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Abstract
The final mechanical and physical properties should be predicted in tandem with the bead geometry characteristics for 
effective additive manufacturing (AM) solutions for processes such as directed energy deposition. Experimental approaches 
to investigate the final geometry and the mechanical properties are costly, and simulation solutions are time-consuming. 
Alternative artificial intelligent (AI) systems are explored as they are a powerful approach to predict such properties. In the 
present study, the geometrical properties as well as the mechanical properties (residual stress and hardness) for single bead 
clads are investigated. Experimental data is used to calibrate multi-physics finite element models, and both data sets are used 
to seed the AI models. The adaptive neuro-fuzzy inference system (ANFIS) and a feed-forward back-propagation artificial 
neural network (ANN) system are utilized to explore their effectiveness in the 1D (discrete values), 2D (bead cross-sections), 
and 3D (complete bead) domains. The prediction results are evaluated using the mean relative error measure. The ANFIS 
predictions are more precise than those from the ANN for the 1D and 2D domains, but the ANN had less error for the 3D 
scenario. These models are capable of predicting the geometrical and the mechanical properties values very well, including 
capturing the mechanical properties in transient regions; however, this research should be extended for multi-bead scenarios 
before a conclusive “best approach” strategy can be determined.

Keywords  Additive manufacturing · Metal · Direct energy deposition · Experimental · Simulation · Artificial neural 
network · Adaptive neuro-fuzzy inference system · 420 stainless steel, Hardness · Residual stress

1  Introduction

1.1 � Additive manufacturing

Additive manufacturing is the process of building parts from 
a computer-aided design (CAD) model by successively add-
ing material layer by layer, realizing the part with minimal 
excess material. Usually, a heat source is applied to melt 
or cure the raw materials as they are being formed into the 
final component shape. Conversely, conventional fabrica-
tion methods for objects by removing material via milling 
or other machining processes introduces much waste, but 

there is no significant heat introduced into the process. There 
are seven main categories of AM technologies including vat 
photopolymerization, material jetting, binder jetting, mate-
rial extrusion, powder bed fusion, directed energy deposi-
tion, and sheet lamination [1]. The directed energy deposi-
tion method, which is the focus of this research, is one of the 
metallic additive manufacturing processes where a machine 
tool or a robot with a deposition nozzle traverses around 
an object and deposits metal powder onto existing surfaces. 
Material is melted using a laser, electron beam or plasma arc 
upon deposition [1].

1.2 � Directed energy deposition additive 
manufacturing

Directed energy deposition (DED) is a subset of the additive 
manufacturing process family. It is a metal additive process 
in which blown powder or a wire is fed through a nozzle, 
and a power source or energy type is introduced to melt 
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the material, and the beads are deposited onto a layer or 
substrate. Components can be repaired as well as built up 
using DED processes. Laser clad overlay operations are in 
the DED domain and usually utilized for coating surfaces to 
improve the performance of the surface or to repair compo-
nents such as moulds. In this process, a laser beam melts the 
material while it is being distributed onto a surface. A thin 
layer on the surface of the substrate melts to form a bond 
between the clad and the substrate; this is the dilution zone 
(Fig. 1). This research focuses on single bead depositions 
of 420 stainless steel onto a mild steel substrate. The input 
parameters for a laser cladding operation play a significant 
role in the quality of the bead. As a result, selecting and con-
trolling the input parameters to achieve the desired results is 
a concern for the manufacturers.

Each process parameter in laser cladding process includ-
ing the power, travel speed, material feed rate, the contact 
tip to work piece distance, and the focal length has a distinct 
effect on the geometry and the mechanical properties of the 
bead [2–6]. Several experimental investigations have been 
found in the literature review to analyse the effect of pro-
cess parameters on clad bead geometry and clad mechanical 
characteristics. Chen et al. investigated the effects of the 
process parameters including laser power, scanning speed, 
pre-placed powder thickness, laser spot diameter, and multi-
track overlapping ratio on the quality characteristics of the 
ceramic coatings on Ti6Al4V substrates. Using L27(313) 
orthogonal arrays designed with the Taguchi method, they 
conducted multi-track cladding experiments to investigate 
the geometric properties and microhardness of coatings [6]. 
Zareh and Urbanic investigated the effects of varying the 
percentage overlaps between multiple beads, ranging from 
30 to 47%. Using experimental measurements, they showed 
that the percentage overlap impacts the hardness and the 
depth of the melt pool [7]. Zhao et al. conducted a single 
factor experiment with 125 groups to investigate the impact 
of process parameters on the cross-sectional area of the 
YCF104 clad track. It has been found the height of the clad 
track is largely determined by scan speed, while laser power 

is the most significant factor for determining the width and 
depth of the heat-affected zone [8].

Understanding the process parameter to geometric rela-
tionships is important for process planning scenarios, but 
the mechanical and physical properties also need to be 
considered. Therefore, comprehensive prediction models 
are required for effective process planning. Due to the high 
thermal gradients and the rapid solidification rate, the gen-
eration of residual stresses with high magnitudes can occur. 
The high amount of residual stress leads to non-uniform 
plastic deformation of a substrate and the bead geometry. 
This is one of the most important issues when analysing the 
mechanical properties of a bead. Residual stresses could lead 
to cracks within the piece in addition to undesirable distor-
tion; therefore, it is important to achieve a laser clad bead 
with a minimum amount of residual stress. Consequently, 
the process parameters play an important role in the mag-
nitude of the induced residual stress, the distortion devel-
opment, the final mechanical properties, and the shape of 
the bead. Using experimental approaches to investigate the 
bead geometry and mechanical properties is costly, time-
consuming, and only provides data at specific data collec-
tion points. Typically, transient regions are not considered. 
Consequently, using experimental data to seed simulation 
models and machine learning strategies is the focus of this 
work.

Finite element analysis (FEA) and analytical models 
have been utilized to predict the mechanical properties 
as well. Mirkoohi et al. [9] proposed a thermomechani-
cal analytical model to predict the in-process elastoplastic 
hardening thermal stress and strain which can model the 
thermal stress of a single track either in powder bed sys-
tems such as laser powder bed fusion (LPBF) or powder 
feed systems such as directed metal deposition (DMD). 
Nazemi and Urbanic [10] proposed a three-dimensional 
finite element model (FEM) for a powder-feed laser clad-
ding process to predict the mechanical and physical prop-
erties, but the geometry needed to be predefined and the 
simulation approaches were computationally costly for sim-
ple single bead and linear multiple bead case studies. For 
more complex and realistic components, the simulations 
might take weeks or months of processing time. Several 
researchers have explored the residual stress formation and 
its pattern using FEA methods for the LPBF AM process 
[11–13]; however, the computational cost is considerable. 
Therefore, a hybrid approach where data fusion between 
experimental, simulation and machine learning strategies 
are being investigated for predicting the results for DED 
processes. Machine learning is a tool for using data that 
includes a variety of conditions, followed by an implicit 
relationship between inputs and outputs. Thus, with the use 
of machine learning, the impacts of the process parameters 
on the mechanical and geometrical properties of the parts Fig. 1   Schematic diagram of laser cladding process
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can be directly obtained in computationally efficient man-
ner with no need of solving the mechanical equilibrium 
equations once these models are trained. Presently, the 
machine learning techniques are becoming popular in the 
field of material science and manufacturing.

Machine learning approaches have been widely imple-
mented to investigate and predict the geometry of the bead. A 
range of process parameters implemented in various deposi-
tion methods are used as an input to generate and train the 
mathematical model and predict the geometrical data [14, 15].

Thermal profiles for a deposited part were predicted by 
Ren et al. in 2019. They implemented a recurrent neural 
network and a deep neural network to correlate charac-
teristics between the toolpath (laser scan pattern) and the 
thermal profiles. They used finite element simulations for 
the data generation and introduced a unique data set struc-
ture to train the neural network based on the geometry of 
the part and the laser scanning strategies [16].

Mechanical properties, including tensile and compres-
sive stresses, were calculated using an artificial neural 
network as a tool to link the process parameter such as 
layer thickness, orientation, raster angle, raster width, and 
air gap to predicted compressive and tensile stresses in 
specimens built by fused deposition modelling and metal 
arc welding [17, 18]. Only discrete values were considered 
in this work.

Wu et al. in 2020 predicted residual stresses considering 
four process parameters including the arc power, scanning 
speed, substrate preheat temperature, and the substrate 
thickness in wire-arc additive manufacturing. In their 
approach, these four process parameters are the inputs, 
and the longitudinal residual stress at a centre point is 
the model output. Their solutions predict residual stresses 
with 97% accuracy [19].

Residual stress profiles in stainless steel pipe girth welds 
were predicted by developing the artificial neural network 
(ANN) and adaptive neuro-fuzzy inference system (ANFIS). 
The performance of models was evaluated. It was concluded 
that the ANN trained using Levenberg–Marquardt, and 
ANFIS based on a hybrid algorithm, were far superior to 
ANN model trained by resilient backpropagation and ANFIS 
using backpropagation method [20].

Although some research has been performed in the weld-
ing domain, there is a lack of research related to a perform-
ing comprehensive analysis which considers the effects of 
the laser cladding input parameters on both the geometrical 
and mechanical characteristics of a laser clad bead simulta-
neously. The goal of this research is to evaluate the effective-
ness of a machine learning (ML) approach for predicting the 
bead geometry (a discrete value), and selected mechanical 
and physical characteristics, which can vary throughout the 
bead. Residual stresses are emphasized in this research as 
they can lead to undesirable distortion and cracks. We need 
to (i) understand the residual stress characteristics, (ii) link 
them to the bead geometry and input parameters, and (iii) 
develop predictive models. Hardness is also considered. 
The types of effective predictive models need to be deter-
mined; therefore, two ML strategies are utilized. Data fusion 
approaches are applied to generate data sets for these analy-
ses. This is described in the next section.

2 � Research methodology

The research methodology consists of two main steps: (i) 
data collection and (ii) machine learning model develop-
ment for predictive models. The process flow is shown in 
Fig. 2. Geometrical, Vickers microhardness, and residual 

Fig. 2   The general process flow for this research
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stress characteristics were collected for single laser clad 
beads of P420 stainless steel powder deposited onto low 
alloyed carbon steel plates for a wide range of process set-
tings. A coaxial powder injection laser cladding process 
was employed for the experimental activities. In addition 
to the data from the experiment sets, calibrated simula-
tion models were developed to seed the ML-based math-
ematical models. A multi-perspective analysis has been 
performed by using the ANN and the ANFIS models to 
predict geometric and mechanical properties. Both the 
ANN and ANFIS models are validated using the experi-
mental and numerical data. The performance of ANFIS 
and ANN approaches to predict the residual stresses is 
also compared.

This study has comprehensively assessed ML prediction 
strategies for three different domains: (i) the 1D domain 
in which both the geometrical and properties are to be 
predicted by an ANN and ANFIS model for discrete geom-
etry and mechanical characteristics; (ii) the 2D domain, 
where the residual stress and hardness along the middle 
cross-section of the laser clad bead and the substrate are 
predicted by the ANN and ANFIS models, and (iii) the 

3D domain, where the residual stress and hardness are 
predicted throughout the bead considering the entire bead 
geometry and the substrate using the ANN and ANFIS 
models. The 1D and 2D models contain simplifying 
assumptions to provide an initial performance overview 
for predicting cladding bead characteristics. For the 1D 
approach, the average values within the bead are consid-
ered for hardness, and maximum and minimum values are 
considered for the residual stress. This reduces the com-
putational cost significantly, but it should be noted that the 
average value does not necessarily represent critical infor-
mation. A 2D-based approach was considered to establish 
initial relationships between variable residual stresses, 
locations, and the process parameters. However, this con-
sideration is limited to the assumption that the thermal gra-
dients occur in the depth direction only. In the 2D model, 
it is assumed that the thermal gradient is constant along 
the bead and has no effect on the induced residual stresses. 
However, in reality the residual stress varies throughout 
the bead. Consequently, an extended approach considering 
the variable data along the bead length has been investi-
gated. The 3D model explores a comprehensive big data 

Fig. 3   Demonstration of the 
studied domain of a single laser 
clad bead—note the variations 
of the residual stress for dif-
ferent slice planes orthogonal 
to the bead (a) 1D domain 
(maximum compressive stress 
value), (b) 2D domain, and (c) 
3D domain
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predictive solution that increases the data collection time 
and computational cost. However, the residual stress (or 
hardness) can be predicted in each point within the bead, 
including the start-stop transient zones. Therefore, criti-
cal information can be predicted with confidence. Overall, 
deep learning methods are applied in all mentioned models 
which reduce the computing time. Figure 3 illustrates the 
domains being considered for this research. The yellow 
dots demonstrate the measuring points in a single laser 
clad bead for residual stress.

2.1 � Experimental setup

Single-pass bead sets of P420 were deposited onto AISI 
1018. A comprehensive design of experiments approach 
was taken to explore five process parameters at five dif-
ferent levels [21]. A coaxial deposition head, which was 
mounted onto 6 serial axis robots employing a 4 kW diode 
laser, was employed to deposit the clad beads. Three 

replicates were performed for each experiment. Argon gas 
was employed to protect the melt pool from the atmos-
phere and was the conveying media for the powder. The 
process parameters are listed in Table 1.

The metallographic operations, i.e., grinding and pol-
ishing of the cross-sectional samples were done manually 
according to the Struers application notes for the stain-
less steel materials [21]. The observations were performed 
using a Leica Q5501W light microscope. The bead width, 
depth of penetration, and height of the beads were meas-
ured using Image-Pro Plus software. Figure 4 shows the 
details of the geometry measurements.

The microhardness of the beads was measured by a 
Buehler microhardness tester using a load of 200 g and a 
12-s dwell time. The measurements were performed at the 
centre of the bead at a 100-μm interval from the top of the 
bead, through the dilution and HAZ, and into the substrate 
material. Two measurements were performed at a 250-μm 
distance, from each side of the first indentation.

Table 1   Input parameters for 
the single bead specimens

Fig. 4   Geometry measurements 
and hardness measurement line

Table 2   Chemical composition 
of the substrate and cladding 
powder

Elements C% Si% Mn% P% S% Cr% Ni% Cu% Sn% Co%

AISI 1018 0.18 0.19 0.81 0.012 0.033 0.1 0.14 0.23 0.01 -
AISI 420 0.23 0.5 1.5 0.04 0.03 12.6 - - - 0.02

3695The International Journal of Advanced Manufacturing Technology (2022) 118:3691–3710



1 3

To measure the stress introduced to the beads, a Proto 
X-ray diffraction system (Lab 002/LXRD 06,024) was used 
for the first two samples presented in Table 2. Six points 
were taken along the centreline of the bead where 0 is 
located at the top of the bead. The measurements were cal-
culated through the bead, the dilution zone, the heat-affected 
zone, and the substrate material. Data for the as-clad and 
post heat treatment conditions were collected and used to 
calibrate the simulation model described in the next section 
[10].

2.2 � Simulation model

The laser cladding simulation was performed by the cou-
pled thermal-metallurgical-mechanical analysis with the 
FEA software, SYSWELD (version 15). The results of the 
thermal analysis were used as an input of the mechanical 
and metallurgical analysis. In the FE model, the heat source 
was defined, and the boundary conditions were applied to 
the heat equation. The solver in the SYSWELD software 
solves a system of differential equations using a generalized 

trapeze method. The material chemical composition for the 
substrate and deposition materials is shown in Table 2. A 
three-dimensional moving heat source was applied. The 
thermal properties such as the thermal conductivity, specific 
heat, and coefficient of thermal expansion and mechanical 
properties of the material such as Young’s modulus, Poi-
son’s ratio, yield strength, and strain-hardening curves are 
depicted in Fig. 5 [10].

The FE model was meshed using eight-nodded hexa-
hedron elements, four-nodded surface elements, and two-
nodded linear elements for the clad lines. The mesh for 
the single-track cladded specimens consists of 16,364 ele-
ments. The size of the uniform element of the substrate was 
0.5 × 0.5 × 2 mm [10]. The input parameters to set up dif-
ferent iterations of the FE models of the single bead are the 
ones used in the experimental setup as shown in Table 1. 
It is noted that the measured bead geometry is used to cre-
ate the mesh model for the FEA. Figure 6 demonstrates the 
geometry of the substrate used in FE model.

The residual stress in the middle section of the clad 
bead was measured through the depth of the bead for the 

Fig. 5   Stress–strain curve, temperature-dependent mechanical properties and thermal properties of AISI 1018 steel [10]
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Fig. 6   The FE model of the 
single bead clad and substrate

Fig. 7   a Residual stress data 
and simulation results [13] and 
b residual stress simulation 
data for all experimental input 
variants
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single-track specimens. Figure 7 a shows the experimental 
and simulation data, and Fig. 7b illustrates the residual stress 
curves for all input configurations for the RSM design of 
experiments. Figure 8 shows the residual stress measure-
ment through the depth of the single-track bead. The residual 
stress changes from tensile to compressive form top surface 
of the bead to the substrate through the depth and again 
tensile.

Hardness correlates to yield strength and can be utilized 
for strength characterization. The Vickers microhardness 
was measured experimentally using a Buehler microhard-
ness tester. A load of 200 g and loading time 12 s were 
applied vertically in the centre of the bead keeping 150-μm 

distance from each other form the bead surface through the 
substrate [10]. Figure 9 shows the hardness measurement 
through the depth of the single-track bead specimen. The 
hardness decreases moving from the top surface of bead 
through the depth to the substrate.

3 � Development of mathematical models

Artificial neural networks, like a biological neural network, 
contain neurons and activators to learn from supervised data. 
Among the various methods that have been proposed for 
artificial neural networks, the feed-forward back-propagation 

Fig. 8   The measurement of 
residual stress in the FE model 
of the single bead clad and the 
substrate

Fig. 9   The measurement of 
hardness in the FE model of 
the single bead clad and the 
substrate
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method is well-suited to physical applications. This network 
normalizes the input domain, assigns the weights to the 
inputs, and sends the sum of the inputs with their associated 
weights to the next layer neurons. The weight assigned to 
the input or neurons represents the importance of that input 
or neuron. The activator then maps the calculated values for 
each neuron to an interval between minus one and one. The 
outputs of the neurons with weights are sent finally to the 
last layer. However, this method uses bias to reduce distur-
bance and control computation. The calculations start with 
an initial guess of the weights and biases. They are modified 
by optimizing the gradient of these guesses. The objective 
function, which is the difference of the actual output values 
from the predicted output, is optimized.

As a result, the neural network can specify an analyti-
cal mathematical model for correlating inputs to physical 
outputs. However, this method fails to detect constructive 
physical parameters in predicting outputs and provides 
the model solely based on what the user defines as data. 
However, once the inputs are introduced, the neural net-
work will be able to correlate the input to determine the 
outputs. Also, there is no unique criterion for determining 
the number of layers and neurons for the best prediction.

The adaptive neuro-fuzzy inference system was also 
explored to predict residual stress and hardness in 1D, 2D, 
and 3D domains for the single laser clad bead. The ANFIS 
model combines the best features of a neural network sys-
tem and a fuzzy system. The structure of an ANFIS model 
is demonstrated in Fig. 10. An ANFIS is used to map input 
characteristics to the output through the input membership 
functions, TSK-type fuzzy if–then rules, and output mem-
bership functions [22–24]. In the ANFIS model developed 
here, the input parameters which were used as an input to 
train the ANN model were employed.

At the computational level, ANFIS can be regarded as 
a flexible mathematical structure that can approximate 
a large class of complex nonlinear systems to a desired 
degree of accuracy [23, 24].

To clarify, assume that the fuzzy inference system has 
two inputs, x and y, and one output f. For the first-order 
Sugeno fuzzy model, a single fuzzy if–then rule assumes 
the form:

Rule number 1, if x is A1 and y is B1, then:

Rule number 2, if x is A2 and y is B2, then:

where pi , qi , and ri are linear output parameters:

•	 Layer 1: Every node in this layer contains membership 
functions described by the triangular function [25].

where ai , bi , and ci are referred to premise parameters.

•	 Layer 2: Every node in this layer is a fixed node and 
calculates the firing strength of a rule multiplication.

•	 Layer 3: Every node in this layer calculates the weight, 
which is normalized. The outputs of this layer are called 
normalized firing strengths.

•	 Layer 4: This layer output is a linear combination of the 
inputs multiplied by the normalized firing strength.

•	 Layer 5: This layer is the summation of the layer 4 out-
puts.

(1)f1 = p1x + q1y + r1

(2)f1 = p2x + q2y + r2

(3)
�A(x) =

1

1 +
|||
x−ci

ai

|||

2bi

Fig. 10   The ANFIS model 
structure based on Takagi–Sug-
eno [18]
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The adjustment of the modifiable parameters is a two-step 
process. First, the consequent parameters are identified by 
the least square estimation, and then the premise parameters 
are updated by the gradient descent [23, 24].

The mean relative error (MRE) is defined by the follow-
ing formula, Eq. (4), to be used for performance comparison 
between ANFIS and ANN model [24].

In this equation, X(exp) shows the actual data, and 
X(pred) stands for the predicted data by mathematical mod-
els. N is the number of data points.

3.1 � Mathematical models in the 1D domain

To calculate the geometry, hardness, and residual stress in 
the 1D domain, the following forward network architecture 
(MLP Network) was developed. The input parameters includ-
ing the powder feed rate (X1), laser power (X2), focal length 
of the lens (X3), laser speed (X4), and the contact tip to work 
piece distance (X5) were connected to the hidden layer.

For the hidden layer, a Tan Sigmoid activation function 
(40 neurons), and for the output layer, a linear activation 
function (7 neurons) was developed. The predicted outputs 
were width, height, penetration, dilution, hardness, tensile 
residual stress, and compressive residual stress. Here a 
70–15-15 (Training–Testing-Validation) division of data is 
used to obtain the best prediction results. A schematic view 
of the proposed artificial neural network (ANN) has been 
shown in Fig. 11.

3.2 � Mathematical models in 2D domain

In this application, the model is trained using the input data 
from the finite element models and validated by comparing 

(4)MRE =
1

N
×

N∑

i=1

|
|
|
|

Xi(exp) − Xi(pred))

Xi(exp)

|
|
|
|

its output with the experimental data and FEA results. As 
with the 1D model, the input layer consisting five input 
parameters X1–X5 were connected to three hidden layers. 
The hidden neurons were then connected to the output layer. 
The back-propagation algorithm used the Levenberg–Mar-
quardt algorithm as the training function; the MRE was con-
sidered as the performance criterion during the training for 
this model. The data set used to train the model was divided 
into training set (85% of the data) and the test and verifica-
tion set (15% of the data). Figure 12 shows the structure 
of the neural network model. The model with a 20–10-10 
architecture was selected as the best model performance for 
predicting the residual stress and hardness.

3.3 � Mathematical models in the 3D domain

In regions that have been exposed to multiple heating and 
cooling cycles, thermal residual stresses result in com-
pletely non-uniform stresses. Any symmetry assumptions 
could therefore lead to unrealistic results for residual stresses 
and hardness. Residual stresses and hardness values change 
locally, and in order to avoid failure, the entire domain of 
a part should be simulated before being manufactured to 
determine whether the part has the expected performance 
characteristics.

The purpose of this section is to explain how to analyse 
residual stresses and hardness at every single point in a 
single bead specimen using ANN and ANFIS models. A 
comparison is made between ANN and ANFIS models with 
regards to the residual stress and hardness predictions.

The feed-forward back-propagation algorithm is used in 
the current neural network. The input and output data, as 
well as the general architecture of the feed-forward back-
propagation neural network is shown in Fig. 13. The x, y, 
and z coordinates are three geometric features, and the laser 
speed and power are two process parameters for determining 
residual stress. However, the structure of available data in 
this study allowed these variables to be selected and does not 

Fig. 11   ANN Structure for the 
1D domain. Network inputs 
include PW, FR, FL, LS, and 
CTWD. The outputs of the net-
work are W, H, P, D, HRDNS, 
TRS, and CRS
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Fig. 12   Artificial neural net-
work architecture for selected 
input and output [15]

Fig. 13   General architecture of 
the neural network
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mean that these are the only effective parameters to deter-
mine residual stresses.

For the data collection, a finite element three-dimensional 
simulation for one bead and nine different sets of process 
parameters was modelled. This part contained 115,000 finite 
element cells, and each cell is regarded as one sample data. 
Laser speed and laser power are two variables. Each cell had 
three different laser power settings (1.5, 1.8, and 2 KW), 
with laser speeds of 8, 10, and 12 mm/sec, which resulted 
in nine distinct simulation results. As a result, the maximum 

number of samples is 115000 × 9 = 1,035,000. However, 
115,000 data points were selected from the bead- and heat-
affected zone to train the ANNs and ANFIS models.

After a systematic assessment to determine the number of 
layers and neurons, it was found that for this data structure, 
a neural network with one hidden layer is able to predict 
the residual stress and hardness with good performance. A 
summary of the type of network, the number of samples, 
and features investigated for the 3D model are presented in 
Table 3.

4 � Results and discussion

4.1 � 1D modelling results

The 1D model performance results are shown in Fig. 14, 
where a regression plot constructed between the target and 
the network output values is shown. The overall fitness of 
the network is equal to 0.976 which represents a very good 
fit. This is aligned with the performance characteristics 

Table 3   Neural network information for 3D data

ANN type Feed-Forward

Number of layers 1
Number of neurons 9
Activation functions TanSig
Number of data samples 115,000
Number of input features 5
Number of output features 1

Fig. 14   Regression plot of the 
developed neural network in 1D 
domain

3702 The International Journal of Advanced Manufacturing Technology (2022) 118:3691–3710



1 3

when considering geometric characteristics only [5]. In 
Fig. 15, the actual value and the network output for the 
bead hardness are plotted. The network has been consistent 
in following the trends in the data. However, in some sam-
ples, there are minor differences between the actual data 
and the network output. The residual error is mostly below 
50 Vickers (HV) as demonstrated in Fig. 16. Overall, the 
network has been able to provide a good correlation to the 
experimental hardness data, and more data should improve 
the results.

As shown in Fig. 17, the ANN model has been able to 
generate relatively accurate predictions for the residual 
stress. In Fig. 18, the residual error for the residual stress 
has been plotted. The absolute error is below 5 ksi between 
the actual and the predicted stress values for most points.

The ANFIS model was used to predict the residual 
stress and the hardness as a multi-input single output 
model. The performance of both ANFIS and ANN model 
were compared by calculating the MRE in Tables 4 and 5. 
The results show that the performance of ANFIS model 
to predict residual stress and hardness is better than the 
neural network. Figure 19 demonstrates the residual stress-
laser speed diagram being predicted by ANFIS, ANN, and 
the actual data. Figure 20 shows the microhardness-laser 
speed diagram being predicted by ANFIS, ANN, and the 
actual data.

Fig. 15   Actual value vs. the 
network value of the bead hard-
ness (HV)

Fig. 16   Residual error in bead hardness predictions

Fig. 17   Actual value vs. network output for tensile residual stress 
(ksi)
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The performance of both ANFIS and ANN models were 
compared using the MRE (Table 4). The calculated MRE 
indicates that the ANFIS method has superior performance.

Although the maximum and minimum residual stresses 
could be predicted with a relatively high level of confidence, 

no location data is included. A 2D or 3D model is required 
to illustrate this.

4.2 � 2D modelling results

The 2D cross-section ANN and ANFIS results are explored 
for 10 and 26 sample data sets for selected curves. The resid-
ual stress results are shown in Fig. 21. The MRE is evaluated 
for the ANFIS model and ANN models (Table 6).

For both the 10 and 26 sample data sets, it was observed 
that the MRE for the ANFIS model is lower than those for 
the ANN results. It was observed that ANFIS model con-
verges in less time than the ANN model. The results pre-
dicted by these models agreed with the output of the finite 
element model and showed a good accuracy in prediction 
[26].

The regression plot is displayed to validate the network 
performance. The regression plot shows the network outputs 
with respect to targets for training, validation, and test sets.

The 10-sample data set (Fig. 22) fits are not as good as 
the 26-sample data set as expected. For the 26-sample data 
set (Fig. 23), the fit is reasonably good for all data sets, with 
the R values in each case R > 0.91.

The microhardness predicted by ANFIS, ANN, and the 
experimental data for the 2D domain are shown in Fig. 24.

The MRE for the ANFIS and ANN models are summa-
rized in Table 7. Less variation occurred for the hardness 
predictive modelling for the 2D domain, which is differ-
ent than what is observed for the 1D domain MRE results. 
For both the residual stress and hardness results, the cal-
culated MRE indicates that the ANFIS model has superior 
performance.

Fig. 18   Residual error for maximum tensile residual stress predic-
tions

Table 4   Comparison between 
ANFIS and ANN models’ 
performance, predicting the 
residual stress using mean 
relative error

Network MRE

ANFIS 0.05
ANN 0.08

Table 5   Comparison between 
ANFIS and ANN models’ 
performance, predicting the 
hardness using mean relative 
error as a comparison

Network MRE

ANFIS 0.09
ANN 0.1

Fig. 19   Comparison of residual stress results predicted by ANFIS, 
ANN, and actual data

Fig. 20   Comparison of the hardness results predicted by ANFIS, 
ANN, and actual data
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4.3 � 3D modelling results

This section discusses residual stress and hardness predic-
tion in the 3D domain followed by a sensitivity analysis of 
these two AI approaches. A feed-forward back-propagation 

Fig. 21   Residual stress results, 10 data samples for (a) data set A, (b) data set B, and (c) data set E. Residual stress results, 26 data samples for 
(aa) data set A, (bb) data set B, and (cc) data set E

Table 6   Comparison between 
ANFIS and ANN models 
predicting the residual stress, 
using mean relative error as a 
comparison for 10 and 26 data 
samples

MRE 10 data set 26 data set

ANFIS 0.2 0.09
ANN 0.3 0.1
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configuration with one hidden layer was used for the ANN, 
and two membership functions were used to achieve accept-
able predictions for the ANFIS model. However, in the 3D 
domain, there is a large data set with several near-zero values 
of residual stresses. Therefore, using the MRE for data with 
near-zero values may result in a high error. For example, 
a 5 ksi stress prediction may occur for the actual value of 
1 ksi, which results in a relative MRE of 400%. However, 
the prediction of 5 ksi for a 1 ksi data value is extremely 
good where the maximum residual stress is 450 ksi in the 
part. Therefore, for the purpose of calculating the MRE, we 
selected residual stress data whose absolute value exceeded 
100 ksi to avoid misinterpretation of the models’ perfor-
mance. Due to the fact that the hardness values are far from 
zero, all the data points are used to calculate the MRE.

First, the effects of the number of neurons on the per-
formance of the neural network are examined in transverse 
residual stress prediction (Figs. 25 and 26).

Figure 25 shows that the least error occurs with a model 
with 9 neurons, which leads to a 17% error rate. Figure 26 
compares the different number of neurons along with the 
ANFIS results to the actual numerical data in the middle 

section of the bead. The actual data is shown by discrete 
solid black circles. It can be seen that the green-coloured 
case (9 neurons) aligned well with the actual data. Therefore, 
for the rest of the results, one hidden layer with 9 neurons 
was used for neural network models.

For the sake of better representing the outcome of these 
ANNs and ANFIS models in the three-dimensional domain, 
the predicted residual stresses and hardness values are shown 
in the middle section of the bead. The following two graphs 
compare the ANN and ANFIS predictions of the residual 
stress and hardness to the actual numerical results (Figs. 27 
and 28). It is clearly illustrated that right at the actual points 
(emphasized by black circles), the ANN results are closer.

For the sensitivity analysis, the derivative of the trans-
verse residual stress with respect to the length of the bead 
(z-direction), laser power, and laser speed are considered 
(Figs. 29, 30, and 31). Figure 29 shows that on one hand, 
the derivative of the residual stress with z-direction in both 
ANN and ANFIS is zero or near zero. This means that the 
transverse residual stress does not vary along the length of 
the bead. In this way, the two-dimensional assumption can 
be applied to analyse one-bead cases. However, in the case 

Fig. 22   Regression plot using 
10 data sets
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Fig. 23   Regression plot using 
26 data sets

Fig. 24   Comparison of hardness results predicted by ANFIS, ANN 
and actual data

Table 7   Comparison between 
ANFIS and ANN models’ 
performance, predicting the 
hardness using mean relative 
error as a comparison

Network MRE

ANFIS 0.08
ANN 0.09

Fig. 25   Mean relative error for 5, 7, 9, and 11 number of neurons
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of multi-bead and multi-application of the heat source, the 
scenario might be different. On the other hand, although 
the ANFIS shows near-zero values, there is a small vari-
ation of the residual stress sensitivity along the length of 
the bead.

Based on the ANN sensitivity analysis in Fig. 30, as the 
heat energy changes a little, the residual stress can vary up 
to 110 ksi, and this sensitivity decreases as the applied heat 
energy rises. It appears that ANFIS approach does not show 

predictable trends for sensitivity. More research needs to be 
done to determine whether patterns could emerge.

Figure 31 demonstrates the sensitivity of residual stress 
with respect to the laser speed. As expected in terms of 
a physical point of view, transverse residual stresses are 
affected by the laser speed. The ANN results in this figure 
point that this sensitivity remains constant in different speed 
levels, while the ANFIS results show variations.

Fig. 26   Comparison of the ANNs model with different number of 
neurons and ANFIS with actual data

Fig. 27   Comparison of ANNs and ANFIS with actual data in the 
middle section along the depth (transverse residual stress)

Fig. 28   Comparison of ANNs and ANFIS with actual data in the 
middle section along the depth (hardness)

Fig. 29   Sensitivity of transvers residual stress with respect to the 
z-direction

Fig. 30   Sensitivity of transvers residual stress with respect to the 
applied heat energy

Fig. 31   Sensitivity of transvers residual stress with respect to the 
laser speed
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The ANN and ANFIS methods can be used to predict 
characteristics throughout the bead, but the goodness of the 
prediction varies between the ANN and ANFIS approaches. 
The ANFIS model results show similar patterns to the 
collected data, but do not align well to the collected data 
points. However, the ANN modelling approach does not 
appear to have this issue, but there are overshoot regions 
that are observed. Data sufficiency may be the issue for 
both approaches. There will be other issues that will arise 
when developing predictive models for complex multi-bead 
scenarios, but this research shows the potential with an AI 
predictive modelling strategy using experimental and simu-
lation data.

5 � Summary and conclusions

Much experimental data must be collected to develop com-
prehensive prediction models for the DED process, and sim-
ulation approaches are computationally intensive. Therefore, 
machine learning approaches using data from the experi-
mental and simulation domains has much potential. Using 
a data fusion approach, machine learning-based predictive 
models for a single laser clad in the 1D, 2D, and 3D domains 
are explored. Each solution has its unique model structure; 
therefore, the nature of the problem being considered influ-
ences the structure of the solution.

For the 1D domain, discrete geometry and properties are 
predicted. Averaged values are used for the hardness values 
as previous analyses have shown that the hardness is consist-
ent in the bead but changes in the dilution and heat affected 
zones. The residual stress varies throughout the bead. This 
shows the need for a 2D or 3D approach for this property. 
Interestingly, with minimal data, the model predictions are 
generally accurate for all the parameters being assessed; 
however, the prediction data is limited in scope. More data 
will improve the model accuracy, but the limitations will 
remain.

When assessing the residual stress model in the 2D 
domain (the bead cross-sections), the ANFIS model gener-
ated less error. The prediction has good accuracy, but there 
might be the chance of missing the maximum residual 
stress since the analysis is only for one cross-section of the 
bead. It cannot be assumed that the residual stress patterns 
in the centre of the bead are consistent throughout. There-
fore, the study is expanded to the 3D domain, where the 
residual stress values along with the bead predicted. This 
data included variability throughout the data set. Although 
the ANN and ANFIS models can predict results with very 
good accuracy, issues related to both solution approaches 
are raised. Data sufficiency is one issue as properties vary 
between the nodes, as shown in Figs. 8 and 9. Training a 
neural network with non-dimensional geometry parameters 

could lead to more comprehensive results, and this is 
future work. This research will be expanded to include 
multiple bead scenarios with different percentage overlaps, 
tool path deposition strategies, and bead stacking, which 
introduces another level of complexity.
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