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Abstract
In this paper, we investigate the impact of rescheduling policies in the event of both rework and reconditioning in job 
shop manufacturing systems. Since these events occur in unplanned and disrupting manner, to address them properly, it is 
required to manage real-time information and to have flexible reaction capacity. These capabilities, of data acquisition and 
robotics, are provided by Industry 4.0 Technologies. However, to take full advantage of those capabilities, it is imperative 
to have efficient decision-making processes to deliver adequate corrective actions. In this sense, we propose an event-driven 
rescheduling approach. This approach consists of an architecture that integrates information acquisition, optimization process, 
and rescheduling planning. We study the performance of the system with several algorithms with two performance criteria, 
namely, (i) relative performance deviation (RPD) in terms of objective function and (ii) schedule stability. We also propose 
a hybrid policy that combines full rescheduling regeneration with stability-oriented strategies aimed to balance both criteria. 
We conducted extensive computational tests with instances from the literature under different scenarios. The results show 
that a sophisticated algorithm can obtain better quality schedules in terms of the objective function but at the expense of 
sacrificing stability. Finally, we analyze and discuss the results and provide insights for its use and implementation.

Keywords Event-driven rescheduling · Job shop · Manufacturing systems · Rework · Petri nets

1 Introduction

In recent years, important changes have taken place in the 
production paradigm associated with the Industry 4.0 con-
cept [1]. This change has implied a greater penetration of 

digital technologies in the productive processes associated 
with a growing connectivity through the Internet of Things 
(IoT) [2]. The increasing responsiveness of Industry 4.0 is 
one of its main attributes [1]. Increasing responsiveness 
implies, roughly speaking, being able to fast-adjusting the 
manufacturing system itself in a non-rigid way to the sce-
narios and situations that it must face [3].This enables the 
production capacity to be boosted in the face of changing 
scenarios, either due to changes in demand [4] or due to the 
occurrence of unexpected events in the process [5].

These Industry 4.0 features directly impact the decision-
making processes associated all levels of a manufacturing 
system, from resource and facility planning to shop floor 
control [6]. In particular, a quick and efficient response to 
disruptive events is of primary importance. There are two 
pre-requisites: on one hand, the ability to capture in real-time 
and process data related to the disruptions and on the other 
hand, to adapt the system to the new disrupted situation.

Rescheduling is a crucial aspect in the Industry 4.0 
era [3]. Rescheduling relates the decisions made when an 
already existing production plan is in execution [7]. Once 
the schedule has been generated, unforeseen events will arise 
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and will modify the initial conditions, affecting the perfor-
mance of the manufacturing system [8]. Rescheduling meth-
ods must therefore contemplate the modified scenario and 
propose actions that allow meeting the organization’s objec-
tives [7]. Two key factors for rescheduling are the speed of 
the calculations and the quality of the information required 
to devise a corrective action, as well as the ability to provide 
quality and stable schedules.

Industry 4.0 affects these two aspects directly [9]. On 
one hand, the availability of more and better informa-
tion will improve the ability to analyze new scenarios 
and on the other hand, quality schedules can provide a 
competitive advantage [10]. Since the information arrives 
more quickly and efficiently to the shop supervisors, the 
control actions can also be quickly fed back to the shop 
floor. In this sense, Industry 4.0 enhances the potential 
for the development and implementation of sophisticated 
methods for recalculating. In their work, Zhang et al. [3] 
highlighted that the management of these dynamic envi-
ronments in Industry 4.0 poses a challenge for the resched-
uling mechanisms in the shop floor. Naturally, developing 
more sophisticated methods will allow a better perfor-
mance than simpler methods such as dispatching rules or 
right shift schedules.

However, to take advantage of the Industry 4.0 Technolo-
gies, there are several issues unresolved: the first question 
concerns the appropriate tools to model and optimize pro-
duction plans carried out by Cyber-physical Systems. Most 
tools nowadays provide either (i) powerful tailor-made 
algorithms for unrealistic and simplified representations 
of production systems or, (ii) accurate representations con-
nected with limited simulation-based optimization methods 
based mostly on priority or probabilistic decision rules. 
Most of these approaches consider the uncertainty proper 
of rework events only through expected values or Monte-
Carlo methods. However, modelling rework events in such 
manners can undermine severely system performance, since 
each rework event can differ significantly from others; then, 
an event-driven approach enables a more accurate and effi-
cient management of disrupting events. The second question 
is the selection of appropriate optimization methods with 
rescheduling capabilities. It is well known that rescheduling 
not only involves decisions as to maintain the quality of the 
schedule but also related to stability. It is also clear that fre-
quent re-calculation of schedules leads to system instability 
that affects the supply of materials and components, human 
resources and labor (e.g., shifts already committed), and the 
fulfilment of production orders [11].

In this paper, we study rework in job shop manufac-
turing systems with Industry 4.0 capabilities. We pro-
pose an integrated modeling and optimization approach 
able to handle rescheduling in real-time considering an 
event-driven logic. Rework in manufacturing is one of 

the many disruptions that affect their performance and 
it is one of the least studied. Rework occurs due to many 
causes that include worker errors, quality problems of raw 
materials, incorrect machine settings, and tool breakage. 
An issue that it is often overlooked is the fact that rework 
generally leads to additional reconditioning operations: 
for example, in a case of a machining defect, the work-
piece may need additional machining operations (e.g., 
grinding); in a case of a paint quality problem, the paint 
must be scrapped off before the workpiece is repainted; 
assembly errors require disassembly before the rework is 
performed.

In this paper, we use an integrated timed Petri nets [12, 
13] modeling and optimization approach to (i) represent 
the manufacturing system with provisions for rework, (ii) 
calculate the “baseline” or offline schedule, and (iii) trigger 
the schedule regeneration. In turn, the rescheduling system 
proposed in this work lays the foundations for the design 
of an automated system for scheduling and rescheduling 
functionalities, with capabilities to process information in 
real-time, as well as to model and solve the problems that 
arise during production runs.

We aim to study both scheduling quality (in terms of 
RPD) and stability with different scheduling/reschedul-
ing methods and with different rescheduling policies in 
manufacturing systems with Industry 4.0 Technologies 
able to both detect the need for rework in real-time and 
estimate, based on previous occurrences, the duration of 
the reconditioning operation. We propose a hybrid policy 
that triggers either a full reschedule procedure or a more 
conservative modification of the current schedule. The 
choice of the rescheduling method is made based on a pre-
defined threshold value that is related to the expected dura-
tion of the reconditioning operation. The specific goals 
of this papers are (1) to compare dedicated algorithms 
for offline scheduling vs. the more versatile dispatching 
rules with the above metrics and, (2) establish the right 
value of threshold that will be a trade-off between RPD 
and stability. The contributions of this paper can be sum-
marized as follows:

– An integrated modeling and optimization approach for 
real-time event-driven rescheduling under rework/recon-
ditioning events.

– An extensive experimentation framework to compare 
the tested algorithms under the two metrics mentioned 
above.

– A rescheduling method that provides a trade-off between 
RPD and schedule stability

The remainder of the paper is organized as follows: 
Sect.  2 examines the background on the topic; Sect.  3 
describes the proposed approach, Sect.  4 presents the 
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computer tests, the results and analysis, and finally, Sect. 5 
concludes and suggests future work.

2  Background

2.1  Petri nets

The modeling approach used in this paper was Petri nets. 
Petri nets are an excellent modeling and optimization tool 
for the manufacturing system and for the rework and recon-
ditioning tasks. In general, Petri nets are well-known for 
modeling and simulation. However, Petri net-based sched-
uling algorithms have been proved powerful on a variety of 
manufacturing systems such as job shops, flexible manu-
facturing systems, and project scheduling [14, 15]. An 
important advantage of using Petri nets over other modeling 
approaches is the integration of modeling with both simula-
tion and optimization.

In this section, we give a brief introduction of the notation 
and definitions of Petri nets used in this paper1. Formally 
speaking an ordinary (timed place), Petri net is a 5-tuple 
G = {P, T ,F, �,M0} , where P is a set of places, T  is a set of 
transitions, F is the flow relation between places and transi-
tions (i.e., arcs), � is the set of time delays associated with 
places, and M0 is the initial marking. We model a job shop 
system following the concept of timed  S3PR [12]. In  S3PR 
nets, a number of concurrent serial processes (jobs) are 
modeled with an equal number of acyclic connected state 
machines.

Places There is a unique initial place psj and a unique 
end place pej on each job type  j . These initial and the end 
places represent the conditions process instance ready to 
start and process instance finished. M0(psj) represents the 
number of parts (instances) of job type j . Places belonging 
to the serial processes are denoted as “Operational Places” 
(PO) and can be timed, if representing the execution of an 
operation, or untimed if representing a condition such as 
“part in buffer,” “ready,” “in queue,” or “finished.” As in 
Lee and DiCesare [16], a timed place pij is associated with 
operation oij . In this paper, we assume that buffers of infinite 
capacity are located before each stage. Places representing 
the condition “job j at buffer prior to execution of opera-
tion oij ” are denoted as bij . Resource capacity constraints 
are incorporated to the model via “resource places.” The set 
PR =

{
pr∕r ∈ R

}
 contains all resource places. The subset 

PR(ij) = {pr∕r is used in operation oij} contains all resource 
places required in operation oij . Without loss of general-
ity, the capacity of all resources rÎR is set to 1, i.e., there is 
only one unit of resource of each resource type. All resource 
places are untimed.

Transitions t(ij)s and t(ij)e represent respectively the start 
and end of operation oij.

T = {ts(ij)} ∪ {te(ij)} such that oij ∈ O . The following con-
struction rules hold in this paper:

•ts(ij) = {psj} ∪ PR(ij) if oij is the first operation (i.e., i = 1 ) 
of job type j and {bij} ∪ PR(ij) otherwise; ts(ij)• = {pij};

•te(ij) = {pij};
te(ij) • = {b(i+1)j,PR(ij)} if i < |Oj| and {pej,PR(ij)} otherwise.
The  S3PR model of the production activities is defined 

here as the “plant” net as in Mejía et al. [17]. Figure 1 illus-
trates a Petri net model of the plant of two jobs with two 
stages each: stage 1 of job 1 (resp. job 2) has operation o11 
(resp. o12 ) represented by place p11 (resp. p12 ). Stage 2 of 
job 1 (resp. job 2) has operation o21 (resp. o22 ) represented 
by place p21 (resp. p22 ). Place b21 and b22 are buffer places 
between stage 1 and stage 2. Places M1 to M4 represent the 
availability of machines 1 to 4.

Definition A reconditioning/rework trajectory is a sequence 
of actions required to finish an operation that, for instance, 
failed inspection and needed reprocessing. The recondition-
ing/rework consists of two actions: the repair (recondition-
ing) and the reprocessing (rework).

For the purpose of this work, reconditioning/rework tra-
jectories are modelled with a subnet consisting of one single 
timed place prw(ij) , denoted as reconditioning place, which 
models the execution of the reconditioning action. Such 
a reconditioning place is linked to one input uncontrolla-
ble transition td(ij) and to one output controllable transition 
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Fig. 1  Petri net Model of two jobs with two operations each

1 Although this section can be skipped without loss of continuity, we 
leave it here as important aspects of the modeling approach regarding 
rework are presented.
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tc(ij) . These transitions td(ij) and tc(ij) represent respectively 
the start and end of the reconditioning action required by 
operation oij . Let us assume that operation oij requires a set 
of resources Rij ⊆ R for its processing.

Rework subnets are created in real-time and attached to 
the “plant” subnet (i.e., the manufacturing system) when-
ever a rework is triggered. In real-life, a sensor will detect a 
defect in a workpiece and triggers an alert to the shop con-
troller that makes a rescheduling decision depending on the 
duration of the corresponding reconditioning activity. The 
rework subnet is eliminated from the plant subnet, whenever 
the reconditioning action is finished.

Definitions A reconditioning subnet associated with the 
reconditioning of a single operation oij is defined as:

Nrw(i,j) = (P
rw(ij)

, Trw(ij),Prw(ij) × Trw(ij),

Trw(ij) × P
rw(ij)

,M0rw(i,j), �rw(i,j))  
in which:

Prw(ij) = {prw(ij)}

Trw(ij) = {td(ij), tc(ij)}

M0rw(i,j) is the initial marking of place prw(ij)
�rw(i,j) is the stochastic time delay of place prw(ij).
The flow relations Prw(ij) × Trw(ij), Trw(ij) × Prw(ij) are the 

following:
•prw(ij) =

{
td(ij)

}
.

prw(ij) • =
{
tc(ij)

}
.

•td(ij) =
{
pij
}
.

td(ij)• =
{
prw(ij) ∪ pr ∈ PR(ij)

}

•tc(ij) =
{
prw(ij)

}

tc(ij) • =
{
bij
}

See Fig. 2 for an example of a rework subnets. The plant, 
representing only production activities, is shown in Fig. 2a; 
the augmented net is shown in Fig. 2b. Places p1 − p4 are 
operational places and p5 is a resource place representing the 
availability of resource r1 . Places p1 and p4 are respectively 
start and end places; p2 represents a buffer place and place 
p 3 represents the execution of an operation. Transitions t1 
to t3 ∈ T are controllable plant transitions; transitions td and 
tc represent respectively the start and end of the recondi-
tioning action. All transitions t1–t3 and tc are controllable 
whereas td is uncontrollable. Consider the case where place 

p3 is marked: both transitions t3 and td can fire. If td fires, the 
system enters into a disrupted state and can be eventually 
returned to a normal state when transition tc fires. When tc 
fires, the subnet is removed from the plant.

The augmented Petri net is NA =
(
N,Nrw(i,j)

)
 . This aug-

mented net is live and bounded [18].

2.2  Job shop scheduling problem (JSSP)

A job shop is manufacturing system in which a set M of 
machines, indexed in i , processes a set of jobs J , indexed in 
j . Each job consists of a set of operations which must be 
processed in a pre-defined order (route) and no pre-emption 
is allowed. In general, not all job routes are the same. The 
term oij denotes operation of job j on machine i . The deter-
ministic processing time of operation oij is pij . The set of 
operations of job j is denoted as Oj.Without loss of general-
ity, in this work, we set |||Oj

||| = |M| = m . The set of all opera-
tions is denoted as O =

⋃
Oj.

A job shop scheduling problem (JSSP) consists of cal-
culating the start (or end) times of all operations oij ∈ O in 
such a way that an optimization criterion is minimized. A 
schedule S is an array of operations oij together with their 
corresponding start times sij sorted in the chronological 
order. The literature on offline JSSP and its variants is vast.

In this paper, we studied the minimization of the total 
flow time (TFT), which is related to the total time spent in 
queue. The TFT can be calculated following Eq. (1).

The term Cj is the completion time of job j in the original 
schedule and n = |J| is the number of jobs. We define RPD 
as in Katragjini et al. [11]. The formula is:

where TFTe (resp. TFTbest ) is the value of TFT  of the exe-
cuted schedule (resp. the best offline schedule among all 
algorithms).

(1)Total flow time (TFT) =

n∑

j=1

Cj

(2)RPD =
TFTe − TFTbest

TFTbest

Fig. 2  Reconditioning/rework 
trajectories modeled with Petri 
nets. a Plant. b Example of 
reconditioning/recovery subnet
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In the rescheduling situation, we use the classical stability 
formula [19] as follows (Eq. 3):

where Cij (resp. C′
ij
) is the completion time of operation oij in 

the original schedule (resp. the executed schedule).

2.3  Rescheduling

Rescheduling is a topic that has been widely studied over 
the years. Efforts have been made to classify the environ-
ment, the rescheduling policies, the orksle regeneration, and 
the types of disruptions, and. We only will provide a brief 
review of the topic. Interested readers are referred to the 
paper of Vieira et al. [7].

Regarding the environment, these can be classified as 
static and dynamic: in static environments, all ork are known 
from the beginning whereas in dynamic environments, ork 
arrive continuously to the system. Schedule generation refers 
to whether the orksle is calculated with provisions for dis-
ruptions (i.e., robust schedules) or not (i.e., nominal sched-
ules). In the first case, the orksle is expected to absorb most 
perturbations and rescheduling is orksle rarely recalculated; 
in a nominal orksle, rescheduling actions take place in one 
way or another when disruptions occur.

When disruptions occur, the three more common repair 
strategies to repair are full orksle regeneration, partial 
rescheduling, and right-shift scheduling [20]. In orksle regen-
eration, the entire orksle is recalculated, considering those 
operations that have not started yet their execution. This strat-
egy produces the best results in terms of the objective func-
tion but requires more computer effort and produces instabil-
ity. Partial rescheduling attempts to reschedule only a subset 
of operations. One of the better-known methods for partial 
rescheduling is AOR (affected operations rescheduling) in 
which only affected operations (those whose start times 
change) by the breakdown are rescheduled. The right-shift 
scheduling strategy consists of postponing the start of the 
affected operations by the amount of time of the breakdown. 
This is the easiest to implement and produces the highest 
stability but the orksle quality can be compromised [20].

In terms of policies, these can be periodic, event-driven, 
or hybrid. In periodic rescheduling, the orksle regeneration 
is performed at regular intervals whereas in event-driven 
approaches, the orksle is regenerated whenever disruptions 
occur. Hybrid rescheduling falls in between [21]. One of the 
questions is when to launch a full or a partial re-schedule.  
A common approach is to trigger a full rescheduling 
method orksle certain conditions on a case by case basis. 

(3)� =

∑�O�
1

∑
oij∈O

���Cij − C�
ij

���∑
oij
pij

For example, Pfeiffer et al. [22] used a simulation-based 
approach, taking into account machine breakdowns and sto-
chastic processing times. Authors evaluated their solution 
approach in terms of stability and efficiency. They proposed 
a heuristic method for periodic rescheduling and a triggering 
mechanism that activates whenever the cumulative differ-
ence between the planned and simulated completion times 
are greater or a threshold. Later, Bidot et al. [23] investi-
gated stochastic processing times and machine breakdowns. 
In that work, a orksle is generated offline and launched. A 
controller monitors the orksle execution and activates full, 
partial, or progressive rescheduling processes by checking 
case-specific performance conditions.

Lately, the research body has focused towards schedules 
that are modified whenever disruptions occur. For example, 
Dong and Jang [21] proposed new rescheduling methods 
orksle the AOR and compared their results with the classi-
cal AOR methodologies. He and Sun [24] combined robust 
schedules with rescheduling in flexible job shops and com-
pared their results with other strategies in terms of stabil-
ity and robustness. Katragjini et al. [11] combined stability 
measures with efficiency measures (i.e., makespan) in a sin-
gle objective function in a flow shop manufacturing system 
and compared several metaheuristic algorithms. Ahmadi 
et al. [19] proposed a multi-objective model for flexible 
job shops and studied the performance of several classical 
algorithms (e.g., NSGA-II, NRGA). More recently, Larsen 
and Pranzo [25] developed a general rescheduling frame-
work with different types of disruptions. A controller trig-
gers a rescheduling algorithm whenever a deterministic or 
stochastic rescheduling condition is met. Authors evaluated 
their solution approach in a job shop orksle. Gao et al. [26] 
proposed a Jaya algorithm on a flexible job shop orksle with 
machine recovery. In the rescheduling phase, instability and 
makespan are minimized. Nie et al. [27] proposed an event-
driven, rescheduling approach orksle a genetic algorithm for 
flexible job shop scheduling problems subject to machine 
breakdowns. In that work, authors focused on minimizing 
makespan in the scheduling phase, while in the rescheduling 
phase, the orksle’s performance is measured by the weighted 
sum of RPD and stability.

In regard to Industry 4.0, Framinan et al. [28] investigated 
the impact of real-time information in the performance of 
rescheduling policies. Their results suggest that real-time 
information can indeed improve the performance of the 
manufacturing system but only under low variability condi-
tions. Also, technological advances have enable to address 
scheduling problems using real-time information through 
Cloud architectures, as in Zhang et al. [29], where a multi-
objective game-theoretic approach is developed. Similarly, 
Carlucci et al. [30] and Goodarzi et al. [31] implemented 
game theory approaches.
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In other orks, Ghaleb et al. [32] proposed a real-time 
rescheduling system considering job shop problems and sto-
chastic processing times. In this work, the arrival of new ork 
and machine breakdowns trigger the rescheduling process. 
The authors evaluated several rescheduling policies such as 
continuous and event-driven rescheduling.

In general, most orks aim to balance performance with 
stability measures. To do so, the different approaches adopt 
different strategies to launch either a full reschedule or a par-
tial one. Our approach is different in the sense that it exploits 
real-time information to decide when to perform a full or 
a partial reschedule. On the other hand, game theoretical 
approaches involve agents with individual goals which is not 
the case in our paper. In our case, we have a single central 
controller with two distinct goals.

2.4  Rework

Rework in manufacturing is one of the many disruptions 
that affect its performance, and it is one of the least studied. 
The literature in rework includes aspects such as costs [33], 
lot sizing [34], and quality [35, 36]. Rework in manufactur-
ing systems has been addressed from the perspectives of 
simulation-based dispatching rules [37, 38], and with classi-
cal heuristic and metaheuristic approaches: examples of the 
latter are cases of single machine scheduling [39], parallel 
machines [40–43], flow shops [44–46], and batch facilities 
[47].

Table 1 summarizes the findings on rework. In this table, 
papers are classified regarding scenario modelling (i.e., 
how rework events are considered): if reworks are mod-
elled with estimated parameters, or if they are event-driven. 
The event-driven approach refers to those cases where the 
rework event data are known only when the production is 
started; thus, it is mandatory to make decisions on the fly 
with some rescheduling strategy. As seen in Table 1, few 
papers considered the event-driven approach, although 
these works studied single-machine problem and parallel 
machine settings [41, 48]. Then, to the best of our knowl-
edge, in the literature, there are no event-driven approaches 
for the rescheduling problems with reworks for more com-
plex manufacturing configurations as job shops, and this is 
a problem that occurs in real-life for instance in automotive 
manufacturing settings.

It can be seen from Table  1 that most works aim to 
optimize classical objective functions, although in terms 
of expected values. Only the paper of Liu and Zhou [41] 
addressed the topic of rework and stability although on sin-
gle stage manufacturing systems.

To the best of our knowledge, no work has addressed 
the problem of the rescheduling with rework and recondi-
tioning in job-shop systems. The literature on scheduling 

with rework estimate the schedule performance based on 
expected values calculated analytically or with simulation 
and consider the situation in which a job is processed on a 
machine, then inspected outside the machine, and immedi-
ately returned to the queue. These works do not consider 
reconditioning and/or stability. The works on rescheduling 
consider mostly machine breakdowns and other disruptions, 
but no rework.

3  Proposed approach

3.1  Assumptions

We consider the case in which a reconditioning action is 
needed prior to the rework itself. This is the same example 
of paint that needs to be scrapped off (i.e., the recondition-
ing) before the work piece is repainted (i.e., rework). The 
following assumptions hold in this paper:

– All job operations may eventually need rework. All oper-
ations that need rework require reconditioning actions.

– The corresponding reconditioning times are exponen-
tially distributed. The mean of the distribution is denoted 
the mean time to reconditioning (MTTR).

– The rework probability of all operations is the same. This 
probability is denoted the percentage of reworked opera-
tions (PRO).

– The rework time of a job operation equals the original 
processing time.

– The time required for the reconditioning is known as 
soon as the rework/reconditioning request is triggered. 
In practice, we need technologies of industry.

3.2  Event‑driven implementation

In this work, we study via simulation how the event-driven 
system reacts to disruptions that involve reconditioning and 
rework operations. This approach is different from previous 
works in rework in which the performance indicators are 
calculated based on expected values and not from the actual 
schedule execution.

The first step is to produce an “offline” schedule. In this 
paper, we generate schedules with two methods: The first 
method is dispatching rules, which are widely used and pro-
duce acceptable performance in terms of solution quality. 
The second method is a modified BAS (Beam A* Search) 
algorithm, originally presented in Mejía and Montoya [59] 
and later improved in Mejía and Lefebvre, [12] and in Rossit  
et al. [60]. BAS is a graph search algorithm for different 
types of scheduling problems. Such algorithm is amenable 
with our Petri Net model and performs well in comparison 
with other generic job shop scheduling algorithms. Like all 
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graph search methods, BAS starts with a node (a marking in 
the Petri net) and progressively expands its children’s nodes 
until a final goal is found (final marking). To avoid, “state 
explosion,” the number of nodes at each state is limited at 
a certain predefined value (the “beam”). In BAS, the crite-
rion for expansion is “best first,” which implies an evalua-
tion function for prioritizing expansion. We refer the reader 
to Mejía and Lefebvre [12] for more details of the BAS 
algorithm.

The pseudo code of the event-driven implementation is 
as follows:

Inputs An instance of a JSSP and its equivalent Petri net, 
the MTTR, and the PRO values.

Outputs The calculation of the executed total flow time and 
stability indicators.

1. Calculate an initial schedule array ( S).
2. Execute the schedule until a reconditioning/rework 

request is issued for some operation o∗
ij
 or until all jobs 

are completed. A reconditioning/rework request occurs 
with a probability set as PRO.

3. If all jobs are completed, then terminate with success.
4. Else (some job operation o∗

ij
 needs rework)

(a) Generate �(o∗
ij
) , an exponentially distributed 

reconditioning time of operation o∗
ij
 with mean 

MTTR.

Table 1  Review of papers on reworks and scheduling

Authors Scheduling problem Solution approach and application Scenario modelling

Estimation Event-driven

Shin and Kang [49] P
���rj, skj

���
∑
j

Tj,Lmax,
∑
j

Cj,Cmax

  
Priority rules (PR) ✓

Kang and Shin [40] R��
∑
j

Tj,Lmax,
∑
j

Cj
  

Priority rules (PR) ✓

Rabiee et al. [50] F2�nwt, sijk�
∑
j

Cj
  

Adapted imperialist competitive algorithm 
(AICA)

✓

Moradinasab et al. [51] F2�nwt, sijk = 1�
∑
j

Tj
  

Adapted imperialist competitive algorithm 
(AICA) and particle swarm optimization 
(PSO)

✓

Liu and Zhou [41] P��
∑
j

wjCj
, �

  
Exact ad hoc method with stability ✓

Eskandari and Hosseinzadeh [45] FFSP
|||sikj

|||Cmax
Variable neighborhood search (VNS) ✓

Rambod and Rezaeian [42] R|sikj,Mj|Cmax GA, Bee Algorithms (BA) ✓
Raghavan et al. [52] F��

∑
j

wjTj  
Heuristic (tailor-made). Semiconductor industry ✓

Guo et al. [39] 1|prec|waiting time   Heuristics ✓
Bootaki and Paydar [53] F��

∑
j

E(Cmax)
  

Mixed integer programming + simulation ✓

Foumani et al. [54] F||Cycle Time   Analytical method ✓
Raghavan et al.[44] F��

∑
j

wjTj  
GA. Semiconductor industry ✓

Zimmermann et al. [47] FMS|batch|Cmax   Holonic multi-agent simulation ✓
Zahedi et al. [55] F2

|||dj
|||total_cost  

Stepwise algorithm for mixed integer quadratic 
programming

✓

Foumani et al. [56] F||total_cost   Stochastic rework. E-constraint ✓
Bian and Yang [57] FFSP| |Cmax   Bat metaheuristic algorithm ✓
Wang et al. [43] R��E(

∑
j

Tj)
  

PR, genetic algorithms (GA), simulated  
annealing (SA),

✓

Guo et al. [58] 1�rj�
∑
j

Cj
  

Pseudo-polynomial DP, heuristic, GA ✓

Gheisariha et al. [46] FFSP�sikj, ttil�Cmax,
∑
j

Cj
  

Evolutionary multi-objective harmony search 
(EMOHS)

✓

Our work J��
∑

j Cj, � Modified beam search + Petri net  
modeling + stability

✓
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(b) Rebuild the schedule taking into account that job 
operation o∗

ij
 will be available for scheduling after 

�(o∗
ij
) time units and go to 2. The new current 

schedule array ( S ) contains all job operations that 
have not started their processing.

This simulation of the event-driven process is illustrated 
in Fig. 3

3.3  Proposed rescheduling policies

In this paper, we study a hybrid policy that triggers either 
a full schedule regeneration or our adaptation of the right-
shift policy depending on the duration of the reconditioning.

Definition Let Ut be the set of operations that have not 
started their execution at time t and that can start the earliest.

The “full regeneration” (FR) policy reschedules at time t 
all operations in Ut either with dispatching rules or with the 
BAS algorithm depending on how the initial schedule was 
computed. Clearly, the FR method must be consistent with 
the original generation method of the offline schedule. The 
complexity of FR will depend on the selected algorithm.

Our adaptation of the right-shift policy consists of 
rebuilding the schedule maintaining the original sequence as 

much as possible. We denote this policy as “keep sequence” 
(KS). The following pseudocode illustrates the KS approach. 
Let us suppose that a reconditioning/rework request is issued 
at time t (i.e., some job operation needs to be reworked).

Input The current schedule array S and S′ = null;

Output A valid schedule S′ that contains the start times of 
all operations that have not yet started.

1. Determine the set Ut at time t
2. Among all operations in Ut , find the operation that 

appears first on S , say operation o′
ij
 . Append o′

ij
 and its 

expected start time s′
ij
 to S′ and remove it from S.

3. Repeat 1 and 2 until the set Ut is empty.
  Let n and m be the number of jobs and machines 

respectively. Computing Ut and finding o′
ij
 , both take mn 

steps in the worst case; therefore, the complexity of KS 
is O(mn).

The selection of the rescheduling method (FR vs. KS) 
will depend of whether the reconditioning time exceeds a 
certain threshold. The rationale is that if the reconditioning 
time is short (i.e., below the threshold), there will be no 
need to reschedule all operations and the KS routine will 
be preferred; in the situation of above-threshold rework 

Fig. 3  Simulation process 
diagram
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times, a full schedule regeneration will be selected. In the 
extreme cases, if the threshold is very small ( ∼0), the sched-
ule will always be fully regenerated (i.e., FG policy); if the 
threshold is very large ( ∼∞), the KS routine will always be 
invoked. The main goal of this paper is to compare dedicated 
algorithms for offline scheduling vs. dispatching rules in a 
dynamic scenario. The section of computational results will 
present the behavior of the system under varying threshold 
values.

4  Experimental runs

In this section, we present the results of the computa-
tional experiments. In the experiments, we evaluated the 
performance of the BAS algorithm and of three dispatch 
rules: shortest processing time (SPT), longest processing 
time (LPT), and most work remaining (MWR). The three 
dispatching rules are selected for their capability to opti-
mize each of the two criteria that we are considering in this 
study. We studied 100 instances, grouped in ten different 
sizes of instances, that is, ten different combinations of J × 
M , namely, 10 × 5, 10 × 10, 15 × 5, 15 × 10, 15 × 15, 20 × 5, 
20 × 10, 20 × 20, 30 × 05, and 30 × 10. The MTTR values 
were set as a percentage of the total work time of all job 
operations in particular each instance. The percentages were 
0.5%, 1%, and 1.5%. The total work time is defined as the 
sum of processing times of all job operations. The PRO val-
ues were set as 2%, 5% and, 10% of the total number of oper-
ations. These values are consistent with the suggestions of 

Subramaniam et al. [20]. Threshold values were set between 
0 and 500% of the MTTR in 50% steps [60].

The BAS algorithm and the three abovementioned dis-
patching rules were tested on 10 sets of different sizes, each 
set with 10 instances, with all combinations of MTTR (3 
different values), PRO (3 different values), and threshold (11 
different values). The number of replicates for each combi-
nation was set to 100. Thus, 100 × 10 × 10 × 3 × 3 × 11 = 990
,000 different experiments were run.

The corresponding result analysis is presented as follows: 
first, we globally compare the performance of the reschedul-
ing methods, then, the analysis is focused on comparing the 
dispatching rules and the BAS algorithm considering differ-
ent threshold values in terms of stability and RPD. Finally, 
we analyze the effect of instances sizes, MTTRs and, PROs 
on the performance measures discussing the main insights 
that our study provide.

4.1  Evaluation of the rescheduling methods

In this section, we present a sample of the results obtained 
with the different scheduling methods and with different lev-
els of the external factors, namely, MTTR and PRO. Due to 
the very large size of the experiments, only the illustrative 
results are presented; full results are presented in the sup-
plementary material.

The charts of Fig. 4 show the performance of the tested 
algorithms in terms of RPD (averaged on all instances) vs. 
threshold. PRO values are identified with lines of different 
colors, while MTTR values are identified by markers. The 

Fig. 4  Average RPD values vs. threshold
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charts of Fig. 5 represent the stability values (averaged on 
all instances) vs. threshold, following a format analogous 
to that of Fig. 4.

We can observe the BAS algorithm is the best per-
former in terms of RPD, but it is also the worst performer 
in terms of stability. The opposite is true for the MWR 
rule. The performance of all algorithms is significantly 
affected by the threshold values. However, we could not 
observe a definite trend: for both BAS and SPT, as the 
threshold value increases, the RPD increases and the sta-
bility decreases (improves), also as expected. However, for 
the LPT and MWR rules, the pattern is the opposite; both 
RPD and stability improve with higher values of threshold. 
For the lowest value of PRO (i.e., PRO = 2), the RPDs of 
a particular algorithm are virtually the same for all values 
of MTTR and the same threshold. However, for greater 
values of PRO, the differences in RPD are more noticeable 
for the different values of MTTR. Also, for PRO = 2 and 
PRO = 5, the average RPD of the BAS algorithm is clearly 
better that those of the dispatching rules for all thresh-
old and MTTR values. However, as the values of PRO 
increase, the differences between BAS and the second 
performer (SPT) are smaller. For example, for PRO = 2, 
MTTR = 0.5 and threshold = 0, the average RPD of BAS is 
around 3.5%, whereas for SPT is around %7.0; at the other 
extreme, for PRO = 20, MTTR = 1.5 and threshold = 500, 
the average RPD of BAS is around 49.0%, whereas for 
SPT is around %51.0.

Changes in RPD and stability are negligible with thresh-
old values higher than 250% for all algorithms. Threshold 

values have a more noticeable impact on the BAS algo-
rithm than on the dispatching rules, especially in terms of 
stability. It can be seen in Figs. 4 and 5 that for the BAS 
algorithm, the slopes of the lines are steeper at lower val-
ues of threshold in comparison with the dispatching rules. 
Generally speaking, the BAS algorithm is more sensitive 
to changes in threshold in comparison with the dispatch-
ing rules. This characteristic can be useful for the decision 
maker to establish the desired trade-off between schedule 
quality (measured by the objective function) and stability. 
On the other hand, dispatching rules are very robust to 
changes in threshold and therefore the KS policy can be 
adopted as it is the least demanding in terms of computa-
tional terms.

4.2  Comparison of the algorithms’ performance

In this section, we compare the algorithms averaging for 
all values of MTTR and PRO and varying the thresholds. 
Figures 6 and 7 illustrate the average RPD and stability, 
respectively. In each figure, the four algorithms (BAS, SPT, 
LPT, and MWR) are shown with different colored lines. The 
values on the charts represent the global average of all the 
experiments for different values of threshold.

Figure  6 shows that BAS clearly outperforms the 
MWR, SPT, and LPT dispatching rules in terms of the 
average RPD for all threshold values. As the threshold 
values increases, the RPD increases for BAS and SPT, 
while MWR and LPT remain more or less constant. Notice 
that BAS and SPT present a similar pattern. This can be 

Fig. 5  Average stability values vs. threshold
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explained due to the fact that BAS uses SPT as its evalu-
ation function.

Regarding the stability, Fig. 7 shows that MWR dis-
patching rule is the algorithm that, on average, leads to 
more stable schedules. On the other hand, the BAS algo-
rithm is the one that on average leads to more unstable 
schedules. Nevertheless, at higher threshold values, the 
difference between BAS and the dispatching rules reduces. 
As the threshold values increases, the stability with the 
MWR and SPT does not seem to vary much, while it tends 
to decrease with the BAS and LPT algorithms.

Another feature of the problem that is relevant to ana-
lyze is the effect of the instance sizes in the performance 
of the compared algorithms in terms of the RPD and sta-
bility. The following findings show that the relation 
between the number of jobs and the number of machines 
of different instance sizes, i.e., ratio =

|J|
|M| , has an impor-

tant influence on the performance of all algorithms in 
terms of RPD and stability. The ratio can be seen as an 
indicator of congestion as more jobs are pushed into sys-
tem. Figure 5 illustrates the average relative percentage 
differences (ARPD) of the algorithms with respect to the 
best performer (BAS) of RPD vs. threshold.

ARPD =
RPDalgo − RPDbest

RPDbest

× 100%

RPDalgo and RPDbest are respectively the average rela-
tive percentage deviations of the algorithm and of the best 
performer.

Figure 8 shows a selection of the instance sizes, particu-
larly, those with 10 machines (10 × 10, 15 × 10, 20 × 10, and 
30 × 10) with ratios of 1, 1.5, 2, and 3 respectively. These 
results suggest that more congested systems (generally 
speaking, congested system are those with far more jobs 
that machines) would be benefited from better algorithms 
in the case of rescheduling with rework.

In Fig. 8, we can observe that all ARPD values are larger 
in the LPT and MWR charts (ranging from 10 to 30%) in 
comparison with the SPT chart (between 3 and 5%). For 
example, in the 30 × 10, 20 × 10, and 15 × 10 curves, with 
ratios of 3, 2, and 1.5 respectively, the ARPD values are 
larger in comparison with instances of ratio of 1 (10 × 10).

Figure 9 presents the average stability percentage differ-
ences (ASPDs) between each algorithm and the best per-
former (MWR dispatching rule in this case).

�̄�algo and �̄�best are respectively the average stability values 
of the selected algorithm and of the best performer.

The results show that the ratio also impacts the per-
formance of the algorithm. Notice that there is a similar 
pattern in comparison with the ARPD curves, although 

ASPD =
�̄�algo − �̄�best

�̄�best
× 100%

Fig. 6  Average RPD for all 
values of RPD and PRO

Fig. 7  Average stability %
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the best performer is now the MWR rule. In addition, as 
the threshold values increases, the stability obtained with 
BAS and SPT improves. This improvement is much more 
accentuated for those cases with larger job/machine ratios. 
The sensitivity of the ratio vs. the threshold, in terms of 
stability, is clearly seen when comparing the performance 
of the algorithms on the 30 × 10 (ratio = 3) curves and on 
the 10 × 10 (ratio = 1) for BAS and SPT.

4.3  Problem features assessment: PRO and MTTR 
values

Finally, in this section, we will present a detailed analysis of 
the PRO and MTTR factors on the performance of the BAS 
algorithm. First, the impact of the PRO for the BAS algo-
rithm is analyzed with fixed threshold and MTTR values. 
Figures 10 and 11 show the RPD and the stability values 

Fig. 8  % ARPD

Fig. 9  % stability difference SPT; LPT; BAS vs. MWR
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Fig. 10  BAS algorithm RPD impact depending on the number of machines

Fig. 11  BAS algorithm stability impact depending on the number of machines

Fig. 12  BAS algorithm RPD depending on the PROs and instance sizes
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of the BAS algorithm for different values of PRO. In these 
figures, the number of machines is fixed at 10, with differ-
ent job/machine ratios. The threshold is fixed at 0% on the 
left panels of Figs. 10 and 11, and on the right panels, the 
threshold is fixed at 500%. The MTTR considered for the 
cases depicted at Figs. 8 and 9 is of 0.5.

In general terms, it can be noticed that both the RPD and 
the stability increase in a linear fashion as the PRO values 
increase. Another observation illustrated by Figs. 10 and 11 
is that the RPD and the stability tends to deteriorate as the 
number of jobs increases (with the same number of machines). 
Both figures represent instances of 10 machines, but different 
number of jobs, and when the charts are compared to each 
other, it is observed that the larger the number the jobs (the 
larger the ratio ), the larger increase in the values of the RPD 
and the stability. Nevertheless, it can be mentioned that this 
behavior is more notorious for stability than for the RPD. It is 
important to mention that these findings will also take place 
when considering other MTTR values, such as 1.0 and 1.5 
that for sake of brevity are not introduced in this manuscript.

Finally, we studied the effect of the MTTR on the stabil-
ity and the RPD, considering the different PRO, depending 
on the features of the instance sizes, as is shown in Figs. 12 
and 13. This analysis is carried out for the BAS algorithm with 
a fixed threshold value, but it can be extended for the other 
algorithms and threshold values. From Figs. 12 and 13, it is 
possible to notice that, in general terms, for each MTTR, both 
RPD and stability tend to deteriorate while the PRO increases. 
In order to identify other behavior patterns, we analyze each 
instance size according to the number of jobs and the ratio . As 

an example, Figs. 12 and 11 show the RPD and stability behav-
ior respectively for instances with 15 jobs (15 × 5, 15 × 10, and 
15 × 5). Particularly, we can observe that, for instances with 
larger ratio values, when considering lower PROs values, the 
RPD and the stability do not seem to present a relevant varia-
tion between the ones obtained with the different MTTR val-
ues. Nevertheless, as the ratio decreases, the RPD and stability 
tend to deteriorate as the MTTR values increases.

5  Conclusions and future work

In this work, we studied and presented the results of job 
shop rescheduling under rework and reconditioning. We 
used an event-driven scheduling method embedded in a 
Petri nets formalism for all the algorithms. The results were 
analyzed in terms of RPD and stability, showing that the 
BAS algorithm in combination with high threshold val-
ues is the algorithm that achieves the best results. On the 
other hand, simple dispatching rules are more stable than 
the more sophisticated BAS. These results also indicate that 
the threshold has a significant impact on the algorithm per-
formance, with higher thresholds resulting in better stability 
but worse RPD. The overall conclusion is that, for the stud-
ied methods, no algorithm fully outperforms the others in 
both criteria. However, if the PRO and MTTR values can be 
reduced through better manufacturing methods and quality 
control, the use a better scheduler such as BAS is justified. 
Even more, the experimentation justifies the dispatching rule 
selection, since MWR is the best in the stability criterion 

Fig. 13  BAS algorithm stability impact depending on the number of machines
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alone; meanwhile, SPT is the best for total flow time alone. 
However, BAS algorithm has the best performance regard-
ing the two criteria together, yielding reschedules that can 
represent the compromise solution from both criteria.

We also analyzed the influence of the instance size on the 
performance of the system. When analyzing the instance, 
an important factor that describes the behavior of the sys-
tem was the ratio between the number of machines and the 
number of jobs. For higher ratio values (i.e., increasing the 
number of jobs for a fixed number of machines), the stabil-
ity was worse.

In terms of potential implementations, Industry 4.0 Tech-
nologies and machine learning algorithms are a must. The 
system needs to quickly detect the need of rework and to 
compute the time to reconditioning so to establish the “best” 
reactive strategy. The computation of the reconditioning 
time requires automatic learning to provide better estimates. 
As future research lines, we aim to extend the analysis to 
study the impact of real-time information and the impact of 
other events such as machine breakdowns.

Game theoretical approaches can be also included in fur-
ther research. For example, an interesting approach will be 
handling customer orders. The Petri net approach is also 
well suited to handle communication protocols and can be 
combined with the manufacturing system model.
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