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Abstract
Vertical rolling is an important technique used to control the width of continuous casting slabs in the hot-rolling field. Accu-
rate prediction of vertical rolling force is a core point maintaining rolling-mill equipment. Owing to the limitation of the 
algorithm in use, the prediction accuracy of most vertical rolling force models based on the energy method can only reach 
more than 10%. Therefore, it is challenging to optimize the rolling-force model to improve prediction accuracy. An innova-
tive approach for optimizing the calculation of vertical rolling force with a unified yield criterion is presented in this paper. 
First, the maximal width of a dog-bone region is determined by the slip-line method, and the dog-bone shape is described 
using a sine-function model. Second, the velocity and corresponding strain-rate fields satisfying kinematically admissible 
conditions are proposed to calculate the total power of the vertical rolling process. Finally, the analytical solution of the 
rolling force and the dog-bone-shape model is obtained by repeatedly optimizing the weighted coefficient b of intermediate 
principal shear stress on the yield criterion. Moreover, the effectiveness of the proposed mechanical model is verified by 
measured data in the strip hot-rolling field and other models’ results. Results show that the prediction accuracy of the verti-
cal rolling force model can be improved by optimizing the value of b. Then, the impacts of reduction rate, initial thickness, 
and friction factor on dog-bone shape size and vertical rolling force are discussed.

Keywords  Vertical rolling force · Slip-line method · Dog-bone shape · Unified yield criterion

Abbreviations
W0, WE	� Half of the initial and final slab width
Wx	� Half of the slab width
ΔW	� Unilateral reduction,ΔW=W0 −WE

ΔWx	� Unilateral reduction in deformation zone, 
ΔWx=W0 −Wx

h0	� Half of the initial slab thickness
hΙ, hΙΙ	� Half of the slab thickness in zones I and II
hp	� Peak height of deformation zone
hr	� Edge height of deformation zone

R	� Radius of edge roll
l	� Projected length of contact arc, l =

√
2RΔW

v0	� Entrance velocity
vR	� Peripheral velocity of edge roll
� 	� Bite angle, �=sin−1(l∕R)
� 	� Contact angle
d0	� The maximum width of dog bone region
d� 	� Deformation zone’s width during edge rolling
dE	� Deformation zone’s width after edge rolling
β	� Undetermined parameters
b	� Yield criterion parameter
vx, vy, vz 	� Components of velocity vector
J*	� Total power
Ẇi 	� Internal plastic deformation power
Ẇf  	� Friction power
Ẇs 	� Shear power
�s 	� Material yield stress
k	� Yield shear stress, k = �s

�√
3

m	� Friction factor
J∗
min

 	� Minimum value of total power
�f  	� Friction stress
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M	� Rolling torque
� 	� Roll angular velocity
P 	� Rolling force
n� 	� Stress state coefficient
X	� Arm coefficient
x, y, z	� The directions of length, width, and thickness

1  Introduction

With the development of rolling technology, continuous 
casting and rolling have been extensively applied in many 
iron and steel enterprises. The width accuracy of hot-rolled 
strip steel products is an extremely important technical indi-
cator in continuous casting and rolling processes. At present, 
the task of controlling the width of continuously cast slabs 
is mainly undertaken by vertical rolling and a sizing press 
(SP), and the reduction of vertical rolling is much smaller 
than that of the SP process. Owing to a small reduction and 
high width-to-thickness ratio, plastic deformation is con-
centrated on a tiny edge zone of the slab and presents an 
obvious dog bone shape after vertical rolling [1], as shown 
in Fig. 1. The dog-bone shape has a significant influence on 
the width spread of the subsequent flat rolling process and 
cannot be measured online, so the accurate prediction of 
dog-bone shape and rolling force is of enormous significance 
to automatic control.

Okado et al. [2], Toaze et al. [3], and Shibahara et al.  
[4] investigated the dog-bone shape by simulating the vertical- 
rolling process with pure lead and obtained a series of  
empirical formulas. Ginzburg et al. [5] modified Toaze’s 
formulas and drew the conclusion that the relative dog-
bone peak height increased with increasing reduction and 
decreased with increasing initial slab thickness. Xiong et al. 
[6, 7] obtained an experiential model of dog-bone shape 
after vertical rolling through physical simulation experi-
ments on a laboratory rolling mill. However, these formulas 

can only describe the shape of the exit deformation zone, 
and prediction accuracy is affected considerably by different 
rolling conditions.

The finite element method (FEM) has been one of the 
best ways to analyze vertical rolling because it is suitable 
for solving intricate geometric deformation. Huisman and 
Huetink [8] investigated the effect of different vertical roll 
radii on the dog-bone shape after vertical rolling and verified 
the FEM results using plasticine as the experimental mate-
rial. Chuang et al. [9] considered the geometric and mate-
rial nonlinearities and established three-dimensional (3D) 
vertical-rolling and subsequent flat-rolling models based on 
the explicit dynamic equations by using the dynamic relaxa-
tion method, and obtained shape parameter data of the dog 
bone after edge rolling. Using the ABAQUS Explicit Solver, 
Forouzan et al. [10] proposed a 3D elastic-viscoplastic FEM 
model for vertical-rolling, studied the characteristics of geo-
metric shape change and deformation law, and compared it 
with the SP. Ruan et al. [11] set up a 3D rigid-plastic FEM 
model with DEFORM to discuss the displacement veloc-
ity field of the deformation zone and the distribution of the 
dog-bone shape under different technological rolling param-
eters. Nevertheless, although the results obtained by the use 
of a FEM have high accuracy, a FEM cannot be used for 
online automatic control in practical production due to a 
large amount of computation time required.

In relation to the development of the analytical solution 
of vertical rolling force and a dog bone shape model, Yun 
et al. [12] proposed a mathematical model consisting of 
exponential and quartic functions, but the parameters of the 
dog-bone shape and vertical-rolling force were obtained by 
fitting FEM simulation data. Since the model did not offer 
the expression of the deformation power functional, Yun 
did not obtain the analytical solution of the vertical-rolling 
process. The present author previously proposed a method 
for calculating the vertical rolling force and dog-bone shape 
by combining a slip line and exponential velocity field [13]. 
Unfortunately, although an accurate prediction of the maxi-
mum width of the dog bone region, the error in calculating 
vertical-rolling force is slightly larger due to the selection of 
the upper-bound method, and the proposed dog-bone shape 
model is somewhat rough.

The unified yield (UY) criterion was proposed by Yu after 
noticing the nonlinearity of Mises’s yield criterion, which is 
not a single yield criterion but a series of continuously vari-
able linear yield criteria [14]. Then, Zhao et al. deduced the 
linear plastic work rate per unit volume of the UY criterion 
by a flow rule [15]. Therefore, herein, for the purpose of 
improving the prediction accuracy of edge rolling force, a 
new mathematical model is proposed by the energy method 
with the UY criterion, and the calculated accuracy of ver-
tical rolling force is further improved by optimizing the 
weight coefficient in the UY criterion. Finally, the calculated 

Fig. 1   Vertical-horizontal rolling in roughing mill and dog-bone 
shape

1036 The International Journal of Advanced Manufacturing Technology (2022) 119:1035–1045



1 3

shape and mechanical parameters are verified, and the varia-
tion law of the stress-state coefficient under different rolling 
conditions is discussed.

2 � Optimization of sine function dog bone 
shape model

In the vertical rolling process, owing to the large width-to-
thickness ratio of the slabs, the plastic deformation is mainly 
restricted in a small area on the slab edge [12]. Therefore, the 
vertical rolling process can be approximately regarded as a 
plane deformation process and is suitable to be solved by the 
slip-line method.

As shown in Fig. 2, the maximum depth of the dog-bone 
region has been determined by the geometric characteristics 
of the vertical-rolling slip-line field in our previous study 
[16] and is expressed as follows:

Based on Eq. (1), Liu’s sine-function dog-bone-shape 
model was optimized [17], as shown in Fig. 3, and the mathe-
matical expressions of half thickness h(x, y) are the following:

Zone I: ( 0 < y < WE − dE ); half thickness hI=hII(x, y) is

Zone II: ( WE − dE < y < Wx ); half thickness hI=hII(x, y) 
is

where � is an undetermined parameter, and on the basis of 
the incompressibility condition �= 3�h0

d�(2+3�)
 , Wx is half of the 

slab width, Wx = R +WE −
√
R2 − (l − x)2.

The peak height of the deformation zone is

(1)d0 = B�D� = BD = AB = 2h0

(2)hI = h0

(3)hII = h0 + �ΔWx − �ΔWx sin

[
3�

(
y −Wx

)
2d�

]

and its edge height is

where dE is the width of the dog-bone zone after edge roll-
ing, dE=d0 − ΔW=2h0 − ΔW .

3 � Velocity and strain rate fields

dc − dC is the lateral variation of an infinitesimal segment 
in the direction of length, and w = w(x, y) is the lateral dis-
placement as shown in Fig. 3.

The half-thickness is h = h(x, y) , and considering the 
incompressibility condition, the velocity of the rolling direc-
tion is

Substituting Eq. (7) into Eq. (6) and noting that dw
dy

≪ 1 
and dw∕dy

1+dw∕dy
≈

dw

dy
 , then

According to the properties of stream function

Substituting Eq. (8) into Eq. (9), the metal flow velocity 
of the width direction is derived as follows:

(4)hp = hII

(
l,WE −

dE

3

)
= h0 +

6�h0ΔW

dE(2 + 3�)

(5)hr = hII
(
l,WE

)
= h0 +

3�h0ΔW

dE(2 + 3�)

(6)
dw

dy
=

dc − dC

dC

(7)vx =
v0h0

h

dC

dc

(8)vx =
v0h0

h

(
1 −

dw

dy

)

(9)
vy

vx
=

dw

dx

h0
hphr

WE

W0

WE-dE dE/3 dE/3 dE/3

z

y

o y

x

θ
φo

W0

Wx

d0

dE

dφ

WE-dE

R
l

l-x

dC

dc
w

v0

I III II

Fig. 2   Slip-line field and hodograph for edge rolling
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Based on the plane-deformation assumption,

Then in accordance with the incompressibility condition,

Noting that when z = 0 , vz = 0 , the metal flow velocity of 
the vertical direction, vz can be obtained by integrating 𝜀̇z:

(10)vy =
v0h0

h

(
1 −

�w

�y

)
�w

�x

(11)vx = v0

(12)

𝜀̇z = −
(
𝜀̇x + 𝜀̇y

)
= −

(
𝜕vx

𝜕x
+

𝜕vy

𝜕y

)

= v
0
h
0

{
𝜕

𝜕y

(
1

h

)[
𝜕w

𝜕x

(
𝜕w

𝜕y
− 1

)]
+

1

h

𝜕2w

𝜕x𝜕y

(
𝜕w

𝜕y
− 1

)
+

1

h

𝜕

𝜕w

𝜕2w

𝜕y2

}

From Eqs. (8) and (11):

From Eqs. (2), (3), and (14), and the boundary con-
ditions, the lateral displacement of each region can be 
obtained as follows:

Zone I:

(13)

vz = ∫ 𝜀̇ydy

= v
0
h
0
z

{
𝜕

𝜕y

(
1

h

)[
𝜕w

𝜕x

(
𝜕w

𝜕y
− 1

)]
+

1

h

𝜕2w

𝜕x𝜕y

(
𝜕w

𝜕y
− 1

)
+

1

h

𝜕

𝜕w

𝜕2w

𝜕y2

}

(14)w = w(x, y)=∫
y

0

(
1 − h

/
h0
)
dy

(15)wI=∫
WE−dE

0

(
1 − hI

/
h0
)
dy = 0

2h0

D

D' v
CD

v BC45°

45°

y

W
E W

0

o

vy

vy

A

B'

C

α

B

z

45°

Fig. 3   Definition sketch of a sine-function dog-bone profile and b bite zone in vertical rolling
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Zone II:

It can be obtained from Eq. (16), wII

(
x,Wx

)
= −ΔWx 

and the boundary condition is satisfied.
Substituting Eq. (15) into Eqs. (10) and (13), the veloc-

ity field of zone I is derived as follows:

Then, the axial strain-rate field in zone I can be deduced 
on the basis of the Cauchy equation,

Inserting Eq. (16) into Eqs. (10) and (13), the velocity 
field of zone II is

From Eqs. (17) and (19), vzI
||x=0
z=0

= vzII
||x=0
z=0

= 0 , 

vyII
|||x=l
y=WE−dE

= 0 , vzI||x=l
z=0

= vzII
||x=l
z=0

= 0,

vzI
||x=l
z=h

= vzII
||x=l
z=h

= 0 , vxI||y=WE−dE
= vxII

||y=WE−dE
= v0   , 

vyI
|||y=WE−dE

= vyII
|||y=WE−dE

= 0 , and

vzI
||y=WE−dE

= vzII
||y=WE−dE

= 0 . These equations satisfy the 
boundary conditions.

Based on the Cauchy equation, the axial strain rate field 
in zone II is determined as follows:

From Eqs. (18) and (20), 𝜀̇xI + 𝜀̇yI + 𝜀̇zI = 0 and 
𝜀̇xII + 𝜀̇yII + 𝜀̇zII = 0.

Thus, Eqs. (19) and (20) are the kinematically admissible 
velocity and strain-rate field, respectively.

(16)

wII = −
3�ΔWx

(2 + 3�)d�

[
y −

(
Wx − d�

)]
−

2ΔWx

2 + 3�
cos

[
3�

(
y −Wx

)
2d�

]

(17)vxI = v0, vyI = vzI = 0

(18)𝜀̇xI = 𝜀̇yI = 𝜀̇zI = 0

(19)

vxII = v0

vyII =
3�v0

(
y −Wx + d�

)

(2 + 3�)d�
2

[
2h0 − ΔWxsin

(
3�

(
y −Wx

)
2d�

)]
dWx

dx
+

2v0

2 + 3�
cos

(
3�

(
y −Wx

)
2d�

)
dWx

dx

vzII = −
�v0z

(2 + 3�)

{
6h0

d�
2

[
1 − sin

(
3�

(
y −Wx

)
2d�

)]
−

9�
(
y −Wx + d�

)
ΔWx

2d�
3

cos

(
3�

(
y −Wx

)
2d�

)}
dWx

dx

(20)

𝜀̇xII = 0

𝜀̇yII =
𝜋v0

(2 + 3𝜋)

{
6h0

d2
𝜑

[
1 − sin

(
3𝜋

(
y −Wx

)
2d𝜑

)]
−

9𝜋
(
y −Wx + d𝜑

)
Δwx

2d3
𝜑

cos

(
3𝜋

(
y −Wx

)
2d𝜑

)}
dWx

dx

𝜀̇zII = −
𝜋v0

(2 + 3𝜋)

{
6h0

d2
𝜑

[
1 − sin

(
3𝜋

(
y −Wx

)
2d𝜑

)]
−

9𝜋
(
y −Wx + d𝜑

)
ΔWx

2d3
𝜑

cos

(
3𝜋

(
y −Wx

)
2d𝜑

)}
dWx

dx

4 � Total power functional

4.1 � UY criterion

The UY criterion is a unified expression of various linear 
yield criteria in the error triangle between Tresca’s and the 
twin shear stress (TSS) yield loci on the π plane [14], as 
shown in Fig. 4.

Through an in-depth study, it is found that the UY yield 
criterion is more generalized than other linear yield criteria 
that have exact physical significance. The UY criterion is 
usually expressed by

where b is the yield-criterion parameter, which represents 

the effect of the intermediate principal shear stress on the 
yield of materials, and 0 ≤ b ≤ 1 . �1 , �2 , and �3 are principal 
stresses.

The specific plastic work rate per unit volume of the UY 
criterion was derived by Zhao [15]

where 𝜀̇max and 𝜀̇min are the maximum and minimum strain 
rates, respectively, in deformation; 𝜀̇max = 𝜀̇z and 𝜀̇min = 𝜀̇y . 

When b takes any value between 0 and 1, the correspond-
ing specific plastic power can be obtained. Zhao’s research 
made considerable progress in the physical linearization of 
forming the energy-rate functional integral, which provides 

(21)

⎧
⎪⎨⎪⎩

�1 −
b�2

1 + b
−

�3

1 + b
= �s if �2 ≤ �1+�3

2

�1

1 + b
+

b

1 + b
�2 − �3 = �s if �2 ≥ �1+�3

2

(22)D
(
𝜀ij
)
=

1 + b

2 + b
𝜎s
(
𝜀̇max − 𝜀̇min

)
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a necessary basis for the first application of the UY criterion 
in this paper to improve the accuracy of the vertical-rolling 
force calculation by repeatedly optimizing the value of b in 
the UY yield criterion.

4.2 � Inter‑deformation power

Substituting Eqs. (18) and (20) into Eq. (22), the inter-
deformation power can be calculated as follows:

4.3 � Friction power

Friction acts on the contact surface between the slab and verti-
cal roll ( y = Wx ), and the tangential velocity discontinuity is

while the velocity discontinuity is

(23)

Ẇi =
4(1 + b)

2 + b ∫
l

0
∫

Wx

WE−dE
∫

hI

0

𝜎s
(
𝜀̇max − 𝜀̇min

)
dzdydx

=
4(1 + b)𝜎s

2 + b ∫
l

0
∫

Wx

WE−dE
∫

hI

0

(
−2𝜋v0

(2 + 3𝜋)

{
6h0

d2
𝜑

[
1 − sin

(
3𝜋

(
y −Wx

)
2d𝜑

)]
−

9𝜋
(
y −Wx + d𝜑

)
ΔWx

2d3
𝜑

cos

(
3𝜋

(
y −Wx

)
2d𝜑

)}
dWx

dx

)
dzdydx

=
−4(1 + b)𝜎s

2 + b

𝜋v0h0

(2 + 3𝜋) ∫
WE

W0

[
(4 + 6𝜋)h0

𝜋d𝜑
+

(8 + 9𝜋)h0

2 + 3𝜋

3ΔWx

d2
𝜑

−
(8 + 3𝜋)

4(2 + 3𝜋)

3ΔW2
x

d2
𝜑

−
2

𝜋

ΔWx

d𝜑

]
dWx

=
1 + b

2 + b

3𝜎sv0h0

(2 + 3𝜋)2
(
2h0 − ΔW

)
[
16𝜋

(
2h0 − ΔW

)
h0 ln

(
2h0

2h0 − ΔW

)
+

4
(
2h0 − ΔW

)
3

(
4 + 6𝜋 + 9𝜋2

)
ΔW + (8 + 15𝜋)𝜋ΔW2

]

(24)Δvt = vR −
v0

cos�

It is noted that the friction stress �f = mk = m�s

�√
3 and 

velocity discontinuity Δvf  are always in the same direction, 
and the friction power is then deduced using the collinear vec-
tor inner product

For the purpose of obtaining the analytical solution of the 
friction power, the mean-value theorem of the integral is used 
to calculate the average value of Δvt,hr , and vzII:

Substituting ds = dxdy

cos�
 and dx = −R cos�d� into Eq. (26),

(25)Δvf =

√(
vzII

||y=Wx

)2

+ Δv2t

(26)

Ẇf = 4∫
l

0
∫

hrx

0

|𝜏f ||Δvf | cos(Δvf , 𝜏f )ds

= 4∫
l

0
∫

hrx

0

𝜏f |Δvf |ds = 4mk ∫
l

0
∫

hrx

0

√(
vzII

||y=Wx

)2

+ Δv2t
dzdx

cos𝜑

(27)Δv̄t =
∫ 0

𝜃

(
vR −

v0

cos𝜑

)
d𝜑

−𝜃
= vR −

v0

2𝜃
ln

(
R + l

R − l

)

(28)h̄r =
hrl + h0

2
= h0 +

3𝜋h0ΔW

2(2 + 3𝜋)
(
2h0 − ΔW

)

(29)
v̄zII =

1

lh̄r
∫

l

0
∫

h̄r

0

(
vzII

||y=Wx

)
dzdx =

𝜋v0h̄r

4(2 + 3𝜋)l[
9𝜋 ln

(
2h0

2h0 − ΔW

)
+

3(3𝜋 − 2)ΔW

2h0 − ΔW

]

(30)

Ẇf = 4∫
l

0
∫

hrx

0

𝜏f �Δvf �ds = 4∫
l

0
∫

hrx

0

�𝜏f ��Δvf � cos(Δvf , 𝜏f )ds

= 4∫
l

0
∫

hrx

0

Δvf 𝜏f ds =
4m𝜎sh̄rR𝜃√

3

�
Δv̄t

�
1 +

�
v̄zII

�
Δv̄t

�2�−1∕2

+ v̄zII

�
1 +

�
Δv̄t

�
v̄zII

�2�−1∕2�

Fig. 4   Yield loci in π plane
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4.4 � Shear power

On the basis of the mean value theorem, the velocity field in 
the transverse region of the entrance becomes the following:

Zone I:

Zone II:

The shear power can then be expressed as

4.5 � Total power and its optimization

Substituting Eqs. (23), (30), and (33) into J∗=Ẇi+Ẇf + Ẇs 
yields the analytical solution of the total power functional

(31)v̄yI=v̄zI = 0

(32)

v̄yII = −
3v0tan𝜃

2(2 + 3𝜋)h0

∫ W0

W0−2h0

[
𝜋
(
y −W0 + 2h0

)
+

4

3
h0 cos

(
3𝜋(y−W0)

4h0

)]
dy

2h0

= −
tan𝜃v0

(
9𝜋2 − 8

)
6𝜋(2 + 3𝜋)

v̄zII =
3𝜋tan𝜃v0z

2(2 + 3𝜋)h0

∫ W0

W0−2h0

[
1 − sin

(
3𝜋(y−W0)

4h0

)]
dy

2h0

=
tan𝜃v0z

2h0

(33)

Ẇs = 4k ∫
W0

W0−2h0
∫

h0

0

�
(v̄yII)

2 + (v̄zII)
2
dzdy

=
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⎤⎥⎥⎥⎦

(34)
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⎤⎥⎥⎥⎦

J∗ is only relevant to the yield criterion parameter b when 
the deformation resistance �s , reduction ΔW , radius of edge 
roll R , peripheral velocities vR , initial thickness of slabs 2h0 , 
and friction factor of edge roll-slab arc m are given. There-
fore, the value of b can be repeatedly optimized between 0 
and 1 according to the measured vertical rolling force data to 
improve the accuracy of Eq. (34). Then, the corresponding 
values of rolling torque M, rolling force P̄ , and stress state 
coefficient n� can be achieved separately as follows [18]:

The arm coefficient � = 0.3–0.6 was researched in the hot-
rolling process [19], and �=0.5 is selected in this paper under 
the relevant equipment and process parameters.

5 � Results

5.1 � Dog‑bone shape

To verify the accuracy of the dog-bone-shape model pro-
posed in this paper, the ratio of dog-bone peak height to 
width, hp

/
W0 , was calculated by Eq. (4) under different 

engineering strains ΔW
/
W0 , initial thicknesses h0 , and 

vertical-roll radii R . In addition, a comparison between the 
optimized sine-function-model results and those of other 
models is shown in Figs. 5 and 6. The comparison results 
demonstrate that the deviation between Eq. (4) and Ginz-
burg’s model is within 5.7% and that between Eq. (4) and 
Xiong’s model is within 8%. As can be seen from Fig. 5, 
the deflections between the present model and the other 
two models will increase with increasing reduction ΔW  . 
When the value of ΔW

/
W0 is less than 0.015, the com-

parative deflections are reduced to 1.5% and 5%. Because 
the present model assumed that the edge rolling process 

(35)M=
J∗

2𝜔
, P̄=

M

𝜒 l
, n𝜎=

P̄

𝜎s
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is a plane-deformation process, it is reasonable that the 
value of hp

/
W0 is higher than those of both Xiong’s and 

Ginzburg’s models.

5.2 � Edge rolling force

To validate the vertical rolling force model proposed in this 
paper, the authors collected a large amount of actual measure-
ment data in the hot rolling production line of a Chinese steel 
company. Its roughing mill group consists of two vertical roll 
stands and two horizontal rolling stands, and Fig. 7 shows its 
schematic diagram and main electrical characteristics.

Taking the material of Q235 steel product for instance, 
the cast slab with dimension of 180 × 480 × 7000

(
mm3

)
 

is reduced from 480 to 455 mm by vertical roll stands 
E1 and E2 in the roughing mills. The radius of vertical 
roll, peripheral velocity vR , temperature t  , and true strain 
� = ln

(
W0∕WE

)
 for vertical stands are shown in Table 1, 

and the deformation resistance of the slabs is also included. 
Then the rolling process parameters in Table 1 are substi-
tuted into Eqs. (33) and (34) to calculate the vertical-rolling 
force and compare with the rolling force values monitored 
by two force transducers located over the bearing blocks of 
the vertical roll. By repeatedly optimizing the value of b, the 
error between the calculated force and actual measured data 
is within 5% when b = 0.613, as shown in Table 1.

The model of deformation resistance for the Q235 steel 
used in the calculation is determined by Wang et al. [20], 
which can be expressed mathematically as

(36)

𝜎s = 𝜎0e
(a1T−a2)

(
𝜀̇

10

)(a3T−a4)[
a6

(
𝜀

0.4

)a5
−
(
a6 − 1

) 𝜀

0.4

]

Fig. 7   Schematic diagram and main characteristics of the roughing 
mill group

Fig. 8   Comparison between calculated rolling force under different b 
values and actual measured data

Fig. 5   Influence of ΔW
/
W

0
 on hp

/
W

0

Fig. 6   Influence of h
0

/
W

0
 on hp

/
W

0
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where �0 = 150 MPa, a1 = −2.8685, a2 = 3.6573, a3 
= 0.2121, a4 = −0.1531, a5 = 0.3912, a6 = 1.4403, 
T=(t + 273)∕1000.

In addition, the authors also used the TSS (b = 1) and 
the Tresca yield criteria (b = 0) for calculating the vertical-
rolling force with a maximum error of 12% and 15%, as 
shown in Fig. 8. This indicates that the application of the UY 
criterion can effectively improve the accuracy of the vertical 
rolling-force calculation by the energy method.

6 � Discussion

Based on the dog-bone-shape model, Eq. (4), and the ver-
tical rolling-force model, Eqs. (33) and (34), proposed in 
the present paper, the influence of different rolling process 
parameters on dog-bone peak height hp and vertical rolling 
force is studied, and the results are shown in Figs. 5 and 6 
and in Figs. 9 and 10.

Figure 5 shows the significant increase in dog-bone peak 
height during the vertical rolling process with increasing 
engineering strain ΔW

/
W0 . This is caused by the length 

of the contact arc and the volume of the deformed metal, 
increasing while ΔW  increases. Since the plastic deforma-
tion is concentrated on the edge of the slab, hp obviously 
increases. In Fig. 6, the dog-bone peak height hp shows 
a linear growth trend with the increase of the slab’s ini-
tial thickness h0 , which is consistent with Xiong’s and 

Ginzburg’s models. This is because, when only h0 increases, 
the contact-arc length between the slab and vertical roll 
remains unchanged, but the contact surface of the rolling 
slab becomes larger, which increases the volume of metal 
involved in plastic deformation, resulting in an increase in 
the value of hp . Furthermore, although hp increases with h0 , 
the increase in hp is much smaller than that in h0 , which is 
why the curves in Fig. 6 are linear.

The vertical rolling force is another key parameter studied 
in the present paper, and according to the calculation results 
shown in Fig. 8, it can be seen that the variation of the yield 
criterion parameter b has a drastic positive effect on the cal-
culated value of the vertical rolling force. This is because the 
inter-deformation power accounts for a large proportion of 
the total power in the vertical rolling process. After optimiz-
ing the vertical rolling force model by adjusting the value 
of the yield criterion parameter b, the impact of slab thick-
ness h0 and reduction ΔW  on the vertical rolling force is 
studied, and the results are shown in Fig. 9. Figure 9 shows 
that the stress-state coefficient n� increases significantly with 
increasing h0∕W0 and engineering strain ΔW∕W0 , and the 
increasing trend of n� is from sharp to gentle as h0∕W0 and 
ΔW∕W0 increase. In addition, it is evident from Fig. 9 that 
the influence of engineering strain on the stress state coef-
ficient is much greater than that of the initial thickness, and 
it is the main factor affecting the change of rolling force.

Table 1   Comparison of vertical 
rolling force calculated by 
present model with measured 
one

Stand no. vR (m/s) t (℃) ε = ln(W0/WE) σs (MPa) R (m) Calculated 
force (kN)

Measured 
force (kN)

Error (%)

E1 0.76 1139.3 0.032 35.24 0.55 968.09 922.87 4.9
E2 1.28 1114.7 0.021 32.17 0.542 874.39 838.34 4.3

Fig. 9   Influence of ΔW∕W
0
 and h

0
∕W

0
 on stress state coefficient n�

Fig. 10   Influence of ΔW∕W
0
 and friction factor m on stress state 

coefficient n�

1043The International Journal of Advanced Manufacturing Technology (2022) 119:1035–1045



1 3

Figure 10 shows the influence law of friction coefficient 
m and ΔW∕W0 on the influence coefficient of the stress state. 
When the engineering strain is small, the friction coefficient 
has little influence on the rolling force, but as the engineer-
ing strain becomes larger, the friction coefficient exhibits a 
rapid increase in the influence of the rolling force.

7 � Conclusions

1.	 The UY criterion is first proposed establishing the verti-
cal rolling force model, and the yield criterion parameter 
b is converted into an optimal parameter of the vertical 
rolling force. Then, the value of b is repeatedly opti-
mized, and it is determined that the mechanical model 
in this paper achieves the highest accuracy when b = 
0.613, the error between the optimized model calcula-
tion results and the field measured data is within 5%.

2.	 The vertical rolling forces calculated by UY, TSS, and 
Tresca yield criteria are compared with actual measured 
data. It is noted that the prediction accuracy of the roll-
ing force is effectively improved by optimizing the yield 
parameter b. This proves that it is feasible and effective 
to use the UY criterion to optimize the solution accuracy 
of mechanical parameters.

3.	 The sine-function dog-bone-shape model is optimized by 
using the slip line field to determine the maximum depth of 
the dog bone area, which ensures the prediction accuracy 
and simplifies the calculation steps, which can improve the 
prediction efficiency of the slab shape after vertical rolling.

4.	 Engineering strain is the primary factor that affects the 
height of the bone peak of the dog bone shape. The 
increase of the initial thickness of the slab also increases 
the height of the bone peak, but it is far from the obvi-
ous influence of the engineering strain on the height of 
the bone peak. In addition, the increases of engineering 
strain, initial slab thickness, and friction coefficient will 
cause different degrees of increase in the rolling force. 
The co-increasing of engineering strain and friction 
coefficient will make the rolling force present the most 
obvious increasing trend.
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