
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-021-08163-3

ORIGINAL ARTICLE

Job shop rescheduling with rework and reconditioning in Industry 4.0:
an event‑driven approach

Gonzalo Mejía1 · Carlos Montoya2 · Stevenson Bolívar2 · Daniel Alejandro Rossit3,4

Received: 27 July 2021 / Accepted: 29 September 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
In this paper, we investigate the impact of rescheduling policies in the event of both rework and reconditioning in job
shop manufacturing systems. Since these events occur in unplanned and disrupting manner, to address them properly, it is
required to manage real-time information and to have flexible reaction capacity. These capabilities, of data acquisition and
robotics, are provided by Industry 4.0 Technologies. However, to take full advantage of those capabilities, it is imperative
to have efficient decision-making processes to deliver adequate corrective actions. In this sense, we propose an event-driven
rescheduling approach. This approach consists of an architecture that integrates information acquisition, optimization process,
and rescheduling planning. We study the performance of the system with several algorithms with two performance criteria,
namely, (i) relative performance deviation (RPD) in terms of objective function and (ii) schedule stability. We also propose
a hybrid policy that combines full rescheduling regeneration with stability-oriented strategies aimed to balance both criteria.
We conducted extensive computational tests with instances from the literature under different scenarios. The results show
that a sophisticated algorithm can obtain better quality schedules in terms of the objective function but at the expense of
sacrificing stability. Finally, we analyze and discuss the results and provide insights for its use and implementation.

Keywords Event-driven rescheduling · Job shop · Manufacturing systems · Rework · Petri nets

1 Introduction

In recent years, important changes have taken place in the
production paradigm associated with the Industry 4.0 con-
cept [1]. This change has implied a greater penetration of

digital technologies in the productive processes associated
with a growing connectivity through the Internet of Things
(IoT) [2]. The increasing responsiveness of Industry 4.0 is
one of its main attributes [1]. Increasing responsiveness
implies, roughly speaking, being able to fast-adjusting the
manufacturing system itself in a non-rigid way to the sce-
narios and situations that it must face [3].This enables the
production capacity to be boosted in the face of changing
scenarios, either due to changes in demand [4] or due to the
occurrence of unexpected events in the process [5].

These Industry 4.0 features directly impact the decision-
making processes associated all levels of a manufacturing
system, from resource and facility planning to shop floor
control [6]. In particular, a quick and efficient response to
disruptive events is of primary importance. There are two
pre-requisites: on one hand, the ability to capture in real-time
and process data related to the disruptions and on the other
hand, to adapt the system to the new disrupted situation.

Rescheduling is a crucial aspect in the Industry 4.0
era [3]. Rescheduling relates the decisions made when an
already existing production plan is in execution [7]. Once
the schedule has been generated, unforeseen events will arise

 * Gonzalo Mejía
 gonzalo.mejia@unisabana.edu.co

 Carlos Montoya
 c_montoya@javeriana.edu.co

 Stevenson Bolívar
 s_bolivar@javeriana.edu.co

 Daniel Alejandro Rossit
 daniel.rossit@uns.edu.ar

1 Faculty of Engineering, Universidad de La Sabana, Campus
Universitario Puente del Común, Chía, Colombia

2 Facultad de Ingeniería, Pontificia Universidad Javeriana,
Bogotá, Colombia

3 Departamento de Ingeniería, Universidad Nacional del Sur,
Bahía Blanca, Argentina

4 INMABB, Universidad Nacional del Sur and CONICET,
Bahía Blanca, Argentina

/ Published online: 8 January 2022

The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-021-08163-3&domain=pdf

1 3

and will modify the initial conditions, affecting the perfor-
mance of the manufacturing system [8]. Rescheduling meth-
ods must therefore contemplate the modified scenario and
propose actions that allow meeting the organization’s objec-
tives [7]. Two key factors for rescheduling are the speed of
the calculations and the quality of the information required
to devise a corrective action, as well as the ability to provide
quality and stable schedules.

Industry 4.0 affects these two aspects directly [9]. On
one hand, the availability of more and better informa-
tion will improve the ability to analyze new scenarios
and on the other hand, quality schedules can provide a
competitive advantage [10]. Since the information arrives
more quickly and efficiently to the shop supervisors, the
control actions can also be quickly fed back to the shop
floor. In this sense, Industry 4.0 enhances the potential
for the development and implementation of sophisticated
methods for recalculating. In their work, Zhang et al. [3]
highlighted that the management of these dynamic envi-
ronments in Industry 4.0 poses a challenge for the resched-
uling mechanisms in the shop floor. Naturally, developing
more sophisticated methods will allow a better perfor-
mance than simpler methods such as dispatching rules or
right shift schedules.

However, to take advantage of the Industry 4.0 Technolo-
gies, there are several issues unresolved: the first question
concerns the appropriate tools to model and optimize pro-
duction plans carried out by Cyber-physical Systems. Most
tools nowadays provide either (i) powerful tailor-made
algorithms for unrealistic and simplified representations
of production systems or, (ii) accurate representations con-
nected with limited simulation-based optimization methods
based mostly on priority or probabilistic decision rules.
Most of these approaches consider the uncertainty proper
of rework events only through expected values or Monte-
Carlo methods. However, modelling rework events in such
manners can undermine severely system performance, since
each rework event can differ significantly from others; then,
an event-driven approach enables a more accurate and effi-
cient management of disrupting events. The second question
is the selection of appropriate optimization methods with
rescheduling capabilities. It is well known that rescheduling
not only involves decisions as to maintain the quality of the
schedule but also related to stability. It is also clear that fre-
quent re-calculation of schedules leads to system instability
that affects the supply of materials and components, human
resources and labor (e.g., shifts already committed), and the
fulfilment of production orders [11].

In this paper, we study rework in job shop manufac-
turing systems with Industry 4.0 capabilities. We pro-
pose an integrated modeling and optimization approach
able to handle rescheduling in real-time considering an
event-driven logic. Rework in manufacturing is one of

the many disruptions that affect their performance and
it is one of the least studied. Rework occurs due to many
causes that include worker errors, quality problems of raw
materials, incorrect machine settings, and tool breakage.
An issue that it is often overlooked is the fact that rework
generally leads to additional reconditioning operations:
for example, in a case of a machining defect, the work-
piece may need additional machining operations (e.g.,
grinding); in a case of a paint quality problem, the paint
must be scrapped off before the workpiece is repainted;
assembly errors require disassembly before the rework is
performed.

In this paper, we use an integrated timed Petri nets [12,
13] modeling and optimization approach to (i) represent
the manufacturing system with provisions for rework, (ii)
calculate the “baseline” or offline schedule, and (iii) trigger
the schedule regeneration. In turn, the rescheduling system
proposed in this work lays the foundations for the design
of an automated system for scheduling and rescheduling
functionalities, with capabilities to process information in
real-time, as well as to model and solve the problems that
arise during production runs.

We aim to study both scheduling quality (in terms of
RPD) and stability with different scheduling/reschedul-
ing methods and with different rescheduling policies in
manufacturing systems with Industry 4.0 Technologies
able to both detect the need for rework in real-time and
estimate, based on previous occurrences, the duration of
the reconditioning operation. We propose a hybrid policy
that triggers either a full reschedule procedure or a more
conservative modification of the current schedule. The
choice of the rescheduling method is made based on a pre-
defined threshold value that is related to the expected dura-
tion of the reconditioning operation. The specific goals
of this papers are (1) to compare dedicated algorithms
for offline scheduling vs. the more versatile dispatching
rules with the above metrics and, (2) establish the right
value of threshold that will be a trade-off between RPD
and stability. The contributions of this paper can be sum-
marized as follows:

– An integrated modeling and optimization approach for
real-time event-driven rescheduling under rework/recon-
ditioning events.

– An extensive experimentation framework to compare
the tested algorithms under the two metrics mentioned
above.

– A rescheduling method that provides a trade-off between
RPD and schedule stability

The remainder of the paper is organized as follows:
Sect. 2 examines the background on the topic; Sect. 3
describes the proposed approach, Sect. 4 presents the

3730 The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

computer tests, the results and analysis, and finally, Sect. 5
concludes and suggests future work.

2 Background

2.1 Petri nets

The modeling approach used in this paper was Petri nets.
Petri nets are an excellent modeling and optimization tool
for the manufacturing system and for the rework and recon-
ditioning tasks. In general, Petri nets are well-known for
modeling and simulation. However, Petri net-based sched-
uling algorithms have been proved powerful on a variety of
manufacturing systems such as job shops, flexible manu-
facturing systems, and project scheduling [14, 15]. An
important advantage of using Petri nets over other modeling
approaches is the integration of modeling with both simula-
tion and optimization.

In this section, we give a brief introduction of the notation
and definitions of Petri nets used in this paper1. Formally
speaking an ordinary (timed place), Petri net is a 5-tuple
G = {P, T ,F, �,M0} , where P is a set of places, T is a set of
transitions, F is the flow relation between places and transi-
tions (i.e., arcs), � is the set of time delays associated with
places, and M0 is the initial marking. We model a job shop
system following the concept of timed S3PR [12]. In S3PR
nets, a number of concurrent serial processes (jobs) are
modeled with an equal number of acyclic connected state
machines.

Places There is a unique initial place psj and a unique
end place pej on each job type j . These initial and the end
places represent the conditions process instance ready to
start and process instance finished. M0(psj) represents the
number of parts (instances) of job type j . Places belonging
to the serial processes are denoted as “Operational Places”
(PO) and can be timed, if representing the execution of an
operation, or untimed if representing a condition such as
“part in buffer,” “ready,” “in queue,” or “finished.” As in
Lee and DiCesare [16], a timed place pij is associated with
operation oij . In this paper, we assume that buffers of infinite
capacity are located before each stage. Places representing
the condition “job j at buffer prior to execution of opera-
tion oij ” are denoted as bij . Resource capacity constraints
are incorporated to the model via “resource places.” The set
PR =

{
pr∕r ∈ R

}
 contains all resource places. The subset

PR(ij) = {pr∕r is used in operation oij} contains all resource
places required in operation oij . Without loss of general-
ity, the capacity of all resources rÎR is set to 1, i.e., there is
only one unit of resource of each resource type. All resource
places are untimed.

Transitions t(ij)s and t(ij)e represent respectively the start
and end of operation oij.

T = {ts(ij)} ∪ {te(ij)} such that oij ∈ O . The following con-
struction rules hold in this paper:

•ts(ij) = {psj} ∪ PR(ij) if oij is the first operation (i.e., i = 1)
of job type j and {bij} ∪ PR(ij) otherwise; ts(ij)• = {pij};

•te(ij) = {pij};
te(ij) • = {b(i+1)j,PR(ij)} if i < |Oj| and {pej,PR(ij)} otherwise.
The S3PR model of the production activities is defined

here as the “plant” net as in Mejía et al. [17]. Figure 1 illus-
trates a Petri net model of the plant of two jobs with two
stages each: stage 1 of job 1 (resp. job 2) has operation o11
(resp. o12) represented by place p11 (resp. p12). Stage 2 of
job 1 (resp. job 2) has operation o21 (resp. o22) represented
by place p21 (resp. p22). Place b21 and b22 are buffer places
between stage 1 and stage 2. Places M1 to M4 represent the
availability of machines 1 to 4.

Definition A reconditioning/rework trajectory is a sequence
of actions required to finish an operation that, for instance,
failed inspection and needed reprocessing. The recondition-
ing/rework consists of two actions: the repair (recondition-
ing) and the reprocessing (rework).

For the purpose of this work, reconditioning/rework tra-
jectories are modelled with a subnet consisting of one single
timed place prw(ij) , denoted as reconditioning place, which
models the execution of the reconditioning action. Such
a reconditioning place is linked to one input uncontrolla-
ble transition td(ij) and to one output controllable transition

M
2

M
1

M
4

M
3

ps1 t
s11

p
11

t
e11

b
21

ts21
p

21
t
e21

p
e1

pe2
t
e22

p
22

t
s22 b

22
t
e12

p
12

t
s21

p
s2

Fig. 1 Petri net Model of two jobs with two operations each

1 Although this section can be skipped without loss of continuity, we
leave it here as important aspects of the modeling approach regarding
rework are presented.

3731The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

tc(ij) . These transitions td(ij) and tc(ij) represent respectively
the start and end of the reconditioning action required by
operation oij . Let us assume that operation oij requires a set
of resources Rij ⊆ R for its processing.

Rework subnets are created in real-time and attached to
the “plant” subnet (i.e., the manufacturing system) when-
ever a rework is triggered. In real-life, a sensor will detect a
defect in a workpiece and triggers an alert to the shop con-
troller that makes a rescheduling decision depending on the
duration of the corresponding reconditioning activity. The
rework subnet is eliminated from the plant subnet, whenever
the reconditioning action is finished.

Definitions A reconditioning subnet associated with the
reconditioning of a single operation oij is defined as:

Nrw(i,j) = (P
rw(ij)

, Trw(ij),Prw(ij) × Trw(ij),

Trw(ij) × P
rw(ij)

,M0rw(i,j), �rw(i,j))
in which:

Prw(ij) = {prw(ij)}

Trw(ij) = {td(ij), tc(ij)}

M0rw(i,j) is the initial marking of place prw(ij)
�rw(i,j) is the stochastic time delay of place prw(ij).
The flow relations Prw(ij) × Trw(ij), Trw(ij) × Prw(ij) are the

following:
•prw(ij) =

{
td(ij)

}
.

prw(ij) • =
{
tc(ij)

}
.

•td(ij) =
{
pij
}
.

td(ij)• =
{
prw(ij) ∪ pr ∈ PR(ij)

}

•tc(ij) =
{
prw(ij)

}

tc(ij) • =
{
bij
}

See Fig. 2 for an example of a rework subnets. The plant,
representing only production activities, is shown in Fig. 2a;
the augmented net is shown in Fig. 2b. Places p1 − p4 are
operational places and p5 is a resource place representing the
availability of resource r1 . Places p1 and p4 are respectively
start and end places; p2 represents a buffer place and place
p 3 represents the execution of an operation. Transitions t1
to t3 ∈ T are controllable plant transitions; transitions td and
tc represent respectively the start and end of the recondi-
tioning action. All transitions t1–t3 and tc are controllable
whereas td is uncontrollable. Consider the case where place

p3 is marked: both transitions t3 and td can fire. If td fires, the
system enters into a disrupted state and can be eventually
returned to a normal state when transition tc fires. When tc
fires, the subnet is removed from the plant.

The augmented Petri net is NA =
(
N,Nrw(i,j)

)
 . This aug-

mented net is live and bounded [18].

2.2 Job shop scheduling problem (JSSP)

A job shop is manufacturing system in which a set M of
machines, indexed in i , processes a set of jobs J , indexed in
j . Each job consists of a set of operations which must be
processed in a pre-defined order (route) and no pre-emption
is allowed. In general, not all job routes are the same. The
term oij denotes operation of job j on machine i . The deter-
ministic processing time of operation oij is pij . The set of
operations of job j is denoted as Oj.Without loss of general-
ity, in this work, we set |||Oj

||| = |M| = m . The set of all opera-
tions is denoted as O =

⋃
Oj.

A job shop scheduling problem (JSSP) consists of cal-
culating the start (or end) times of all operations oij ∈ O in
such a way that an optimization criterion is minimized. A
schedule S is an array of operations oij together with their
corresponding start times sij sorted in the chronological
order. The literature on offline JSSP and its variants is vast.

In this paper, we studied the minimization of the total
flow time (TFT), which is related to the total time spent in
queue. The TFT can be calculated following Eq. (1).

The term Cj is the completion time of job j in the original
schedule and n = |J| is the number of jobs. We define RPD
as in Katragjini et al. [11]. The formula is:

where TFTe (resp. TFTbest) is the value of TFT of the exe-
cuted schedule (resp. the best offline schedule among all
algorithms).

(1)Total flow time (TFT) =

n∑

j=1

Cj

(2)RPD =
TFTe − TFTbest

TFTbest

Fig. 2 Reconditioning/rework
trajectories modeled with Petri
nets. a Plant. b Example of
reconditioning/recovery subnet

p1 t1 p2 t2 p3 t3 p4

p5

tc
p

5

p
1

t
1

p
2

t
2

p
3

t
3

p
4

td

p
rw

(a) Plant (b) Example of reconditioning/recovery subnet

3732 The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

In the rescheduling situation, we use the classical stability
formula [19] as follows (Eq. 3):

where Cij (resp. C′
ij
) is the completion time of operation oij in

the original schedule (resp. the executed schedule).

2.3 Rescheduling

Rescheduling is a topic that has been widely studied over
the years. Efforts have been made to classify the environ-
ment, the rescheduling policies, the orksle regeneration, and
the types of disruptions, and. We only will provide a brief
review of the topic. Interested readers are referred to the
paper of Vieira et al. [7].

Regarding the environment, these can be classified as
static and dynamic: in static environments, all ork are known
from the beginning whereas in dynamic environments, ork
arrive continuously to the system. Schedule generation refers
to whether the orksle is calculated with provisions for dis-
ruptions (i.e., robust schedules) or not (i.e., nominal sched-
ules). In the first case, the orksle is expected to absorb most
perturbations and rescheduling is orksle rarely recalculated;
in a nominal orksle, rescheduling actions take place in one
way or another when disruptions occur.

When disruptions occur, the three more common repair
strategies to repair are full orksle regeneration, partial
rescheduling, and right-shift scheduling [20]. In orksle regen-
eration, the entire orksle is recalculated, considering those
operations that have not started yet their execution. This strat-
egy produces the best results in terms of the objective func-
tion but requires more computer effort and produces instabil-
ity. Partial rescheduling attempts to reschedule only a subset
of operations. One of the better-known methods for partial
rescheduling is AOR (affected operations rescheduling) in
which only affected operations (those whose start times
change) by the breakdown are rescheduled. The right-shift
scheduling strategy consists of postponing the start of the
affected operations by the amount of time of the breakdown.
This is the easiest to implement and produces the highest
stability but the orksle quality can be compromised [20].

In terms of policies, these can be periodic, event-driven,
or hybrid. In periodic rescheduling, the orksle regeneration
is performed at regular intervals whereas in event-driven
approaches, the orksle is regenerated whenever disruptions
occur. Hybrid rescheduling falls in between [21]. One of the
questions is when to launch a full or a partial re-schedule.
A common approach is to trigger a full rescheduling
method orksle certain conditions on a case by case basis.

(3)� =

∑�O�
1

∑
oij∈O

���Cij − C�
ij

���∑
oij
pij

For example, Pfeiffer et al. [22] used a simulation-based
approach, taking into account machine breakdowns and sto-
chastic processing times. Authors evaluated their solution
approach in terms of stability and efficiency. They proposed
a heuristic method for periodic rescheduling and a triggering
mechanism that activates whenever the cumulative differ-
ence between the planned and simulated completion times
are greater or a threshold. Later, Bidot et al. [23] investi-
gated stochastic processing times and machine breakdowns.
In that work, a orksle is generated offline and launched. A
controller monitors the orksle execution and activates full,
partial, or progressive rescheduling processes by checking
case-specific performance conditions.

Lately, the research body has focused towards schedules
that are modified whenever disruptions occur. For example,
Dong and Jang [21] proposed new rescheduling methods
orksle the AOR and compared their results with the classi-
cal AOR methodologies. He and Sun [24] combined robust
schedules with rescheduling in flexible job shops and com-
pared their results with other strategies in terms of stabil-
ity and robustness. Katragjini et al. [11] combined stability
measures with efficiency measures (i.e., makespan) in a sin-
gle objective function in a flow shop manufacturing system
and compared several metaheuristic algorithms. Ahmadi
et al. [19] proposed a multi-objective model for flexible
job shops and studied the performance of several classical
algorithms (e.g., NSGA-II, NRGA). More recently, Larsen
and Pranzo [25] developed a general rescheduling frame-
work with different types of disruptions. A controller trig-
gers a rescheduling algorithm whenever a deterministic or
stochastic rescheduling condition is met. Authors evaluated
their solution approach in a job shop orksle. Gao et al. [26]
proposed a Jaya algorithm on a flexible job shop orksle with
machine recovery. In the rescheduling phase, instability and
makespan are minimized. Nie et al. [27] proposed an event-
driven, rescheduling approach orksle a genetic algorithm for
flexible job shop scheduling problems subject to machine
breakdowns. In that work, authors focused on minimizing
makespan in the scheduling phase, while in the rescheduling
phase, the orksle’s performance is measured by the weighted
sum of RPD and stability.

In regard to Industry 4.0, Framinan et al. [28] investigated
the impact of real-time information in the performance of
rescheduling policies. Their results suggest that real-time
information can indeed improve the performance of the
manufacturing system but only under low variability condi-
tions. Also, technological advances have enable to address
scheduling problems using real-time information through
Cloud architectures, as in Zhang et al. [29], where a multi-
objective game-theoretic approach is developed. Similarly,
Carlucci et al. [30] and Goodarzi et al. [31] implemented
game theory approaches.

3733The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

In other orks, Ghaleb et al. [32] proposed a real-time
rescheduling system considering job shop problems and sto-
chastic processing times. In this work, the arrival of new ork
and machine breakdowns trigger the rescheduling process.
The authors evaluated several rescheduling policies such as
continuous and event-driven rescheduling.

In general, most orks aim to balance performance with
stability measures. To do so, the different approaches adopt
different strategies to launch either a full reschedule or a par-
tial one. Our approach is different in the sense that it exploits
real-time information to decide when to perform a full or
a partial reschedule. On the other hand, game theoretical
approaches involve agents with individual goals which is not
the case in our paper. In our case, we have a single central
controller with two distinct goals.

2.4 Rework

Rework in manufacturing is one of the many disruptions
that affect its performance, and it is one of the least studied.
The literature in rework includes aspects such as costs [33],
lot sizing [34], and quality [35, 36]. Rework in manufactur-
ing systems has been addressed from the perspectives of
simulation-based dispatching rules [37, 38], and with classi-
cal heuristic and metaheuristic approaches: examples of the
latter are cases of single machine scheduling [39], parallel
machines [40–43], flow shops [44–46], and batch facilities
[47].

Table 1 summarizes the findings on rework. In this table,
papers are classified regarding scenario modelling (i.e.,
how rework events are considered): if reworks are mod-
elled with estimated parameters, or if they are event-driven.
The event-driven approach refers to those cases where the
rework event data are known only when the production is
started; thus, it is mandatory to make decisions on the fly
with some rescheduling strategy. As seen in Table 1, few
papers considered the event-driven approach, although
these works studied single-machine problem and parallel
machine settings [41, 48]. Then, to the best of our knowl-
edge, in the literature, there are no event-driven approaches
for the rescheduling problems with reworks for more com-
plex manufacturing configurations as job shops, and this is
a problem that occurs in real-life for instance in automotive
manufacturing settings.

It can be seen from Table 1 that most works aim to
optimize classical objective functions, although in terms
of expected values. Only the paper of Liu and Zhou [41]
addressed the topic of rework and stability although on sin-
gle stage manufacturing systems.

To the best of our knowledge, no work has addressed
the problem of the rescheduling with rework and recondi-
tioning in job-shop systems. The literature on scheduling

with rework estimate the schedule performance based on
expected values calculated analytically or with simulation
and consider the situation in which a job is processed on a
machine, then inspected outside the machine, and immedi-
ately returned to the queue. These works do not consider
reconditioning and/or stability. The works on rescheduling
consider mostly machine breakdowns and other disruptions,
but no rework.

3 Proposed approach

3.1 Assumptions

We consider the case in which a reconditioning action is
needed prior to the rework itself. This is the same example
of paint that needs to be scrapped off (i.e., the recondition-
ing) before the work piece is repainted (i.e., rework). The
following assumptions hold in this paper:

– All job operations may eventually need rework. All oper-
ations that need rework require reconditioning actions.

– The corresponding reconditioning times are exponen-
tially distributed. The mean of the distribution is denoted
the mean time to reconditioning (MTTR).

– The rework probability of all operations is the same. This
probability is denoted the percentage of reworked opera-
tions (PRO).

– The rework time of a job operation equals the original
processing time.

– The time required for the reconditioning is known as
soon as the rework/reconditioning request is triggered.
In practice, we need technologies of industry.

3.2 Event‑driven implementation

In this work, we study via simulation how the event-driven
system reacts to disruptions that involve reconditioning and
rework operations. This approach is different from previous
works in rework in which the performance indicators are
calculated based on expected values and not from the actual
schedule execution.

The first step is to produce an “offline” schedule. In this
paper, we generate schedules with two methods: The first
method is dispatching rules, which are widely used and pro-
duce acceptable performance in terms of solution quality.
The second method is a modified BAS (Beam A* Search)
algorithm, originally presented in Mejía and Montoya [59]
and later improved in Mejía and Lefebvre, [12] and in Rossit
et al. [60]. BAS is a graph search algorithm for different
types of scheduling problems. Such algorithm is amenable
with our Petri Net model and performs well in comparison
with other generic job shop scheduling algorithms. Like all

3734 The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

graph search methods, BAS starts with a node (a marking in
the Petri net) and progressively expands its children’s nodes
until a final goal is found (final marking). To avoid, “state
explosion,” the number of nodes at each state is limited at
a certain predefined value (the “beam”). In BAS, the crite-
rion for expansion is “best first,” which implies an evalua-
tion function for prioritizing expansion. We refer the reader
to Mejía and Lefebvre [12] for more details of the BAS
algorithm.

The pseudo code of the event-driven implementation is
as follows:

Inputs An instance of a JSSP and its equivalent Petri net,
the MTTR, and the PRO values.

Outputs The calculation of the executed total flow time and
stability indicators.

1. Calculate an initial schedule array (S).
2. Execute the schedule until a reconditioning/rework

request is issued for some operation o∗
ij
 or until all jobs

are completed. A reconditioning/rework request occurs
with a probability set as PRO.

3. If all jobs are completed, then terminate with success.
4. Else (some job operation o∗

ij
 needs rework)

(a) Generate �(o∗
ij
) , an exponentially distributed

reconditioning time of operation o∗
ij
 with mean

MTTR.

Table 1 Review of papers on reworks and scheduling

Authors Scheduling problem Solution approach and application Scenario modelling

Estimation Event-driven

Shin and Kang [49] P
���rj, skj

���
∑
j

Tj,Lmax,
∑
j

Cj,Cmax

Priority rules (PR) ✓

Kang and Shin [40] R��
∑
j

Tj,Lmax,
∑
j

Cj

Priority rules (PR) ✓

Rabiee et al. [50] F2�nwt, sijk�
∑
j

Cj

Adapted imperialist competitive algorithm
(AICA)

✓

Moradinasab et al. [51] F2�nwt, sijk = 1�
∑
j

Tj

Adapted imperialist competitive algorithm
(AICA) and particle swarm optimization
(PSO)

✓

Liu and Zhou [41] P��
∑
j

wjCj
, �

Exact ad hoc method with stability ✓

Eskandari and Hosseinzadeh [45] FFSP
|||sikj

|||Cmax
Variable neighborhood search (VNS) ✓

Rambod and Rezaeian [42] R|sikj,Mj|Cmax GA, Bee Algorithms (BA) ✓
Raghavan et al. [52] F��

∑
j

wjTj
Heuristic (tailor-made). Semiconductor industry ✓

Guo et al. [39] 1|prec|waiting time Heuristics ✓
Bootaki and Paydar [53] F��

∑
j

E(Cmax)

Mixed integer programming + simulation ✓

Foumani et al. [54] F||Cycle Time Analytical method ✓
Raghavan et al.[44] F��

∑
j

wjTj
GA. Semiconductor industry ✓

Zimmermann et al. [47] FMS|batch|Cmax Holonic multi-agent simulation ✓
Zahedi et al. [55] F2

|||dj
|||total_cost

Stepwise algorithm for mixed integer quadratic
programming

✓

Foumani et al. [56] F||total_cost Stochastic rework. E-constraint ✓
Bian and Yang [57] FFSP| |Cmax Bat metaheuristic algorithm ✓
Wang et al. [43] R��E(

∑
j

Tj)

PR, genetic algorithms (GA), simulated
annealing (SA),

✓

Guo et al. [58] 1�rj�
∑
j

Cj

Pseudo-polynomial DP, heuristic, GA ✓

Gheisariha et al. [46] FFSP�sikj, ttil�Cmax,
∑
j

Cj

Evolutionary multi-objective harmony search
(EMOHS)

✓

Our work J��
∑

j Cj, � Modified beam search + Petri net
modeling + stability

✓

3735The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

(b) Rebuild the schedule taking into account that job
operation o∗

ij
 will be available for scheduling after

�(o∗
ij
) time units and go to 2. The new current

schedule array (S) contains all job operations that
have not started their processing.

This simulation of the event-driven process is illustrated
in Fig. 3

3.3 Proposed rescheduling policies

In this paper, we study a hybrid policy that triggers either
a full schedule regeneration or our adaptation of the right-
shift policy depending on the duration of the reconditioning.

Definition Let Ut be the set of operations that have not
started their execution at time t and that can start the earliest.

The “full regeneration” (FR) policy reschedules at time t
all operations in Ut either with dispatching rules or with the
BAS algorithm depending on how the initial schedule was
computed. Clearly, the FR method must be consistent with
the original generation method of the offline schedule. The
complexity of FR will depend on the selected algorithm.

Our adaptation of the right-shift policy consists of
rebuilding the schedule maintaining the original sequence as

much as possible. We denote this policy as “keep sequence”
(KS). The following pseudocode illustrates the KS approach.
Let us suppose that a reconditioning/rework request is issued
at time t (i.e., some job operation needs to be reworked).

Input The current schedule array S and S′ = null;

Output A valid schedule S′ that contains the start times of
all operations that have not yet started.

1. Determine the set Ut at time t
2. Among all operations in Ut , find the operation that

appears first on S , say operation o′
ij
 . Append o′

ij
 and its

expected start time s′
ij
 to S′ and remove it from S.

3. Repeat 1 and 2 until the set Ut is empty.
 Let n and m be the number of jobs and machines

respectively. Computing Ut and finding o′
ij
 , both take mn

steps in the worst case; therefore, the complexity of KS
is O(mn).

The selection of the rescheduling method (FR vs. KS)
will depend of whether the reconditioning time exceeds a
certain threshold. The rationale is that if the reconditioning
time is short (i.e., below the threshold), there will be no
need to reschedule all operations and the KS routine will
be preferred; in the situation of above-threshold rework

Fig. 3 Simulation process
diagram

3736 The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

times, a full schedule regeneration will be selected. In the
extreme cases, if the threshold is very small (∼0), the sched-
ule will always be fully regenerated (i.e., FG policy); if the
threshold is very large (∼∞), the KS routine will always be
invoked. The main goal of this paper is to compare dedicated
algorithms for offline scheduling vs. dispatching rules in a
dynamic scenario. The section of computational results will
present the behavior of the system under varying threshold
values.

4 Experimental runs

In this section, we present the results of the computa-
tional experiments. In the experiments, we evaluated the
performance of the BAS algorithm and of three dispatch
rules: shortest processing time (SPT), longest processing
time (LPT), and most work remaining (MWR). The three
dispatching rules are selected for their capability to opti-
mize each of the two criteria that we are considering in this
study. We studied 100 instances, grouped in ten different
sizes of instances, that is, ten different combinations of J ×
M , namely, 10 × 5, 10 × 10, 15 × 5, 15 × 10, 15 × 15, 20 × 5,
20 × 10, 20 × 20, 30 × 05, and 30 × 10. The MTTR values
were set as a percentage of the total work time of all job
operations in particular each instance. The percentages were
0.5%, 1%, and 1.5%. The total work time is defined as the
sum of processing times of all job operations. The PRO val-
ues were set as 2%, 5% and, 10% of the total number of oper-
ations. These values are consistent with the suggestions of

Subramaniam et al. [20]. Threshold values were set between
0 and 500% of the MTTR in 50% steps [60].

The BAS algorithm and the three abovementioned dis-
patching rules were tested on 10 sets of different sizes, each
set with 10 instances, with all combinations of MTTR (3
different values), PRO (3 different values), and threshold (11
different values). The number of replicates for each combi-
nation was set to 100. Thus, 100 × 10 × 10 × 3 × 3 × 11 = 990
,000 different experiments were run.

The corresponding result analysis is presented as follows:
first, we globally compare the performance of the reschedul-
ing methods, then, the analysis is focused on comparing the
dispatching rules and the BAS algorithm considering differ-
ent threshold values in terms of stability and RPD. Finally,
we analyze the effect of instances sizes, MTTRs and, PROs
on the performance measures discussing the main insights
that our study provide.

4.1 Evaluation of the rescheduling methods

In this section, we present a sample of the results obtained
with the different scheduling methods and with different lev-
els of the external factors, namely, MTTR and PRO. Due to
the very large size of the experiments, only the illustrative
results are presented; full results are presented in the sup-
plementary material.

The charts of Fig. 4 show the performance of the tested
algorithms in terms of RPD (averaged on all instances) vs.
threshold. PRO values are identified with lines of different
colors, while MTTR values are identified by markers. The

Fig. 4 Average RPD values vs. threshold

3737The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

charts of Fig. 5 represent the stability values (averaged on
all instances) vs. threshold, following a format analogous
to that of Fig. 4.

We can observe the BAS algorithm is the best per-
former in terms of RPD, but it is also the worst performer
in terms of stability. The opposite is true for the MWR
rule. The performance of all algorithms is significantly
affected by the threshold values. However, we could not
observe a definite trend: for both BAS and SPT, as the
threshold value increases, the RPD increases and the sta-
bility decreases (improves), also as expected. However, for
the LPT and MWR rules, the pattern is the opposite; both
RPD and stability improve with higher values of threshold.
For the lowest value of PRO (i.e., PRO = 2), the RPDs of
a particular algorithm are virtually the same for all values
of MTTR and the same threshold. However, for greater
values of PRO, the differences in RPD are more noticeable
for the different values of MTTR. Also, for PRO = 2 and
PRO = 5, the average RPD of the BAS algorithm is clearly
better that those of the dispatching rules for all thresh-
old and MTTR values. However, as the values of PRO
increase, the differences between BAS and the second
performer (SPT) are smaller. For example, for PRO = 2,
MTTR = 0.5 and threshold = 0, the average RPD of BAS is
around 3.5%, whereas for SPT is around %7.0; at the other
extreme, for PRO = 20, MTTR = 1.5 and threshold = 500,
the average RPD of BAS is around 49.0%, whereas for
SPT is around %51.0.

Changes in RPD and stability are negligible with thresh-
old values higher than 250% for all algorithms. Threshold

values have a more noticeable impact on the BAS algo-
rithm than on the dispatching rules, especially in terms of
stability. It can be seen in Figs. 4 and 5 that for the BAS
algorithm, the slopes of the lines are steeper at lower val-
ues of threshold in comparison with the dispatching rules.
Generally speaking, the BAS algorithm is more sensitive
to changes in threshold in comparison with the dispatch-
ing rules. This characteristic can be useful for the decision
maker to establish the desired trade-off between schedule
quality (measured by the objective function) and stability.
On the other hand, dispatching rules are very robust to
changes in threshold and therefore the KS policy can be
adopted as it is the least demanding in terms of computa-
tional terms.

4.2 Comparison of the algorithms’ performance

In this section, we compare the algorithms averaging for
all values of MTTR and PRO and varying the thresholds.
Figures 6 and 7 illustrate the average RPD and stability,
respectively. In each figure, the four algorithms (BAS, SPT,
LPT, and MWR) are shown with different colored lines. The
values on the charts represent the global average of all the
experiments for different values of threshold.

Figure 6 shows that BAS clearly outperforms the
MWR, SPT, and LPT dispatching rules in terms of the
average RPD for all threshold values. As the threshold
values increases, the RPD increases for BAS and SPT,
while MWR and LPT remain more or less constant. Notice
that BAS and SPT present a similar pattern. This can be

Fig. 5 Average stability values vs. threshold

3738 The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

explained due to the fact that BAS uses SPT as its evalu-
ation function.

Regarding the stability, Fig. 7 shows that MWR dis-
patching rule is the algorithm that, on average, leads to
more stable schedules. On the other hand, the BAS algo-
rithm is the one that on average leads to more unstable
schedules. Nevertheless, at higher threshold values, the
difference between BAS and the dispatching rules reduces.
As the threshold values increases, the stability with the
MWR and SPT does not seem to vary much, while it tends
to decrease with the BAS and LPT algorithms.

Another feature of the problem that is relevant to ana-
lyze is the effect of the instance sizes in the performance
of the compared algorithms in terms of the RPD and sta-
bility. The following findings show that the relation
between the number of jobs and the number of machines
of different instance sizes, i.e., ratio =

|J|
|M| , has an impor-

tant influence on the performance of all algorithms in
terms of RPD and stability. The ratio can be seen as an
indicator of congestion as more jobs are pushed into sys-
tem. Figure 5 illustrates the average relative percentage
differences (ARPD) of the algorithms with respect to the
best performer (BAS) of RPD vs. threshold.

ARPD =
RPDalgo − RPDbest

RPDbest

× 100%

RPDalgo and RPDbest are respectively the average rela-
tive percentage deviations of the algorithm and of the best
performer.

Figure 8 shows a selection of the instance sizes, particu-
larly, those with 10 machines (10 × 10, 15 × 10, 20 × 10, and
30 × 10) with ratios of 1, 1.5, 2, and 3 respectively. These
results suggest that more congested systems (generally
speaking, congested system are those with far more jobs
that machines) would be benefited from better algorithms
in the case of rescheduling with rework.

In Fig. 8, we can observe that all ARPD values are larger
in the LPT and MWR charts (ranging from 10 to 30%) in
comparison with the SPT chart (between 3 and 5%). For
example, in the 30 × 10, 20 × 10, and 15 × 10 curves, with
ratios of 3, 2, and 1.5 respectively, the ARPD values are
larger in comparison with instances of ratio of 1 (10 × 10).

Figure 9 presents the average stability percentage differ-
ences (ASPDs) between each algorithm and the best per-
former (MWR dispatching rule in this case).

�̄�algo and �̄�best are respectively the average stability values
of the selected algorithm and of the best performer.

The results show that the ratio also impacts the per-
formance of the algorithm. Notice that there is a similar
pattern in comparison with the ARPD curves, although

ASPD =
�̄�algo − �̄�best

�̄�best
× 100%

Fig. 6 Average RPD for all
values of RPD and PRO

Fig. 7 Average stability %

3739The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

the best performer is now the MWR rule. In addition, as
the threshold values increases, the stability obtained with
BAS and SPT improves. This improvement is much more
accentuated for those cases with larger job/machine ratios.
The sensitivity of the ratio vs. the threshold, in terms of
stability, is clearly seen when comparing the performance
of the algorithms on the 30 × 10 (ratio = 3) curves and on
the 10 × 10 (ratio = 1) for BAS and SPT.

4.3 Problem features assessment: PRO and MTTR
values

Finally, in this section, we will present a detailed analysis of
the PRO and MTTR factors on the performance of the BAS
algorithm. First, the impact of the PRO for the BAS algo-
rithm is analyzed with fixed threshold and MTTR values.
Figures 10 and 11 show the RPD and the stability values

Fig. 8 % ARPD

Fig. 9 % stability difference SPT; LPT; BAS vs. MWR

3740 The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

Fig. 10 BAS algorithm RPD impact depending on the number of machines

Fig. 11 BAS algorithm stability impact depending on the number of machines

Fig. 12 BAS algorithm RPD depending on the PROs and instance sizes

3741The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

of the BAS algorithm for different values of PRO. In these
figures, the number of machines is fixed at 10, with differ-
ent job/machine ratios. The threshold is fixed at 0% on the
left panels of Figs. 10 and 11, and on the right panels, the
threshold is fixed at 500%. The MTTR considered for the
cases depicted at Figs. 8 and 9 is of 0.5.

In general terms, it can be noticed that both the RPD and
the stability increase in a linear fashion as the PRO values
increase. Another observation illustrated by Figs. 10 and 11
is that the RPD and the stability tends to deteriorate as the
number of jobs increases (with the same number of machines).
Both figures represent instances of 10 machines, but different
number of jobs, and when the charts are compared to each
other, it is observed that the larger the number the jobs (the
larger the ratio), the larger increase in the values of the RPD
and the stability. Nevertheless, it can be mentioned that this
behavior is more notorious for stability than for the RPD. It is
important to mention that these findings will also take place
when considering other MTTR values, such as 1.0 and 1.5
that for sake of brevity are not introduced in this manuscript.

Finally, we studied the effect of the MTTR on the stabil-
ity and the RPD, considering the different PRO, depending
on the features of the instance sizes, as is shown in Figs. 12
and 13. This analysis is carried out for the BAS algorithm with
a fixed threshold value, but it can be extended for the other
algorithms and threshold values. From Figs. 12 and 13, it is
possible to notice that, in general terms, for each MTTR, both
RPD and stability tend to deteriorate while the PRO increases.
In order to identify other behavior patterns, we analyze each
instance size according to the number of jobs and the ratio . As

an example, Figs. 12 and 11 show the RPD and stability behav-
ior respectively for instances with 15 jobs (15 × 5, 15 × 10, and
15 × 5). Particularly, we can observe that, for instances with
larger ratio values, when considering lower PROs values, the
RPD and the stability do not seem to present a relevant varia-
tion between the ones obtained with the different MTTR val-
ues. Nevertheless, as the ratio decreases, the RPD and stability
tend to deteriorate as the MTTR values increases.

5 Conclusions and future work

In this work, we studied and presented the results of job
shop rescheduling under rework and reconditioning. We
used an event-driven scheduling method embedded in a
Petri nets formalism for all the algorithms. The results were
analyzed in terms of RPD and stability, showing that the
BAS algorithm in combination with high threshold val-
ues is the algorithm that achieves the best results. On the
other hand, simple dispatching rules are more stable than
the more sophisticated BAS. These results also indicate that
the threshold has a significant impact on the algorithm per-
formance, with higher thresholds resulting in better stability
but worse RPD. The overall conclusion is that, for the stud-
ied methods, no algorithm fully outperforms the others in
both criteria. However, if the PRO and MTTR values can be
reduced through better manufacturing methods and quality
control, the use a better scheduler such as BAS is justified.
Even more, the experimentation justifies the dispatching rule
selection, since MWR is the best in the stability criterion

Fig. 13 BAS algorithm stability impact depending on the number of machines

3742 The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

1 3

alone; meanwhile, SPT is the best for total flow time alone.
However, BAS algorithm has the best performance regard-
ing the two criteria together, yielding reschedules that can
represent the compromise solution from both criteria.

We also analyzed the influence of the instance size on the
performance of the system. When analyzing the instance,
an important factor that describes the behavior of the sys-
tem was the ratio between the number of machines and the
number of jobs. For higher ratio values (i.e., increasing the
number of jobs for a fixed number of machines), the stabil-
ity was worse.

In terms of potential implementations, Industry 4.0 Tech-
nologies and machine learning algorithms are a must. The
system needs to quickly detect the need of rework and to
compute the time to reconditioning so to establish the “best”
reactive strategy. The computation of the reconditioning
time requires automatic learning to provide better estimates.
As future research lines, we aim to extend the analysis to
study the impact of real-time information and the impact of
other events such as machine breakdowns.

Game theoretical approaches can be also included in fur-
ther research. For example, an interesting approach will be
handling customer orders. The Petri net approach is also
well suited to handle communication protocols and can be
combined with the manufacturing system model.

Acknowledgements Gonzalo Mejía would like to express his gratitude
to Universidad de La Sabana for the time and resource usage for this
project.

Funding Daniel A. Rossit and Gonzalo Mejía have been funded by
CYTED under the project Red Iberoamericana Industria 4.0, grant
number 319RT0574.

Availability of data and material The instances are available in the sup-
plementary material.

Code availability The code is custom code.

Declarations

Competing interests The authors declare no competing interests.

References

 1. Zhong RY, Xu X, Klotz E, Newman ST (2017) Intelligent manu-
facturing in the context of Industry 4.0: a review. Engineering
3(5):616–630

 2. Xu LD, Xu EL, Li L (2018) Industry 4.0: State of the art and
future trends. Int J Prod Res 56(8):2941–2962

 3. Zhang J, Ding G, Zou Y, Qin S, Fu J, Zhong RY, Newman ST
(2019) Review of job shop scheduling research and its new per-
spectives under Industry 4.0. J Intell Manuf 30(4):1809–1830.
https:// doi. org/ 10. 1016/J. ENG. 2017. 05. 015

 4. Dolgui A, Ivanov D, Sethi SP, Sokolov B (2019) Scheduling in
production, supply chain and Industry 4.0 systems by optimal

control: fundamentals, state-of-the-art and applications. Int J
Prod Res 57(2):411–432. https:// doi. org/ 10. 1080/ 00207 543. 2018.
14429 48

 5. Rossit DA, Tohmé F, Frutos M (2019) Industry 4.0: Smart sched-
uling. Int J Prod Res 57(12):3802–3813. https:// doi. org/ 10. 1080/
00207 543. 2018. 15042 48

 6. Li Y, Carabelli S, Fadda E, Manerba D, Tadei R, Terzo O (2020)
Machine learning and optimization for production rescheduling
in Industry 4.0. Int J Adv Manuf Technol 110(9–10):2445–2463.
https:// doi. org/ 10. 1007/ s00170- 020- 05850-5

 7. Vieira G, Herrman J, Lin E (2003) Rescheduling manufacturing
systems: a framework of strategies, policies and methods. J Sched
6(1):39–62

 8. Ouelhadj D, Petrovic S (2009) A survey of dynamic scheduling
in manufacturing systems. J Sched 12:417–431

 9. Nasir V, Sassani F (2021) A review on deep learning in machin-
ing and tool monitoring: methods, opportunities, and challenges.
Int J Adv Manuf Technol 2683–2709. https:// doi. org/ 10. 1007/
s00170- 021- 07325-7

 10. Leusin ME, Frazzon EM, Uriona Maldonado M, Kück M, Fre-
itag M (2018) Solving the job-shop scheduling problem in the
Industry 4.0 era. Technologies 6(4):107. https:// doi. org/ 10. 3390/
techn ologi es604 0107

 11. Katragjini K, Vallada E, Ruiz R (2013) Flow shop rescheduling
under different types of disruption. Int J Prod Res 51(3):780–797.
https:// doi. org/ 10. 1080/ 00207 543. 2012. 666856

 12. Mejía G, Lefebvre D (2020) Robust scheduling of flexible manu-
facturing systems with unreliable operations and resources. Int J
Prod Res 58(21):6474–6492. https:// doi. org/ 10. 1080/ 00207 543.
2019. 16827 06

 13. Mejía G, Pereira J (2020) Multiobjective scheduling algorithm
for flexible manufacturing systems with Petri nets. J Manuf Syst
54(December 2019):272–284. https:// doi. org/ 10. 1016/j. jmsy.
2020. 01. 003

 14. Caballero-Villalobos J, Mejía-Delgadillo GE, García-Cáceres RG
(2013) Scheduling of complex manufacturing systems with Petri
nets and genetic algorithms: a case on plastic injection moulds.
Int J Adv Manuf Technol 69(9–12):2773–2786. https:// doi. org/
10. 1007/ s00170- 013- 5175-7

 15. Mejía G, Niño K, Montoya C, Sánchez MA, Palacios J, Amodeo L
(2016) A Petri Net-based framework for realistic project manage-
ment and scheduling: an application in animation and videogames.
Comput Oper Res 66:190–198. https:// doi. org/ 10. 1016/j. cor. 2015.
08. 011

 16. Lee DY, DiCesare F (1994) Scheduling flexible manufacturing
systems using Petri nets and heuristic search. IEEE Trans Robot
Autom 10(2):123–132. https:// doi. org/ 10. 1109/ 70. 282537

 17. Mejia G, Caballero-Villalobos JP, Montoya C (2018) Petri nets
and deadlock-free scheduling of open shop manufacturing sys-
tems. IEEE Trans Syst Man Cybern: Syst 48(6):1017–1028.
https:// doi. org/ 10. 1109/ TSMC. 2017. 27074 94

 18. Zhou MC, DiCesare F (1989) Adaptive design of Petri net control-
lers for error recovery in automated manufacturing systems. IEEE
Trans Syst Man Cybern. https:// doi. org/ 10. 1109/ 21. 44011

 19. Ahmadi E, Zandieh M, Farrokh M, Emami SM (2016) A multi
objective optimization approach for flexible job shop scheduling
problem under random machine breakdown by evolutionary algo-
rithms. Comput Oper Res 73:56–66. https:// doi. org/ 10. 1016/j. cor.
2016. 03. 009

 20. Subramaniam V, Raheja AS, Rama Bhupal Reddy K (2005) Reac-
tive repair tool for job shop schedules. Int J Prod Res 43(1):1–23.
https:// doi. org/ 10. 1080/ 00207 54042 00027 0412

 21. Dong YH, Jang J (2012) Production rescheduling for machine
breakdown at a job shop. Int J Prod Res 50(10):2681–2691.
https:// doi. org/ 10. 1080/ 00207 543. 2011. 579637

3743The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

https://doi.org/10.1016/J.ENG.2017.05.015
https://doi.org/10.1080/00207543.2018.1442948
https://doi.org/10.1080/00207543.2018.1442948
https://doi.org/10.1080/00207543.2018.1504248
https://doi.org/10.1080/00207543.2018.1504248
https://doi.org/10.1007/s00170-020-05850-5
https://doi.org/10.1007/s00170-021-07325-7
https://doi.org/10.1007/s00170-021-07325-7
https://doi.org/10.3390/technologies6040107
https://doi.org/10.3390/technologies6040107
https://doi.org/10.1080/00207543.2012.666856
https://doi.org/10.1080/00207543.2019.1682706
https://doi.org/10.1080/00207543.2019.1682706
https://doi.org/10.1016/j.jmsy.2020.01.003
https://doi.org/10.1016/j.jmsy.2020.01.003
https://doi.org/10.1007/s00170-013-5175-7
https://doi.org/10.1007/s00170-013-5175-7
https://doi.org/10.1016/j.cor.2015.08.011
https://doi.org/10.1016/j.cor.2015.08.011
https://doi.org/10.1109/70.282537
https://doi.org/10.1109/TSMC.2017.2707494
https://doi.org/10.1109/21.44011
https://doi.org/10.1016/j.cor.2016.03.009
https://doi.org/10.1016/j.cor.2016.03.009
https://doi.org/10.1080/0020754042000270412
https://doi.org/10.1080/00207543.2011.579637

1 3

 22. Pfeiffer A, Kádár B, Monostori L (2007) Stability-oriented evalu-
ation of rescheduling strategies, by using simulation. Comput Ind
58(7):630–643. https:// doi. org/ 10. 1016/j. compi nd. 2007. 05. 009

 23. Bidot J, Vidal T, Laborie P, Beck JC (2009) A theoretic and practi-
cal framework for scheduling in a stochastic environment. J Sched
12(3):315

 24. He W, Sun DH (2013) Scheduling flexible job shop problem sub-
ject to machine breakdown with route changing and right-shift
strategies. Int J Adv Manuf Technol 66(1–4):501–514. https:// doi.
org/ 10. 1007/ s00170- 012- 4344-4

 25. Larsen R, Pranzo M (2019) A framework for dynamic reschedul-
ing problems. Int J Prod Res 57(1):16–33. https:// doi. org/ 10. 1080/
00207 543. 2018. 14567 00

 26. Gao K, Yang F, Li J, Sang H, Luo J (2020) Improved jaya algo-
rithm for flexible job shop rescheduling problem. IEEE Access
8:86915–86922

 27. Nie L, Wang X, Liu K, Bai Y (2020) A rescheduling approach
based on genetic algorithm for flexible scheduling problem subject
to machine breakdown. In Journal of Physics: Conference Series
(Vol. 1453, p 12018)

 28. Framinan JM, Fernandez-Viagas V, Perez-Gonzalez P (2019)
Using real-time information to reschedule jobs in a flowshop
with variable processing times. Comput Ind Eng 129(Janu-
ary):113–125. https:// doi. org/ 10. 1016/j. cie. 2019. 01. 036

 29. Zhang W, Xiao J, Zhang S, Lin J, Feng R (2021) A utility-aware
multi-task scheduling method in cloud manufacturing using
extended NSGA-II embedded with game theory. Int J Comput
Integr Manuf 34(2):175–194. https:// doi. org/ 10. 1080/ 09511 92X.
2020. 18585 02

 30. Carlucci D, Renna P, Materi S, Schiuma G (2020) Intelligent
decision-making model based on minority game for resource allo-
cation in cloud manufacturing. Manag Decis 58(11):2305–2325.
https:// doi. org/ 10. 1108/ MD- 09- 2019- 1303

 31. Goodarzi EV, Houshmand M, Valilai OF, Ghezavati V, Bamdad
S (2020) Manufacturing cloud service composition based on the
non-cooperative and cooperative game theory. In 2020 IEEE
International Conference on Industrial Engineering and Engi-
neering Management (IEEM) (pp 1122–1125). https:// doi. org/
10. 1109/ IEEM4 5057. 2020. 93099 21

 32. Ghaleb M, Zolfagharinia H, Taghipour S (2020) Real-time
production scheduling in the Industry-4.0 context : Addressing
abstract. Comput Oper Res 105031. https:// doi. org/ 10. 1016/j. cor.
2020. 105031

 33. Inderfurth K, Kovalyov MY, Ng CT, Werner F (2007) Cost
minimizing scheduling of work and rework processes on a sin-
gle facility under deterioration of reworkables. Int J Prod Econ
105(2):345–356. https:// doi. org/ 10. 1016/j. ijpe. 2004. 02. 010

 34. Wee H-M, Wang W-T, Cárdenas-Barrón LE (2013) An alternative
analysis and solution procedure for the EPQ model with rework
process at a single-stage manufacturing system with planned back-
orders. Comput Ind Eng 64(2):748–755. https:// doi. org/ 10. 1016/j.
cie. 2012. 11. 005

 35. Ko H-HH, Kim J, Kim S-SS, Baek J-GG (2010) Dispatching rule
for non-identical parallel machines with sequence-dependent
setups and quality restrictions. Comput Ind Eng 59(3):448–457.
https:// doi. org/ 10. 1016/j. cie. 2010. 05. 017

 36. Moshtagh MS, Taleizadeh AA (2017) Stochastic integrated manu-
facturing and remanufacturing model with shortage, rework and
quality based return rate in a closed loop supply chain. J Clean Prod
141:1548–1573. https:// doi. org/ 10. 1016/J. JCLEP RO. 2016. 09. 173

 37. Shin HJ, Kang YH, Fitts EP (2010) A rework-based dispatching
algorithm for module process in TFT-LCD manufacture. Int J Prod
Res 48(3):915–931. https:// doi. org/ 10. 1080/ 00207 54080 24712 64

 38. Kang YH, Kim SS, Shin HJ (2010) A dispatching algorithm
for parallel machines with rework processes. J Oper Res Soc
61(1):144–155. https:// doi. org/ 10. 1057/ jors. 2008. 148

 39. Guo Y, Huang M, Wang Q, Leon VJ (2016) Single-machine
rework rescheduling to minimize maximum waiting-times with
fixed sequence of jobs and ready times. Comput Ind Eng 91:262–
273. https:// doi. org/ 10. 1016/j. cie. 2015. 11. 021

 40. Kang YH, Shin HJ (2010) An adaptive scheduling algorithm for
a parallel machine problem with rework processes. Int J Prod Res
48(1):95–115. https:// doi. org/ 10. 1080/ 00207 54080 24849 03

 41. Liu L, Zhou H (2013) On the identical parallel-machine reschedul-
ing with job rework disruption. Comput Ind Eng 66(1):186–198.
https:// doi. org/ 10. 1016/j. cie. 2013. 02. 018

 42. Rambod M, Rezaeian J (2014) Robust meta-heuristics implemen-
tation for unrelated parallel machines scheduling problem with
rework processes and machine eligibility restrictions. Comput Ind
Eng 77:15–28. https:// doi. org/ 10. 1016/j. cie. 2014. 09. 006

 43. Wang X, Li Z, Chen Q, Mao N (2020) Meta-heuristics for
unrelated parallel machines scheduling with random rework to
minimize expected total weighted tardiness. Comput Ind Eng
145(100):106505. https:// doi. org/ 10. 1016/j. cie. 2020. 106505

 44. Raghavan VA, Yoon SW, Srihari K (2018) A modified Genetic
Algorithm approach to minimize total weighted tardiness with sto-
chastic rework and reprocessing times. Comput Ind Eng 123:42–
53. https:// doi. org/ 10. 1016/j. cie. 2018. 06. 002

 45. Eskandari H, Hosseinzadeh A (2014) A variable neighbourhood
search for hybrid flow-shop scheduling problem with rework and
set-up times. J Oper Res Soc 65(8):1221–1231. https:// doi. org/ 10.
1057/ jors. 2013. 70

 46. Gheisariha E, Tavana M, Jolai F, Rabiee M (2021) A simula-
tion–optimization model for solving flexible flow shop scheduling
problems with rework and transportation. Math Comput Simul
180:152–177. https:// doi. org/ 10. 1016/j. matcom. 2020. 08. 019

 47. Zimmermann E, El Haouzi HB, Thomas P, Pannequin R, Noyel
M, Thomas A (2018) A case study of intelligent manufacturing
control based on multi-agents system to deal with batching and
sequencing on rework context BT - service orientation in holonic
and multi-agent manufacturing: proceedings of SOHOMA 2017.
In Borangiu T, Trentesaux D, Thomas A, Cardin O (Eds.), (pp
63–75). Cham: Springer International Publishing. https:// doi. org/
10. 1007/ 978-3- 319- 73751-5_6

 48. Chang C-K, Hsiang C-L (2011) Using generalized stochastic Petri
nets for preventive maintenance optimization in automated manu-
facturing systems. J Qual 18(2):117–135. Retrieved from: http://
www. scopus. com/ inward/ record. url? eid=2- s2.0- 79955 73554 8&
partn erID= 40& md5= f619e 198e8 2f1fc b594e 6b615 6a4ad bc

 49. Shin HJ, Kang YH (2010) A rework-based dispatching algorithm
for module process in TFT-LCD manufacture. Int J Prod Res
48(3):915–931. https:// doi. org/ 10. 1080/ 00207 54080 24712 64

 50. Rabiee M, Zandieh M, Jafarian A (2012) Scheduling of a no-wait
two-machine flow shop with sequence-dependent setup times
and probable rework using robust meta-heuristics. Int J Prod Res
50(24):7428–7446. https:// doi. org/ 10. 1080/ 00207 543. 2011. 652747

 51. Moradinasab N, Shafaei R, Rabiee M, Mazinani M (2012) Minimi-
zation of maximum tardiness in a no-wait two stage flexible flow
shop. Int J Artif Intell 8(12 S):166–181. Retrieved from: https://
www. scopus. com/ inward/ record. uri? eid=2- s2.0- 84863 57072 4&
partn erID= 40& md5= 51f54 61dc7 43eff a7f38 a7763 97634 91

 52. Raghavan VA, Yoon SW, Srihari K (2015) Heuristic algorithms
to minimize total weighted tardiness with stochastic rework and
reprocessing times. J Manuf Syst 37(Part 1):233–242. https:// doi.
org/ 10. 1016/j. jmsy. 2014. 09. 004

 53. Bootaki B, Paydar MM (2016) A probabilistic model toward a
permutation flowshop scheduling problem with imperfect jobs.
Int J Manage Sci Eng Manage 11(3):186–193. https:// doi. org/ 10.
1080/ 17509 653. 2015. 10450 48

 54. Foumani M, Smith-Miles K, Gunawan I (2017) Scheduling of
two-machine robotic rework cells: In-process, post-process and
in-line inspection scenarios. Robot Auton Syst 91:210–225

3744 The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

https://doi.org/10.1016/j.compind.2007.05.009
https://doi.org/10.1007/s00170-012-4344-4
https://doi.org/10.1007/s00170-012-4344-4
https://doi.org/10.1080/00207543.2018.1456700
https://doi.org/10.1080/00207543.2018.1456700
https://doi.org/10.1016/j.cie.2019.01.036
https://doi.org/10.1080/0951192X.2020.1858502
https://doi.org/10.1080/0951192X.2020.1858502
https://doi.org/10.1108/MD-09-2019-1303
https://doi.org/10.1109/IEEM45057.2020.9309921
https://doi.org/10.1109/IEEM45057.2020.9309921
https://doi.org/10.1016/j.cor.2020.105031
https://doi.org/10.1016/j.cor.2020.105031
https://doi.org/10.1016/j.ijpe.2004.02.010
https://doi.org/10.1016/j.cie.2012.11.005
https://doi.org/10.1016/j.cie.2012.11.005
https://doi.org/10.1016/j.cie.2010.05.017
https://doi.org/10.1016/J.JCLEPRO.2016.09.173
https://doi.org/10.1080/00207540802471264
https://doi.org/10.1057/jors.2008.148
https://doi.org/10.1016/j.cie.2015.11.021
https://doi.org/10.1080/00207540802484903
https://doi.org/10.1016/j.cie.2013.02.018
https://doi.org/10.1016/j.cie.2014.09.006
https://doi.org/10.1016/j.cie.2020.106505
https://doi.org/10.1016/j.cie.2018.06.002
https://doi.org/10.1057/jors.2013.70
https://doi.org/10.1057/jors.2013.70
https://doi.org/10.1016/j.matcom.2020.08.019
https://doi.org/10.1007/978-3-319-73751-5_6
https://doi.org/10.1007/978-3-319-73751-5_6
http://www.scopus.com/inward/record.url?eid=2-s2.0-79955735548&partnerID=40&md5=f619e198e82f1fcb594e6b6156a4adbc
http://www.scopus.com/inward/record.url?eid=2-s2.0-79955735548&partnerID=40&md5=f619e198e82f1fcb594e6b6156a4adbc
http://www.scopus.com/inward/record.url?eid=2-s2.0-79955735548&partnerID=40&md5=f619e198e82f1fcb594e6b6156a4adbc
https://doi.org/10.1080/00207540802471264
https://doi.org/10.1080/00207543.2011.652747
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863570724&partnerID=40&md5=51f5461dc743effa7f38a77639763491
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863570724&partnerID=40&md5=51f5461dc743effa7f38a77639763491
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863570724&partnerID=40&md5=51f5461dc743effa7f38a77639763491
https://doi.org/10.1016/j.jmsy.2014.09.004
https://doi.org/10.1016/j.jmsy.2014.09.004
https://doi.org/10.1080/17509653.2015.1045048
https://doi.org/10.1080/17509653.2015.1045048

1 3

 55. Zahedi Z, Salim A, Yusriski R, Haris H (2019) Optimization of an
integrated batch production and maintenance scheduling on flow
shop with two machines. Int J Ind Eng Comput 10(2):225–238.
https:// doi. org/ 10. 5267/j. ijiec. 2018.7. 001

 56. Foumani M, Razeghi A, Smith-Miles K (2020) Stochastic optimi-
zation of two-machine flow shop robotic cells with controllable
inspection times: from theory toward practice. Robot Comput-
Integr Manuf 61(April 2019):101822. https:// doi. org/ 10. 1016/j.
rcim. 2019. 101822

 57. Bian J, Yang L (2020) A study of flexible flow shop scheduling
problem with variable processing times based on improved bat
algorithm. Int J Simul Process Model 15(3):245–254. https:// doi.
org/ 10. 1504/ IJSPM. 2020. 107329

 58. Guo Y, Huang M, Wang Q, Leon VJ (2021) Single-machine
rework rescheduling to minimize total waiting time with fixed

sequence of jobs and release times. IEEE Access 9:1205–1218.
https:// doi. org/ 10. 1109/ ACCESS. 2019. 29571 32

 59. Mejía G, Montoya C (2008) A Petri Net based algorithm for min-
imizing total tardiness in flexible manufacturing systems. Ann
Oper Res 164(1):63–78

 60. Rossit DA, Tohmé F, Mejía G (2020) The tolerance scheduling
problem in a single machine case BT - scheduling in Industry
4.0 and cloud manufacturing. In Sokolov B, Ivanov D, Dolgui A
(Eds.), Scheduling in and Cloud Manufacturing (pp. 255–273).
Cham: Springer International Publishing. https:// doi. org/ 10. 1007/
978-3- 030- 43177-8_ 13

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

3745The International Journal of Advanced Manufacturing Technology (2022) 119:3729–3745

https://doi.org/10.5267/j.ijiec.2018.7.001
https://doi.org/10.1016/j.rcim.2019.101822
https://doi.org/10.1016/j.rcim.2019.101822
https://doi.org/10.1504/IJSPM.2020.107329
https://doi.org/10.1504/IJSPM.2020.107329
https://doi.org/10.1109/ACCESS.2019.2957132
https://doi.org/10.1007/978-3-030-43177-8_13
https://doi.org/10.1007/978-3-030-43177-8_13

	Job shop rescheduling with rework and reconditioning in Industry 4.0: an event-driven approach
	Abstract
	1 Introduction
	2 Background
	2.1 Petri nets
	2.2 Job shop scheduling problem (JSSP)
	2.3 Rescheduling
	2.4 Rework

	3 Proposed approach
	3.1 Assumptions
	3.2 Event-driven implementation
	3.3 Proposed rescheduling policies

	4 Experimental runs
	4.1 Evaluation of the rescheduling methods
	4.2 Comparison of the algorithms’ performance
	4.3 Problem features assessment: PRO and MTTR values

	5 Conclusions and future work
	Acknowledgements
	References

