = ‖v‖2 = ‖C′‖2b ≤ F 2
B, (13a)

|Ah| = |C′′
hb + C′

hα| ≤ ABh, (13b)

{ |Jh| = |√bΓ | ≤ JBh,

Γ = C′′′
h b + 3C′′

hα + C′
hβ,

(13c)

where h ∈ {x, y}. Consequently, the optimal problem
consisting of (12), (10), (11), and (13) is known as the
nominal problem of smooth trajectory generation (NPSTG)
[32].

To improve solution efficiency, the NPSTG is further
reformulated into two convex subproblems. One of them is
the following problem of minimal time trajectory planning
(PMTTP),

OBJ = min
b,α

∫ 1

0

1√
b
dq

s.t .

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b′(q) = 2α(q), b(0) = q̇2
0 ,‖C′(q)‖b(q) ≤ F 2

B,

|C′′
h(q)hb(q) + C′

h(q)hu(q)| ≤ ABh,

b(q) > 0, q ∈ [0, 1],
b(1) = q̇2

f , α(1) = q̈f ,

h ∈ {x, y}.

(14)

Consequently, the optimal solution b∗(q) of (14) is adopted
to relax (13c) as [29]

|J (t)| ≤ |√b∗(q)Γ (q)| ≤ JBh. (15)

Replace (13c) with (15) in the NPSTG, and pseudo problem
of smooth trajectory generation (PPSTG) is obtained. As
a result, the nonlinearity of the NPSTG is significantly
alleviated, and a smooth feedrate profile is generated.
Furthermore, because of convexity of two subproblems, the
unique solution is obtained, which guarantees that the same
part is gained in each machining. However, the feedrate
profile is a function of parameter q, other than that of
time. This kind of feedrate profile is inconvenient for time-
based interpolation method. In addition, the contour error
constraint is not considered in problems above. To settle
these drawbacks, we propose an integrated jerk-limited
method of minimal time trajectory planning with confined
contour error (IJLMTPC).

4 The proposedmethod

The contour error is defined as the shortest distance from
the current actual position to the desired machined tool path.
It is of significance for machining accuracy. In our opinion,
limited jerks should be taken into consideration at last. In
that case, the coarse feedrate profile gained with optimal
control can be smoothed further. Hence, the contour error
constraint is added into the NPSTG, instead of axial jerk
constraints.
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Gc(s) Go(s)
R(s)Ex(s)

X(s)

Fig. 2 A typical diagram of closed-loop servo model

4.1 Tracking error development

For a typical servo system of a single axis, its dynamic
model is shown in Fig. 2 [33]. Taking x-axis for example,
the closed-loop transfer function of the model is derived as

Gtx(s) = Gc(s)Go(s)

1 + Gc(s)Go(s)
= R(s)

X(s)
, (16)

where R(s) and X(s) denote the output signal and reference
signal, respectively. Accordingly, the tracking error transfer
function is described as

Gex(s) = X(s) − R(s)

X(s)
= 1

1 + Gc(s)Go(s)
= Ex(s)

X(s)
.

(17)

Through Taylor series expansion of Gex at s = 0, we have

Ex(s) = Gex(0)X(s) + G(1)
ex (0)sX(s) + 1

2!G
(2)
ex (0)s2X(s)

+ 1

3!G
(3)
ex (0)s3X(s) + · · · . (18)

For the servo system of a CNC machine tool, the
instantaneous part of tracking error is very small. In terms
of final theorem of Laplace transform, the tracking error is
approximated with its steady part, i.e.,

ex ≈ lim
s→0

(sGex(s)X(s)). (19)

The inverse Laplace transform of (18) is written as

ex ≈
∞∑
i=0

Wx
i x(i)(t). (20)

where Wx
i = 1

i!G
(i)
ex (0), indicates the dynamic error

coefficient. Since the open loop model of a position servo
system is I-type at least, the coefficient Wx

0 is always
zero [33]. Ignoring the high-order term, ex is further
approximated as

ex ≈ Wx
1 x(1)(t) + Wx

2 x(2)(t) + Wx
3 x(3)(t), (21)

where x(i)(t) is the ith-order derivative with respect to time.
According to the derivative relationship, we have

x(1)(t) = C′
x(q)

√
b(q),

x(2)(t) = C′′
x (q)b(q) + C′

x(q)α(q),

x(3)(t) = √
b(q)(C′′′

x (q)b(q) + C′′
x (q)α(q) + C′

x(q)β(q)). (22)

Actually, it is clear that each axial jerk is included in the
tracking error. In the next subsection, the tracking errors

Actual position

Desired path

Reference position

e
y

e
x

θ

Tangent

ε
c

E
c

Fig. 3 Contour error for a 2D curve

of two axes are used to estimate the contour error. That is
another reason why we replace (13c) with the contour error
constraint.

4.2 Contour error estimation

Generally, to improve real-time performance, the contour
error is estimated according to some information of real-
time machining, such as desired positions, actual positions,
and the tracking errors.

The contour error can be estimated by many methods.
For a planer tool path shown in Fig. 3, the contour error is
estimated as [34]

Ec = − sin θex + cos θey, (23)

where ex and ey denote the tracking errors of x-axis and y-
axis, respectively. θ is the angle between tangent of tool
path and X-axis of the machine tool coordinate system,
which can be calculated with

θ = cos−1 C′
x(q)√

C′2
x (q) + C′2

y (q)
. (24)

From (21), (22), and (23), the contour error is rewritten as

Ec = w1b(q) + w2α(q) + w3
√

b(q)

+(w4b(q) + w5α(q) + w6β(q))
√

b(q). (25)

where wi(i = 1, · · · , 6) are real value functions of q.

4.3 trajectory planning with confined contour error

To clarify the problem of minimal time trajectory planning
with confined error (MTPC), it is formulated as following
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form,

OBJ = min
b,α,β

∫ 1

0

1√
b(q)

dq

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b′(q) = 2α(q), b(0) = q̇2
0 ,

α′(q) = β(q), α(0) = q̈0,

‖C′(q)‖b(q) ≤ F 2
B,

|C′′
h(q)b(q) + C′

h(q)α(q)| ≤ ABh,

|Ec| ≤ EB,

b(q) > 0, q ∈ [0, 1],
b(1) = q̇2

f , α(1) = q̈f ,

h ∈ {x, y}.

(26)

To efficiently solve problem (26), it is also divided
into two convex subproblems. One is exactly the (14).
Referring to the (15), the contour error constraint is relaxed
as

|Ec| ≤ |Êc|
= |w1b(q) + w2α(q) + (w3 + w4b(q)

+w5α(q) + w6β(q))|√b∗(q). (27)

After replacing |Ec| with |Êc| in (26), we have the other
convex subproblem, which is

OBJ = min
b,α,β

∫ 1

0

1√
b(q)

dq

s.t .

{
other constraints,

|Êc| ≤ EB .

(28)

In order to obtain the optimal solution of problem (14)
and (28), the control vector parameterization (CVP) is
adopted to discretize them. Taking (28) for example, divide
parameter domain into K + 1 grids, i.e., 0 = p0 < p1 <

· · · < pK−1 < pK = 1. The corresponding control action
is defined as

β =
K∑

k=1

β̄k�k(p), (29)

where β̄ = [β̄1, · · · , β̄K ]T denotes the decision vector,
and �k(p) is the kth basis function. For piecewise constant
approximation, �k(p) is defined as

�k(p) =
{

1 p ∈ [pk−1, pk),

0 otherwise.
(30)

Hence, in this paper, the control action and the decision
vector is the same.

Substitute the control vector into system dynamics, and
through solving derivative equations, corresponding state
vectors are obtained, i.e.,

ᾱ(β̄) = [ᾱ1, · · · , ᾱK ]T ,

b̄(β̄) = [b̄1, · · · , b̄K ]T . (31)

Define Δp = pk − pk−1, the objective function is
discretized as

OBJ =
K∑

k=1

1

b̄k

Δp. (32)

Consequently, problem (28) is transformed into a nonlinear
programming problem as following,

OBJ = min
β̄k

K∑
k=1

1

b̄k

Δp

s.t .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖C′(qk)‖b̄k ≤ F 2
B,

|C′′
h(qk)b̄k + C′

h(qk)ᾱk| ≤ ABh,

|Êc(β̄k)| ≤ EB,

b̄k > 0, k = 1, · · · , K,

b̄K = q̇2
f , ᾱK = q̈f .

(33)

Problem (33) can be solved with mature method, such as
SQP. Likewise, problem (14) is also discretized and solved
in the same way. Please note that problem (14) must be
solved firstly.

4.4 Feedrate re-planning

Although the feedrate profile has been planned in the
last subsection, it is a function of parameter p. In this
subsection, the feedrate profile is re-planned, considering
the limited jerk. Consequently, the feedrate profile becomes
a function of time, which is convenient for interpolation.

Before re-scheduling feed, sharp corner points are
searched firstly. Sharp corner points consist of minimum
speed points, maximum speed points, the starting point,
and the terminal point on the initial feedrate profile. The
arc length between each two adjacent sharp corner points,
i.e., Li

ble(i = 0, · · · , D), is easily computed by (6).
Note that inverse normalization needs to be performed.
For any two adjacent points, the feed at each point and
the arc length between them are known. Given tangent
jerk bound Jtb, the jerk-limited feedrate can be re-planned.
However, these sharp corner points may be involved in
“ripple effect” [24, 35]. It means that the arc length between
two adjacent sharp points can not match the speeds at the
two points based on bell shape feedrate profile. We deal
with the “ripple effect” with following backward planning
algorithm.
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After finishing backward algorithm, the “ripple effect” is
overcome. Then the forward planning can be implemented.
In terms of different distance between sharp corner points,
there are six types of feedrate profiles. For any two
adjacent sharp corner points, the distance between them
has been obtained, i.e., Li

ble. Given planned feedrates vi

and vi+1, tangent acceleration Atb, and command feedrate
FB , the forward planning types are determined according to
Fig. 4.

Each arc whose length equals to Li
ble is considered

as a single acceleration or deceleration (Acc/Dec) unit.
However, there are D + 1 Acc/Dec units. Which type is
chosen for each Acc/Dec unit depends on three critical
distances. Lc1 is used to determine whether the arc length
is long enough to allow the cutter to reach the command
feedrate. It is defined as

Lc1 = (vi +FB)

(
Tc1 + Tc2

2

)
+(vi+1+FB)

(
Tc5 + Tc6

2

)
,

(34)

where Tc1 and Tc2 are calculated with
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if FB − vi > JtbT
2,

Tc1 = T , Tc2 = FB−vi

JtbT
− T ;

otherwise,

Tc1 =
√

FB−vi

Jtb
, Tc2 = 0.

(35)

Likewise, Tc5 and Tc6 are calculated with
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if FB − vi+1 > JtbT
2,

Tc5 = T , Tc6 = FB−vi+1
JtbT

− T ;
otherwise,

Tc5 =
√

FB−vi+1
Jtb

, Tc6 = 0;
(36)

where T = Atb

Jtb
. Lc2 is used to determine whether a peak

speed is needed to be searched or not. Define vhigh =
max(vi, vi+1), vlow = min(vi, vi+1), and Δv = vhigh −
vlow.Then, Lc2 is written as

Lc2 ={
(vi + vi+1)(T + Δv/Atb)/2, Δv > JtbT

2;
(vi + vi+1)

√
Δv/Atb, Δv ≤ JtbT

2.

(37)

Lc3 can distinguish whether the acceleration profile is
trapezoidal or triangular, and it is written as

Lc3 = 2vlowT + JtbT
3. (38)

When one type of feedrate profile is selected, it will be
used for real-time interpolation. Hence, the time parameters
of jerk-limited feed profile should be computed. This kind
of feed is also known as bell shape profile. A complete
profile includes seven phases, and its time parameters are
shown in Fig. 5. Some other profile may contain fewer than
seven phases. For example, type 3 only has four phases
whose parameters satisfy T5 = T6 = T7 = 0. The detail
solutions of these parameters of each type are listed in
Table 1. It is worth mentioning that the peak speed vp in
type 2 is obtained with following equation,

vp = max(vj
pm). (39)

where v
j
pm = vhigh +j · vb−vhigh

ξ
, j = 1, 2, · · · , ξ, ξ ∈ N+,

satisfying Lc2 < Lacc +Ldec < Lble
i . The maximal value of

v
j
pm is selected with bisection search method. To avoid vp

being too close to vhigh, ξ can be chosen as a large integer.
That is why vp may not exist.

4.5 Interpolation based on parameter correction
B-spline

The first-order approximation interpolation based on Taylor
expansion is expressed as

qi+1 = qi + viTs

‖C′(q)‖ + H .O.T , (40)
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Fig. 4 The flowchart of types of
forward planning determination
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where Ts is the sample period, and H .O.T is the truncation
error which is neglected in practice. Since viTs is very small,
it is considered as the arc length increment in ith sample
period. Then (40) is rewritten as

Δq = qi+1 − qi ≈ viTs

‖C′(q)‖ = f (viTs), (41)

From (41), the more accurate the relationship between
arc length and parameter, and the smaller the feedrate
fluctuation and contour error are [36].

Theoretically, parameter correction b-spline can guar-
antee high accuracy relationship between normalized arc
length and parameter. Define Li be the whole displacement
of tool tip before ith sample period. Then,Li+1 = Li+viTs .
After normalization of Li+1, substitute it into (4), and the
corresponding parameter is obtained.
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Fig. 5 Time parameters of type 2
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Table 1 Time parameters for types 1 − 6

Types 1, 5, 6 See literature [37].

Type 2 If vp − vi > JtbT
2, T1 = T3 = T , T2 = vp−vi

JtbT
− T , and Lacc = 0.5JtbT1T

2
2 + (vi + 1.5JtbT

2
1 )T2 + 2viT1 + JtbT

3
1 ;

otherwise T1 = T3 =
√

vp−vi

Jtb
, T2=0, and Lacc = JtbT

3 + 2viT .

If vp − vi+1 > JtbT
2, T5 = T7 = T , T6 = vp−vi+1

JtbT
− T , and Ldec = 0.5JtbT5T

2
6 + (vi+1 + 1.5JtbT

2
5 )T6 + 2vi+1T5 + JtbT

3
5 ;

otherwise T5 = T7 =
√

vp−vi+1
Jtb

, T6=0, and Ldec = JtbT
3 + 2vi+1T .

Am1 = JtbT1, Am2 = JtbT5, and T4 = Lble
i −Lacc−Ldec

vp
.

Type 3 If Δv => JtbT
2, let E1 = 0.5JtbT , E2 = vlow + 1.5JtbT

2, E3 = 2vlowT + JtbT
3 − Lc2.

Then T1 = T3 = T , and T2 = (−E2+
√

E2
2−4E1E3)

2E1
.

So Am1 = Ab, Am2 = 0, T5 = 0, T6 = 0, and T7 = 0. Finally, T4 = Lble
i −Lc2
vhigh

.

Type 4 If Δv <= JtbT
2, solve Jtbt

3 + 2vlowt − Lc2 = 0.

Then T1 = T3 = t , T2 = 0, Am1 = JtbT1, Am2 = 0, T5 = T6 = T7 = 0, and T4 = Lble
i −Lc2
vhigh

.

5 Numerical examples

To verify effectiveness of the proposed method, two
benchmark tool paths [30, 33] are adopted to validate it. In
the two cases, the constraint bounds and some parameters
adopted are listed in Table 2. In addition, the servo models
of x-axis and y-axis come from literature [38].

5.1 Example 1: A fan tool path

The test case in example 1 is a fan curve shown in Fig. 6a.
The blue circles on the curve indicate all the sharp corner
points (SCP) including the start point.

Apparently, some of sharp corner points are so close
to each other. Therefore, the arc lengths between them
are not long enough for the jerk-limited Acc/Dec process.
By performing the backward planning (BPL), this kind of
problems is alleviated. To clearly illustrate the effort of the
backward planning, feedrate profiles are shown in Fig. 6c.
The upper half of Fig. 6c is the feedrate before backward
planing, i.e., the planning result of Section 4.3. The circled
positions represent the speeds at sharp corner points before
BPL. The bottom half demonstrates the feedrate profile
after backward planning and forward planning. Note that
the tangent jerk constraint has been imposed on the re-
planned feedrate, and the profile has been smoothed. The
sharp corner points are marked by inverted triangles, which
have different tangent feedrate from those in the upper half
figure.

During forward planning, the arc lengths between sharp
corner points are needed to be computed. Different with the
method based on Simpson’s rule [35], (6) is used to obtain
the arc length corresponding to given parameter. It is the
inverse function of (4). The top sub-graph of Fig. 6b exhibits
the mapping function curve after implementing refining
Algorithm 1. The bottom sub-graph shows that the relative
error has been reduced bellow predefined value. The middle

sub-graph indicates the interpolation relative error before
refining. As stated in Algorithm 1, the relaitve error can be
calculated with following formula,

RSE = |τ 0g − τ t
g|/τ t

g . (42)

The upper half of Fig. 6d shows the profile of
acceleration, whereas the jerk profile is drawn in the bottom
half. With limited jerk, the feedrate become smoother, as
shown in Fig. 6c. When motion between two adjacent
sharp corner points, the displacement of a tool tip must fall
within the arc length range. To satisfy this requirement, the
backward planning makes the feedrate at sharp corner points
not too fast or too slow, but close to a certain intermediate
value. To some extent, the cycle time is reduced. On the
other hand, the contour error may become large at some
sharp corners. The locations marked with diamonds on
the profile in Fig. 6e are just such cases. But the overall
contour error profile is not affected, because the contour

Table 2 The values of constraint bounds, predefined errors, and
constants

Command feedrate FB 100mm/s

Axial acceleration bound ABh,
h ∈ {x, y}

200mm2/s

Axial jerk bound JBh, h ∈ {x, y} 5000mm3/s

Contour error bound EB 0.05mm

Tangent acceleration bound Atb 200mm2/s

Tangent jerk bound Jtb 5000mm3/s

Predefined arc length tolerance
error ε1

1 × 10−10mm

The allowable interpolation error ε2 1 × 10−6 (Dimensionless quan-
tity)

The positive integer ξ for choos-
ing peak speed vp

50 (Dimensionless quantity)

The maximum number of itera-
tions Maxiter

5 iterations
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Fig. 6 The IJLMTPC results for a fan tool path: a the fan pattern; b the functional curve of the parameter correction b-spline; c the tangent feedrate
profiles; d the profiles of tangent acceleration and tangent jerk; e the estimated contour error; d partial enlarged view of interpolation result of the
fan path
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Fig. 7 The butterfly pattern
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errors at most interpolation points are very small. The partial
enlarged view shown in Fig. 6f also proves this.

5.2 Example 2: A butterfly tool path

Another tested tool path is a butterfly pattern as shown
in Fig. 7. The coordinates of reference points from
interpolation methods are sent to servo systems in this
example. And the actual coordinates generated by servo
system are used to estimate the actual contour errors.
The Newton Raphson iteration method [39] is utilized to
calculate the actual contour errors offline.

For comparison, two other methods are adopted, except
our proposed algorithm. One method plans the feedrate
with NPSTG, and generates the reference coordinates
with the first-order approximation interpolation based on
Taylor series expansion. Since NPSTG is solved based on
pseudo jerk, this method is named PJNPSTG for short.
The other method also adopts the first order approximation
interpolation, but plans the feedrate with the same way
as the proposed, i.e., the IJLMTPC-based method. To
distinguish it with the proposed scheme, this method is
named FTMTPC. Detail explanations are listed in Table 3.

As shown in Fig. 8, the proposed method has the shortest
cycle time, i.e., 6.426 s. The other two methods both finish
machining the tool path with longer time, i.e., 7.123 s for
FCMTPC and 7.912 s for PJNPSTG. In terms of cycle time,
our proposed scheme has great advantages, comparing to
the other two methods. Nevertheless, our proposed method
leads to larger contour errors than the PJNPSTG, but smaller

than the FTMTPC (Fig. 9). In terms of contour errors,
detail performances of three methods are listed in Table 4.
Actually, the contour error based on our proposed method
can be further reduced by imposing smaller EB on (28). As
a result, the cycle time will become longer. Therefore, one
should make a trade-off between efficiency and accuracy,
depending on actual situation.

6 Conclusion

To merge the contour error reduction and feedrate opti-
mization into one procedure, we propose an integrated
jerk-limited method of minimal time trajectory planning
with confined contour error (IJLMTPC). Compared to the
NPSTG problem, our method reduce the solution diffi-
culty by excluding axial jerk constraints. Through adding

Table 3 Three methods for machining the butterfly pattern

Method Planning Interpolation

Proposed IJLMTPC Parameter
correction
b-spline

PJNPSTG NPSTG
(PMTTP+PPSTG)

First-order
approximation
interpolation

FTMTPC IJLMTPC First-order
approximation
interpolation
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Fig. 8 The feed profiles of three
interpolation methods for the
butterfly tool path
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Fig. 9 The estimated contour
error profiles of three
interpolation methods for the
butterfly pattern
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contour error constraint, servo errors are pre-compensated.
Furthermore, the feedrate profile on the parameter domain
solved by the optimal control, is transformed to that on
time domain. Our method not only utilizes the advantage
of the optimal control, but also makes the resulting time
optimal feedrate convenient for real-time interpolation. This
will make optimal control-based trajectory planning method

Table 4 Performance comparison of three methods in terms of contour
errors

Method Max absolute contour error (μm) Mean contour error (μm)

Proposed 45 0.83
PJNPSTG15 0.38
FTMTPC 52 0.96
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for CNC machining more practical than ever. Meanwhile,
for realizing real-time interpolation, parameter correction b-
spline is introduced. It reduces the fluctuation of feedrate
and facilitates re-planning.
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