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Abstract
Coordinate Measuring Machines (CMMs) are widely used by industry to measure the geometrical features of parts. For a 
CMM to accurately measure the geometrical features of a part, a model has to be developed and added to the CMM library. 
This process is time-consuming and error-prone, especially in industrial manufacturing environments. The environmental 
noise and vibration can potentially distort sampled data and reduce measurement accuracy. This paper presents an auto-
learning algorithm to reduce the time required to add a new part to a CMM library. Moreover, a cost-effective solution to 
reduce the effects of vibration on measurement results is presented. In the proposed solution, a reference part is utilized to 
automatically create a measurement model. An improved Modified Multi-Class Support Vector Machines (iMMC-SVM) 
algorithm is developed to determine the correct geometrical features of parts through comparison with the reference part 
using a laser-based CMM. Experimental measurements are conducted using a prototype CMM design by the research team 
to validate the proposed solution. The results indicate that the proposed method reduces vibration noise by 6.18%. Such a 
noise reduction significantly improves the overall measurement precision.

Keywords  Coordinate measuring machines (CMMs) · Feature extraction · Measurement · Improved modified multi-class 
support vector machines (iMMC-SVM) · Quality control

1  Introduction

Coordinate Measuring Machines (CMMs) are used by auto-
motive, aerospace, and defense industries to measure geo-
metrical features of parts. They are commonly controlled by 
a computer for inspection of parts. CMMs can be utilized for 
efficient inspection and rapid feedback for correction of pro-
cessing parameters in a production line. A CMM has a probe 
to collect the data. The probe selection is the key factor in 
CMMs. The speed and accuracy of a CMM are mainly deter-
mined by its probe. The measurement speed for CMMs with 
mechanical probes is limited as it takes time to position the 
probe and follow the measurement path. The measurement 

speed limitation can be overcome by replacing a mechani-
cal probe with a laser probe to collect the data without a 
physical movement. The accuracy of the data collected by a 
CMM affects the measurement outcome. It is clear that an 
accurate measurement cannot be achieved with a distorted 
set of sampled data. To meet the measurement accuracy of a 
few micrometers for parts, the undesired effects of environ-
mental factors have to be taken into consideration. Industrial 
environments are prone to the vibration that can compromise 
the accuracy and repeatability of CMMs [1–3].

There are several methods to reduce the effects of vibra-
tion on CMM measurement in a manufacturing facility. 
Depending on the vibration source, it may be simply pos-
sible to increase the distance between the vibration source 
and the measurement equipment. Vibration isolation mate-
rials, such as foams and pads, can be used for the purpose 
of vibration isolation. In practice, the vibration isolation 
materials do not provide enough isolation to properly meas-
ure geometrical features of auto-parts. Vibration isolation 
tables are commonly used by auto-industry to satisfy the 
measurement requirements for auto-parts. These tables 
are designed to significantly damp vibration to ensure a 
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working environment supporting accurate measurement. 
As electric vehicles move into the mainstream, the margin 
of tolerance for parts becomes narrower requiring costly 
and complex isolation tables. The active vibration damp-
ing method is used for noise reduction in space telescopes  
[4]. In this method, the vibration profile is extracted by  
sensors and used to eliminate the noise added by vibra-
tion. To further reduce the impact of environmental fac-
tors on measurement results, CMMs can be installed in  
temperature-controlled rooms. Another efficient and cost-
effective solution to reduce the effects of vibration effects 
on CMM measurements is the sampling method. Different  
sampling methods to minimize measurement error have been 
proposed [5–9]. Cross-secti on line sampling[10] and point 
sampling [11] methods have also been implemented with  
promising results. Depending on the physical and environ-
mental conditions of the manufacturing facility, vibration 
can be modeled by noise on the sampled data, which can be 
minimized by known noise reduction techniques. Moreover, 
in [12], the effects of temperature on CMM arms, and the 
measurement results are taken into consideration for accu-
rate measurement. A technique to calibrate and compensate 
for the error caused by CMM arms is proposed in [13]. The 
model is focused on the compensation for the deformations 
due to the bending and torsion affecting the arms. In [14], a 
kinematic model of a CMM arm is developed and its param-
eters are determined. Taking the proposed techniques in 
[11–13], since CMMs are not rigorously calibrated the same 
as other instruments against standards and only maximum 
permissible errors are evaluated, verification of CMMs (as 
mentioned in ISO 10360) is a proper scheme to deal with 
error of their arms.

Many techniques are reported in the literature to reduce 
the effects of noise on the measurement data. The maximum 
distance method, chordal deviation method, curve-fitting 
method, and angular method are reported as methods to 
filter vibration noise [15, 16]. Among the mentioned meth-
ods, the maximum distance method is capable of remov-
ing isolated points or outliers and is suitable for uniformly 
distributed datasets. The chordal deviation method uses 
three adjacent points and specifies whether the deviation is 
greater or less than a threshold. The curve-fitting method 
determines the distance between sample points and a fit-
ted curve [17]. The angular method considers three points 
and two segments formed by the points. The angle of the 
segments is then compared with a predefined threshold to 
reduce the noise [18]. In [15], a modified Self-Estimated 
Angular Threshold (SAT) method is presented for the data 
generated by a laser scanner. The above-mentioned methods 
present different solutions to remove noise from the col-
lected data, considerably. However, measurement accuracy 
in accordance to ISO 10360-2 demands further improve-
ment in this area. Environmental noise, either systematic 

or random, varies dimensions of manufactured parts around 
mean values. Therefore, a statistical model can be devel-
oped to validate the measurement results. In this paper, a 
method based on data integration for multi-sample CMM 
data is investigated.

Technically, when the number of sensors in a system is 
more than one, the data should be integrated, and all data-
sets should be combined together. Increasing the number of 
sensors can improve measurement accuracy, but the dataset 
may grow considerably and become complicated to process 
[19]. Conventional approaches, such as Algebraic functions 
[20], Kalman filter [21], weighted average [22], Bayesian 
estimator, and nonlinear system fusion [23–25], are used 
for data fusion where the data collected by multiple sen-
sors are integrated to produce more accurate and consistent 
information.

Implementation details of CMM modeling and probe 
error modeling are presented in [26]. A curve network-based 
sampling method to enhance the efficiency of the measure-
ment of the freeform surfaces on CMMs is proposed in 
[27]. A detailed explanation regarding the application of 
the machine vision method in 3-D coordinate measurement 
of feature points on the surface of a large-scale workpiece is 
given in [28] and a measuring method is proposed. In [29], 
a continuous motion model of a spinning ping-pong ball is 
derived and then, an optimal state estimation method using 
the gradient descent method based on the derived CMM is 
proposed.

The main concentration of this paper is on vibration 
filtering and a multi-sampling data fusion technique in 
CMMs. An improved Modified Multi-Class Support Vec-
tor Machines (iMMC-SVM) algorithm is developed in 
this paper to filter noise and determine the performance of 
manufacturing lines by comparing manufactured parts with 
a reference part. The proposed solution utilizes a vibration 
filtering method and a multi-sampling data fusion technique 
to process the sampled data by a CMM. In this paper, to the 
knowledge of the authors, for the first time, a new machine 
learning-based approach is presented to automatically deter-
mine the geometrical features of a new part by a CMM. 
The proposed solution reduces the time required to char-
acterize and add a new part to the CMM library signifi-
cantly. In other words, the focal points in this paper are the 
measurement accuracy, precision, and speed to reduce the 
costs. Experimental measurements conducted on various 
parts validate the performance of the proposed solution. It 
should be noted that the multi-sampling data fusion method 
has never been used to increase the measurement accuracy 
of CMMs.

The rest of the paper is organized as follows. Section 2 
discusses the proposed methodology. The experimental 
results are presented in Sect. 3 and conclusions are drawn 
in Sect. 4.
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2 � Proposed methodology

The data collected by a CMM is affected by many factors 
including environmental conditions, such as temperature 
and vibration, operator’s error and inspection plan, qual-
ity, and accuracy of measuring device. In general, the 
measurement process in CMM is performed step by step 
to extract the geometrical features of a part. There are 
different uncertainty factors in the measurement process 
that have to be taken into consideration. The pseudocode 
presented in Table 1 shows the flowchart of the proposed 
methodology, which is developed to ensure measurement 
accuracy [30].

There are two important assumptions in the proposed meth-
odology: (a) The geometrical features are extracted properly 
from data without additional error calculation. This means 
that measurement errors can be traced back to the collected 
data rather than the calculation error. (b) There is no corre-
lated motion between the CMM and the manufactured part. 
Therefore, vibrations can be attributed to the environmental 
conditions and not the motion correlation between the part and 
the CMM. The proposed algorithm is divided into three main 
parts, which are described as follows:

2.1 � Preprocessing

In this stage, the part is loaded and properly secured on 
the CMM. Then, the sampling probe is configured and 
aligned either manually or automatically. A point on the 
part is selected as the initial point where the CMM starts 
capturing the data samples. Finally, the data is collected 
and then, used to extract geometrical features. The key fac-
tor in the algorithm development to measure geometrical 
features is to properly filter the collected data.

2.2 � Noise calculation

The collected data is compared with the reference data, 
provided by the manufacturer as a reference part. The 
measurement error is calculated as follows:

Step 1: Assume that the measurement process starts 
from point “A” and a dataset of A =

{
Ai

}
 is collected where 

i = 1, 2,… , n and n indicates the total number of collected 
samples. The sampling process is repeated to collect data for 
all sections of the part. For each section in only two dimensions, 
the corresponding X and Y can be stored in a matrix, as follows:

where Sj , Xi , and Yi represent the jth section, the corre-
sponding value on the X axis, and the corresponding value 
on the Y  axis, respectively. In addition, k represents the 
total number of sections of the shape.

As the measurement domain for each section is the same, the 
corresponding values on the X-axis for all sections are the same.

Step 2: Integrating all sections together, a new dataset 
is generated as follows:

Step 3: When the dataset is completed, it can be compared 
with the reference dataset, as shown below:

(1)
�
Sj
�
=

⎡
⎢⎢⎣

X1 Y1
⋮ ⋮

Xi Yi

⎤
⎥⎥⎦
for

�
(i = 1,… , n)

(j = 1,… , k)

(2)[T] =

⎡⎢⎢⎣

X1

⋮

Xi

�������

Y(1,1) ⋯ Y(1,k)
⋮ ⋱ ⋮

Y(i,1) ⋯ Y(i,k)

⎤⎥⎥⎦

(3)[T − R] =

⎡⎢⎢⎣

X1

⋮

Xi

�������

Y(1,1) − R(1,1) ⋯ Y(1,k) − R(1,k)

⋮ ⋱ ⋮

Y(i,1) − R(i,1) ⋯ Y(i,k) − R(i,k)

⎤⎥⎥⎦
Table 1   The flowchart of the proposed methodology

Algorithm 1: Proposed Methodology 

Start 
Part 1: Preprocessing 
1.1   Determine the task (measurand) and strategy 

1.2   Probe and set orientation selection 

1.3   Alignment 

1.4   Measuring point selection 

1.5   Collision detection 

1.6   Inspection plan generation 

1.7   Measured coordinates collection 

1.8   Measurand calculation 

Part 2: Noise Calculation 
2.1   Compute the noise (error) 

2.2   If Results satisfactory then 

2.3    Go to Sect. 3.1  

2.4   else 

2.5    Go back to Sect. 1.1  

Part 3: iMMC-SVM Algorithm Evaluation 
3.1   Classify the data based on the best feature set  

3.2   Report results 

End 
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and

where [R] and [E] represent the reference and error matrices, 
respectively, in which i represents the collected sample index 
and k shows the section index.

Step 4: The sampled data in each column present a minor 
variation from nominal values making error detection quite 
challenging. To deal with this issue, instead of point-by-point 
comparison, the sum of the corresponding coordinates in each 
section is calculated and then, the variance or standard devia-
tion of each column is determined as follows:

where V , Y , and SD are the variance, mean value, and standard 
deviation of the j th section, respectively.

If the standard deviation falls below an acceptable level 
specified by the part manufacturer, then, the data is used for 
feature extraction using the iMMC-SVM algorithm explained 
below.

2.3 � iMMC‑SVM algorithm evaluation

Each column in the preprocessed dataset represents a certain 
feature. To improve the overall accuracy, the redundant data 
are removed from the total dataset. Thereafter, the feature set 
is normalized to generate training and test datasets. In the next 
step, the iMMC-SVM model is trained using the Radial Basis 
Function (RBF) kernel function with the best feature set [31]. 
In order to classify the data that is not linearly separable, the 
RBF kernel function is used for the iMMC-SVM model. The 
RBF kernel equation can be written as:

where K indicates the kernel function and shows the similar-
ity of the two vectors, x(t1)(m × n) and x(t2)(r × s) , and in fact, 
x(t2) represents the point of reference vector; m , n , r , and s 
show the dimensions on the two vectors, respectively; and � is 
a function of standard deviation.|||x(t1) − x(t2)

||| shows the Euclidean distance between x(t1) and 
x(t2) . Considering x(t1) ≈ x(t2) , the difference between these two 
vectors becomes zero. Hence, exp(0) ≈ 1 . This indicator shows 
that the two vectors are the same for both t1 and t2 . Assuming 
that x(t1) is far from x(t2) , the difference between the two vectors 
becomes a large number, and according to Eq. (6), 

(4)[E] =

⎡
⎢⎢⎣

X1

⋮

Xi

�������

E(1,1) ⋯ E(1,k)

⋮ ⋱ ⋮

E(i,1) ⋯ E(i,k)

⎤
⎥⎥⎦

(5)

⎧⎪⎨⎪⎩

Vj =
1

n

∑
(Y

j

i
− Y)

2

SDj =

�
1

n

∑�
Y
j

i
− Y

�2

(6)K
(
x(t1), x(t2)

)
= exp

(
−𝜆||||x(

t1) − x(t2)
||| |

2
)
, 𝜆 > 0

exp(−∞) ≈ 0 , and it can be concluded that the two vectors 
cannot be similar and they have less influence on each other.

Considering a large positive value for � , the iMMC-SVM 
attempt to avoid misclassifying the training dataset, which 
causes overfitting. As a result, the iMMC-SVM decision 
boundary depends on the points that are closest to the hyper-
plane and ignores the points that are far away. In other words, 
either the two vectors can be the same (close to each other) or 
different (far from each other). � defines how far the influence 
of a single training data reaches and as stated before, and � 
depends on the standard deviation, as follows:

where � indicates the variance.
Considering � = 1,

Using the Taylor series expansion:

Using the dot product, Eq. (9) also be written as Eq. (10). 
Taking Eq. (6) into consideration, Eq. (11) can be derived.

 Assuming 
M =

√
e
(−

1

2

(
(x(t1))

2
+(x(t2))

2
)
) , Eq. (11) can be rewrit-

ten as Eq. (12).

According to Eq. (12), the value of e(−
(
x(t1)−x(t2)

)2

2
) is the rela-

tionship between the two corresponding values of the points in 
two vectors in infinite dimensions.

After training the iMMC-SVM model, it is tested under 
different conditions and the corresponding labels for evalu-
ation are predicted. Lastly, the accuracy of the iMMC-SVM 
technique is checked separately, as follows:

3 � Experimental results

The experimental measurement setup in Fig. 1 includes a 
CMM [32], which is designed by the research team. The 
CMM includes a laser scanner to allow non-contact measure-
ment, which reduces the measurement error. It is also imple-
mented on a vibration isolation table to reduce the effects of 
vibration on measurement results. To further suppress the 
vibration effects, the collected data is processed using the 
proposed iMMC-SVM algorithm as explained earlier.

(7)� =
1

2�2

(8)
e
(−

(
x(t1)−x(t2)

)2

2
) = e

(−
(x(t1))

2
+(x(t2))

2

−2x(t1)x(t2)

2
) = e

(−
1

2
((x(t1))

2
+(x(t2))

2

)
e(x

(t1)x(t2))

(9)

e
(x(t1)x(t2)) = 1 +

1

1!

(
x(t1)x(t2)

)
+

1

2!
(x(t1)x(t2))

2

+
1

3!
(x(t1)x(t2))

3

+⋯ +
1

n!
(x(t1)x(t2))

n

(10)Accuracy =
Accurate fault classif ication

No. of test samples
× 100
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3.1 � Settings

Figures 2 and 3 illustrate a bevel gear used as a part under 
test to conduct the measurements. The blue line on the part 
shows the laser beam used to scan the part and collect data.

According to Eqs. (1) and (2), and for better illustration, X 
and Y coordinates for one section of the manufactured part are 
shown in Fig. 4.

The setup to measure X and Y  coordinates of the part 
to extract the features is shown in Fig. 5. In the coordinate 

measuring stage, the manufactured part is rotated about its 
vertical axis to scan the part and collect the measurement 
data.

3.2 � Data acquisition

The collected data (raw data) from the CMM includes the 
coordinates of the bevel gear in 599 rows ( i ) and 3600 col-
umns ( j ). When the laser beam is reflected, the collected 
data varies from −15 mm and +15 mm. When there is no 

Fig. 1   a Implemented CMM by the research team, b Keyence laser scanner used to sample data points, and c screenshot of the user interface 
developed
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reflection, −90 mm is returned. This is a method to impute 
missing data in the dataset [33].

(11)

e
(x(t1)x(t2)) =

(
1,

√
1

1!
x(t1),

√
1

2!
(x(

t1))
2

,… ,

√
1

n!
(x(

t1))
n

)

.

(
1,

√
1

1!
x(t2),

√
1

2!
(x(

t2))
2

,… ,

√
1

n!
(x(

t2))
n

)

(12)e
(−

(
x
(t1)−x(t2)

)2

2
) = e

(−
1

2
((x(t1))

2
+(x(t2))

2

)[

(
1,

√
1

1!
x(t1),

√
1

2!
(x(t1))

2

,… ,

√
1

n!
(x(t1))

n

)
.

(
1,

√
1

1!
x(t2),

√
1

2!
(x(t2))

2

,… ,

√
1

n!
(x(t2))

n

)
]

(13)

e
(−

(
x
(t1)−x(t2)

)2

2
)
=

(
M,M

√
1

1!
x(t1),M

√
1

2!
(x(t1))

2
,… ,M

√
1

n!
(x(t1))

n

)

.

(
M,M

√
1

1!
x(t2),M

√
1

2!
(x(t2))

2
,… ,M

√
1

n!
(x(t2))

n

)

3.3 � Results and discussions

3.3.1 � Measurements

In this section, the proposed algorithm is evaluated to exam-
ine its validity. The profile of a section of the bevel gear is 

shown in Fig. 6. It can be observed that there are two dents 
where −90 mm is returned as the collected data indicates 

Fig. 2   Bevel gear (from the side)

Fig. 3   Bevel gear (from the top)

Fig. 4   X and Y  coordinates for one section of the manufactured part 
(from the top)

Fig. 5   The bevel gear and CMM
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that the laser beam is not reflected. The collected data has 
599 rows and 3600 columns (a matrix of 599 × 3600 ). There 
are 90 sections and each section is stored in a matrix of 
599 × (40 + 1) , in which 1 shows that the label corresponds 
to the section. The label matrix is a matrix of 23960 × 1. 
In order to train the algorithm, 75% of the collected data is 
used, which is a matrix of 599 × 2700 . In addition, 15% of 
the collected data is used for validation, which is a matrix of 
599 × 540 . Lastly, 10% of the collected data is used for the 
test, which is a matrix of 599 × 360 . The reference dataset 
is a matrix 599 × (40 + 1) , in which 1 shows the label (REF-
ERENCE label). According to Eq. (6) and its explanations, 
m = 599 , n = 2700 , r = 599 , and s = 40.

In order to check the impact of noise and vibration on 
the measured data, profiles of the reference data and the 
measured data are compared with each other. Figure 7 
shows the comparison result indicating a close agreement 
between the data collected through measurement with the 

reference data. It can also be observed that the noise on the 
dataset leads to additional false dents (shadow) between 
−12.75 mm and −11.8 mm and also −3.0 mm and −1.80 
mm on the X-axis.

The sampled data varies from value of about −13.7 to 
+10.2 mm. The collected data experiences a few sharp 
transitions from higher than −10 to about −90 mm. This is 
due to the fake dents where the laser beam is not reflected 
resulting in a minimum measurement value of −90 mm.

3.3.2 � Error calculations

The difference between the measured data and the refer-
ence can readily be calculated. Figure 8 shows the calculated 
error, which represents the error due to vibration. The 3600 
samples in Fig. 7 represent the data obtained through one 
full rotation of the bevel gear. As noted, the vibration error 
becomes visible.

Fig. 6   The profile of the second 
column of the first section of the 
reference data

Fig. 7   Comparison between the 
measured data for the part-
under-test and the reference part
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To evaluate the statistical nature of the measured data, 
the variance of the collected dataset is calculated. Figure 9 
shows the variance of the measured data. While the data in 
Fig. 8 shows that the error rises for samples between 2000
th and 3250th, the measured data indicates that the data vari-
ance becomes higher for sampled data from 1250th to 1750th. 
Therefore, for the tested gear, it can be concluded that the 
vibration has the highest impacts on the collected samples 
for 30th and 44th sections.

Based on the provided explanations for Algorithm 1, 
Figs. 10 and 11 show the results of the noise reduction pro-
cess. As shown in those figures, the proposed algorithm not 
only has successfully reduced the noise due to the vibration 
but also has detected the two dents correctly. It should be 
noted that only a few samples are not well-detected during 
the noise-reduction process. It should be noted that the posi-
tive and negative errors in Fig. 11 indicate the overestima-
tion and underestimation of the predicated samples by the 
proposed method, respectively.

3.4 � iMMC‑SVM algorithm evaluation

The noise due to the vibration can be reduced by repeat-
ing the measurement and applying proper CMM settings. 
The best features can be extracted from the measured 
data by trial and error method, and they can be fed into 
the iMMC-SVM algorithm for evaluation. The proposed 
iMMC-SVM algorithm is a supervised learning algorithm 
with an adaptive computational learning solution, which 
classifies the dataset based on a nonlinear classification 
hyperplane. The capability of the iMMC-SVM algorithm 
can be improved by optimizing the distance between 
the two separation hyperplanes [29]. As mentioned in 
Sect. 2.3, using a kernel function that can convert the 
experimental dataset from its original dimension space 
into a higher dimension space by constructing a nonlinear 
hyperplane is the essential characteristic of the proposed 
iMMC-SVM algorithm. The accuracy of the iMMC-SVM 
algorithm depends on how accurately the hyperplane can 

Fig. 8   The calculated error after 
measurement

Fig. 9   The variance of the 
measured data



The International Journal of Advanced Manufacturing Technology	

1 3

be chosen. This process is completed by changing the 
number of classes.

In order to check the quality of the manufactured part, 
the bevel gear is tested several times, and its internal 2-D 
dimensions are determined based on the algorithm presented 
in Table 1. The measured dataset is added to the reference 
data with its corresponding label.

In the proposed iMMC-SVM algorithm, the dataset is 
classified into two classes of the test dataset and the training 
dataset. The test dataset is then compared with the training 
dataset to evaluate/predict the label of the test data. In order 
to train the proposed iMMC-SVM algorithm, the following 
parameters are considered:

•	 Kernel function
•	 Scaling factor
•	 Convergence criterion

The kernel function, scaling factor, and convergence cri-
terion in the proposed iMMC-SVM algorithm are “RBF,” 

“1000000,” and “kkt-violation-level,” respectively. During 
the iMMC-SVM evaluation, it is preferred to maximize the 
margin between classes. This is achieved by choosing a large 
value as the scaling factor (RBF sigma). Due to the fact that 
the values in the training dataset and the test datasets are 
closed to each other, the proposed iMMC-SVM algorithm 
may not converge. Hence, the “kkt-violation-level” conver-
gence criterion is selected, in which a fraction of data is 
allowed to violate the KKT conditions for the Sequential 
Minimal Optimization (SMO). Faster convergence can be 
achieved by choosing a large positive value for the “kkt-
violation-level.” It should be noted that the “kkt-violation-
level” is a value between the range [01].

The structural parameters of the proposed iMMC-SVM 
algorithm vary based on the type of application, the sam-
pling rate, and the number of tests. These parameters are (1) 
SV  , which is basically a matrix of the data point with each 
row corresponding to a support vector; (2) � , which is the 
vector of the Lagrange multiplier; (3) B , which is the inter-
cept of the hyperplane that separates the two groups; (4) L , 

Fig. 10   Comparison between 
the results obtained by applying 
the proposed noise reduction 
method and the measured data

Fig. 11   The error in the noise 
reduction process
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which represents the label of each group; and (5) SD , which 
shows the information of the scaling factor.

Table 2 shows the accuracy of the predicted label by the pro-
posed iMMC-SVM algorithm based on the number of classes. 
Upon the iMMC-SVM evaluation, it is observed that increasing 
the number of classes ( C ), where C ∈ ℤ

+, 1 ≤ C ≤ 90 , signifi-
cantly adversely affects the accuracy. As the difference between 
the coordinates is in the micrometer range, some points cannot 
be predicted by increasing the number of classes, and therefore, 
the overall accuracy of the process decreases.

The training time also has a direct relationship with the 
number of classes. The more the number of classes, the higher 
the training time. However, the accuracy can be evaluated 
instantly using the test dataset. As shown in Table 2, if the 
number of classes is limited to two classes of perfect or imper-
fect, the proposed algorithm can effectively determine the 
quality of the manufactured part with the maximum accuracy.

3.4.1 � Comparison

The collected data has been used for comparison purposes 
and as shown in Table 3, K-Nearest Neighbors (KNN) 

algorithm, Multi-Class SVM (MC-SVM) method with 
linear kernel function, and Neural Networks (NN) method 
have been evaluated. In this table, the computation time 
and accuracy have been considered for comparison between 
different algorithms for a two-class classification evalua-
tion. Neglecting the complexity of the implementation, the 
proposed iMMC-SVM is faster than the NN method, and 
more accurate than the KNN algorithm and MC-SVM algo-
rithm with linear kernel function algorithm. When the num-
ber of classes increases, overlap among the classes can be 
observed, and still, the other algorithms have less accuracy.

The proposed method is very effective in high dimen-
sional spaces, and also it has a reasonable performance when 
there is no clear margin of separation between classes. Com-
pared to the other SVM-based algorithms, the risk of over-
fitting is less in the proposed method. The proposed kernel 
function is appropriate to solve complex problems, mainly 
for industrial applications.

4 � Conclusions

In this paper, an auto-learning algorithm to reduce the 
time required to add a new part to a Coordinate Measur-
ing Machines (CMMs) library is presented. The measured 
data with errors due to vibration is stored in a dataset and 
the aggregated dataset containing errors is evaluated by an 
improved Modified Multi-Class Support Vector Machines 
(iMMC-SVM) algorithm to measure the geometrical features 
of a part. Practical tests are performed using a laser-based 
CMM to check the performance and robustness of the pro-
posed algorithm. The measurement results demonstrate that 
the features of the parts can be accurately determined even 
in the presence of vibration noise if two classes of perfect 
and imperfect are defined. Moreover, the proposed method 
supports fast training and it is easy to implement in practice.
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50 2.95 90.1
10 3.52 75.9

MC-SVM 90 1.56 98.3
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50 14.0 98.0
10 25.0 93.0
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