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Abstract
Sensorless contact force estimation methods facilitate the application of the serial manipulators to manufacturing as they 
enable robots to interact with unexpected collisions at low cost. In this paper, an external force estimation approach with no 
embedded sensors is proposed. The approach combines a Weighted Moving Average (WMA) with variable span, the standard 
Kalman filter (SKF), and its tuning routines. Improved confidence in the motor output torque is achieved due to the reduction 
of the measurement noise in the motor current by the WMA. The span of the filter adapts continuously to achieve optimal 
tradeoff between response time and precision of estimation in real time. With the comprehensive information of uncertainty 
in motor current noise and measurement errors of individual joints speed, an automatic tuning algorithm of the SKF is pre-
sented. Validation of the presented estimation approach in terms of estimation accuracy and response time was conducted on 
the Universal Robot 5 manipulator with differing end effector loads. It was found that the combined force estimation method 
leads to a reduction of the root-mean-square error and response time by 55.2% and 20.8% in comparison with the established 
method. The proposed method can be applied to any robotic manipulators as long as the motor information (current, joint 
position, and joint velocities) is available. Consequently, the cost of collision recognition could be reduced dramatically.

Keywords Sensorless contact force estimation · Standard Kalman filter · Weighted moving average · Variable span

1 Introduction

Industrial serial manipulators controlled in position mode 
play an important role in the manufacturing field. A major 
challenge for position-controlled manipulators is the unex-
pected interaction with the environment, which may dam-
age the manipulator, environment, or operator. Furthermore, 
tasks such as multi-robot cooperation [1, 2], exoskeleton 
robots [3, 4], physical Human–Robot Interaction [5, 6], pol-
ishing [7–9], assembly [10], and collision detection [11, 12] 
require monitoring of the contact force. The typical method 

to monitor the contact force information is to employ highly 
sensitive force/torque sensors on the end effector or joint 
torque sensors. Depending on the location of these sen-
sors, hybrid position/force control [13] and impedance con-
trol [14] are proposed and well developed in the past four 
decades.

However, the high price of these sensors limits their 
popularity in industry. In addition, the performance of the 
sensors can be affected by environmental factors such as 
temperature and humidity. In order to achieve force contact 
estimation without such sensors, various sensorless contact 
force estimation methods have been proposed. In [15–19], 
contact force estimation methods that utilize a disturbance 
observer are suggested. When the manipulator interacts 
with the environment, the exerted force is regarded as the 
disturbance and estimated by comparing the actual out-
put to the output based on a nominal model. For nonlinear 
systems, the nonlinear disturbance observer provided by 
Chen [20] is widely used [21–23]. With these model-based 
approaches, the disturbance estimation accuracy is theoreti-
cally guaranteed. But in reality, the approaches are limited 
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by the precision of the modelled mechanics. The drawback 
of model estimation is that the inversion of the manipulator 
inertia matrix must be calculated online, which will lead to 
extra computational burden. Furthermore, a constant distur-
bance has to be assumed, and that restricts its extensive use 
beyond research.

Recently, flexible manipulators such as rehabilitation 
robots are widely used and compliance elements are well 
developed since they improve backdrivability and safety 
during physical Human–Robot Interaction. Incorporat-
ing compliance elements, sensorless force estimation can 
be conducted by position measurement. For example, stiff 
and sensitive joint torque estimation is realized due to the 
structural elasticity of the robotic joints with harmonic drive 
transmission in [24–26], where only motor-side and link-side 
position measurements are required. However, this approach 
requires a harmonic drive compliance model before it is 
performed, which is very complicated to implement. Fur-
thermore, compliant elements ultimately leading to high 
costs imply that direct force measurement is preferable in 
many cases. Other kinds of sensorless contact force estima-
tion approaches, such as time delay estimation and virtual 
springs, can be found in [10] and [27], respectively.

Another method relying on expressing manipulator 
dynamics in the format of the generalized momentum is 
introduced by De Luca et al. [28–30]. This method was 
originally designed for force/position control and collision 
detection, but more recently, researchers have exploited 
its further application to lead-through programming [31]. 
Using motor current and Moore–Penrose generalized 
inverse matrix, Yuan et al. [32] estimate external force/
torque on the end effector and apply it to a combined 
control mode. Similarly, motor current is monitored in 
[33] and transformed to joint torques, which is then used 
to estimate the external force. In [34], a novel collision 
detection method based on virtual powers indexes is stud-
ied. Essentially speaking, [32–37] all employ De Luca’s 
dynamic model in the generalized momentum format 
since it works independently of joint acceleration meas-
urements and inversion of the manipulator inertia matrix. 
However, the research based on that model is limited to 
collision detection or low-precision force control because 
the noise in the measured current can lead to false-positive 
collision recognition or insufficient force estimation pre-
cision. In order to solve that problem, the Kalman filter 
is investigated and applied to contact force sensing with 
the generalized momentum model. In [38], an estimator, 
which utilizes the extended Kalman filter and a Lyapunov-
based adaption law, is proposed to estimate the contact 
force. The proposed estimator is robust to model errors 
and sensor noise. In [39], the estimator is modified and 
assumptions like underlying patterns govern subject 
behavior are not required anymore. In [40], the authors 

propose a semiparametric dynamics model and train the 
nonparametric part with multilayer perception network. 
With the composite model, the contact force is regarded 
as a disturbance variable observed by the Kalman filter. 
The uncertainty in the dynamics is neglected since the 
unmodelled effects have been compensated by the non-
parametric model. Consequently, empirical parameters are 
utilized when tuning the Kalman filter. With an automatic 
covariance matrix calibration scheme presented in [41], 
the problem of the neglected dynamic uncertainty in [40] 
is fixed. The scheme abstracts uncertainty in the system 
dynamics to improve the estimation quality. In order to 
apply the standard Kalman filter, a covariance matrix of 
the predicted state noise has to be calibrated. It is found 
that the smaller the diagonal elements of the covariance 
matrix are, the faster the Kalman filter responds to the 
external wrench. Simply, reducing the magnitude of the 
diagonal elements of the covariance matrix will be the key 
to reducing the response time. However, the covariance 
matrix in [41] is limited by the errors of the friction model, 
which are generally assumed constant. Furthermore, the 
scheme still depends on joint torque sensors when model-
ling the friction and the noise in the measured current is 
ignored.

In this paper, a contact force estimation method for a 
serial manipulator with no embedded force/torque sensors is 
proposed. The method extends existing research in terms of 
both dynamic modelling, uncertainty identification, and con-
tact force estimation. The main contributions of this paper 
are the nature of the current sensing filter and validation 
of its capacity in contact force estimation with comprehen-
sively exploited dynamic information.

The proposed approach uses a real-time Weighted Mov-
ing Average (WMA) with variable span to reduce the appar-
ent noise in the measured motor current and the magnitude 
of the diagonal elements of the covariance matrix. Due to 
the automatically varying span, the trends in the smoothed 
motor current signal are preserved when the motor output 
changes. The proposed filter is then combined with the auto-
matic tuning method of the standard Kalman filter (SKF) 
and applied to online force estimation. The estimation accu-
racy is improved and the response time is decreased in spite 
of the time lag of the WMA, which is typical of all non-
predictive moving averages.

In this paper, Sect.  2 gives the generalized momen-
tum–based model and its discretization methods. The 
implementation of the SKF is also described in this sec-
tion. Sect. 3 presents the sensorless identification method 
of the dynamic model, including the motor torque constant 
and the Stribeck friction model. Calibration of the SKF and 
the variable span of the WMA is undertaken. In Sect. 4, 
experiments on the Universal Robot 5 (UR5) manipulator 
with the proposed contact force estimation method and the 
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experimental results are shown. The experimental results 
and the effectiveness of the proposed approach are discussed 
in Sect. 5. Sect. 6 gives conclusion.

2  Dynamic modelling of the manipulator 
and application of the standard Kalman 
filter

In this research, the UR5 (as shown in Fig. 1) is employed 
to perform contact force estimation.

2.1  Modelling of UR5 based on the generalized 
momentum

The rigid body dynamics of UR5 can be described as.

For a serial manipulator with n degrees of freedom, 
M(q) ∈ ℜn×n represents the inertia matrix. CC(q, q̇) ∈ ℜn×n 
denotes the Coriolis and centrifugal matrix. g(q) ∈ ℜn×n is 
the gravity effect of the manipulator exerted in the joints. Fric-
tion torques in the joints are captured by � fri ∈ ℜn . �dri ∈ ℜn 
stands for the joint torques that drive the manipulator. q ∈ ℜn , 
q̇ ∈ ℜn , and q̈ ∈ ℜn are joint position, velocity, and accelera-
tion, respectively. The joint torques, which result from exter-
nal contact forces, are expressed as �ext ∈ ℜn . The external 
wrench f =

[
fx fy fz �x �y �z

]T
∈ ℜm is related to �ext by the 

manipulator Jacobian J(q) ∈ ℜn×m (where m is the dimen-
sion of the external force). The related equation is expressed 
as �ext = JT (q)f  , where fx , fy , and fz are the contact forces 
that occur at the tool center point (TCP) in x , y , and z direc-
tions of the base frame and �x , �y , and �z are the corresponding 
interaction torques. It is notable that m ≤ 6 can happen when 
external forces or torques in certain directions are null vectors. 
Only external forces exerted at the TCP are considered in this 

(1)M(q)q̈ + CC(q, q̇)q̇ + g(q) + 𝝉 fri + 𝝉ext + 𝝉dri = 0

research. The (kinematic) Denavit–Hartenberg and dynamic 
parameters of the UR5 are summarized in Tables 1 and 2, 
respectively.

In the general case, calculation of f  exerted on the manipu-
lator relies on the Euler–Lagrange formulation of the manipu-
lator dynamics described in (1). However, this method fails 
when real-time estimation of the external wrench is conducted, 
since joint acceleration q̈ is obtained online by numerical dif-
ferentiation of the measurable joint velocity q̇ , which will 
lead to amplification of the measurement noise. The dynamic 
model expressed in the format of the generalized momentum 
in [11] avoids the difficulty and the generalized momentum p 
of the manipulator is defined as p = M(q)q̇.

The derivate of the generalized momentum with respect to 
time is obtained as.

F o l l o w i n g  t h e  f a c t  i n 
[42] Ṁ(q) − 2CC(q, q̇) = −

(
Ṁ(q) − 2CC(q, q̇)

)T

 , Eq. (1) can 
be converted into.

(2)ṗ = Ṁ(q)q̇ +M(q)q̈

(3)ṗ = CC(q, q̇)T q̇ − g(q) − 𝝉 fri − 𝝉dri − 𝝉ext

Fig. 1  Universal Robot 5 
(UR5). (left) 3-D model. (right) 
Corresponding kinematic model

Table 1  Kinematic parameters of UR5

Parameters

Joint �i[rad] ai−1[m] di[m] �i−1[rad]

1 q
1

0 0.089159 0
2 q

2
0 0 π/2

3 q
3

 − 0.425 0 0
4 q

4
 − 0.39225 0.10915 0

5 q
5

0 0.09465 π/2
6 q

6
0 0.0823  − π/2
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Defining the term 𝝉 inp = CC(q, q̇)T q̇ − g(q) − 𝝉 fri − 𝝉dri 
and substituting it into (1), the dynamics of the manipulator 
can be written as

where ep ∼ N
(
0,�2

Dyn

)
 denotes the noise resulting from 

� inp . �2
Dyn

 is assumed as a diagonal matrix reflecting that 
errors in the individual joints are independent and 
�
2
Dyn

∈ ℜn×n . In [41], the uncertainty of the friction model 
is regarded as the dominant part in the manipulator dynamic 
model. However, the term �dri included in (4) is obtained 
based on the noisy current. It is reasonable to consider the 
uncertainty in the measured current as the dominant noise 
in (4) and the details can be found in Sect. 3.

2.2  Discretization of the UR5 dynamics

The dynamics of the external wrench is defined as.

where S ∈ ℜm×m is the dynamic matrix of the external 
wrench. The uncertainty of the external wrench is assumed 
to be normally distributed as ef ∼ N

(
0,�2

f

)
 , �2

f
 is assumed 

as a diagonal matrix reflecting that uncertainty of the exter-
nal wrench in each direction is independent and �2

f
∈ ℜn×n . 

Intuitively, S is determined according to the external wrench. 

(4)ṗ = 𝝉 inp − J(q)T f + ep

(5)ḟ = Sf + ef

However, the prior information of the external forces/torques 
is not available when the manipulator interacts with the 
unexpected environment. Hence, S is defaulted as 0 in this 
approach and ḟ = ef  . The default is appropriate when con-
stant contact estimation is conducted and it also works well 
with varying external wrench since large diagonal elements 
of �2

f
 are employed in our research in order to avoid the 

assumption that the contact force is constant. However, the 
diagonal elements must be limited to a certain magnitude as 
larger diagonal elements will result in increased noise ampli-
fication. The situation is improved in our research due to the 
introduction of the WMA. In other words, during the same 
response period (with the same �2

f
 ), the noise is less than 

that resulting from the SKF.
With (4) and (5), the state vector can be defined as 

x =
[
p, f

]T
∈ ℜn+m . The generalized momentum p is avail-

able since both q and q̇ can be measured and thus the output 
y of the system is obtained. The state model of the manipula-
tor is expressed as

w h e r e  A =

[
0n×n −J(q)T

0n×n S

]

  ,  B =

[
In

0m×n

]

  ,  a n d 

C =
[
In 0n×m

]
 are the state matrices. w =

[
eT
p
eT
f

]T
∈ ℜn+m 

denotes the covariance matrix of the predicted state noise. 
u = � inp is the input of the state model and the measurement 
noise is Z ∼ N

(
0,�2

mea

)
 with �2

mea
∈ ℜn×n . The upper part of 

(6)
ẋ = Ax + Bu + w

y = Cx + Z.

Table 2  Dynamic parameters of 
the UR5

Parameters

Link Mass [kg] Centre of mass [m] Inertial tensor [kgּ  m2]

1 3.7 [0, − 0.02561, 0.00193]
I
1
=

⎡
⎢
⎢
⎣

0.0084 0 0

0 0.0084 0

0 0 0.0064

⎤
⎥
⎥
⎦

2 8.393 [0.2125, 0, 0.11336]
I
2
=

⎡
⎢
⎢
⎣

0.0078 0 0

0 0.2100 0

0 0 0.2100

⎤
⎥
⎥
⎦

3 2.33 [0.15, 0.0, 0.0265]
I
3
=

⎡
⎢
⎢
⎣

0.0016 0 0

0 0.0462 0

0 0 0.0462

⎤
⎥
⎥
⎦

4 1.219 [0, − 0.0018, 0.01634]
I
4
=

⎡
⎢
⎢
⎣

0.0016 0 0

0 0.0009 0

0 0 0.0016

⎤
⎥
⎥
⎦

5 1.219 [0, 0.0018,0.01634]
I
5
=

⎡
⎢
⎢
⎣

0.0016 0 0

0 0.0009 0

0 0 0.0016

⎤
⎥
⎥
⎦

6 0.1879 [0, 0, − 0.001159]
I
6
=

⎡
⎢
⎢
⎣

0.0001 0 0

0 0.0001 0

0 0 0.0001

⎤
⎥
⎥
⎦
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Eq. (6) is intended to allow the approach to manage uncertain 
loads.

The SKF is applied to the discretized system and thus, the 
state space dynamics (6) are discretized as

where k and k + 1 are the time steps of the discrete sys-
tem. With the method proposed in [43], the discretized 
matrices Ak+1 , Bk+1 , and Ck+1 are obtained by

The measurement noise covariance matrix is calculated 
by

where ts is the sampling time. Following [44], the discre-
tized predicted state noise matrix Qk+1 is given by

where the covariance matrix of the predicted state noise 

is expressed as �2
pro

=

[
�
2
Dyn

0m×n

0n×m �
2
f

]

.

2.3  Implementation of the standard Kalman filter

With (7)–(10), the SKF is implemented as follows:
Step 1 Initialize the state vector x0 and covariance matrix P0.
In the general case, the initial state vector and the ini-

tial covariance matrix are defaulted as x0 = 0(m+n)×1 and 
P0 = Im+n , respectively. However, a rough estimation can 
be considered the initial value if it is known a priori.

Step 2 Discretize the system matrices.
A is a time-varying matrix since it contains the joint 

position–based manipulator Jacobian J(q) . As a result, the 
system matrices have to be discretized in each circulatory 
computation following (8)–(10).

Step 3. Predict the state vector and the covariance matrix.

Step 4 Update the Kalman gain.

(7)
xk+1 = Ak+1xk + Bk+1uk+1 + wk+1

yk+1 = Ck+1xk+1 + zk+1

(8)

[
Ak+1 Bk+1

0n×(n+m) In

]

= exp

([
A B

0n×(n+m) 0n×n

]

ts

)

C = Ck+1

(9)�
2
k+1

= �
2
mea

∕ts

(10)

[
M11

k+1
M12

k+1

0(n+m)×(n+m) M
22
k+1

]

= exp

([
A �

2
pro

0(n+m)×(n+m) −A

]

ts

)

Qk+1 = (M22
k+1

)TM12
k+1

(11)
xk+1 = Ak+1xk + Bk+1uk+1

Pk+1 = Ak+1PkA
T
k+1

+ Qk+1

(12)Kk+1 = Pk+1C
T
k+1

∕
(
Ck+1Pk+1C

T
k+1

+ �
2
k+1

)

Step 5 Update the state vector and covariance matrix 
with the measurement.

Step 6 Compute the external wrench and then repeat 
Step 2.

3  Identification of the dynamic parameter 
and tuning of the standard Kalman filter

In order to implement the SKF, the dynamic model of the 
manipulator must be defined and identification of the 
unknown dynamic parameters must be performed. Further-
more, the predicted state noise matrix �2

Dyn
 , �2

f
 , and the 

measurement covariance matrix �2
mea

 must be calibrated. 
In [31] and [40], the motor constant and gearbox ratio are 
given and therefore the dynamic model of �dri is obtained. 
Furthermore, in [6] and [40], joint torque sensors are used 
to calibrate the friction model. However, joint torque sen-
sors are not used in this research and an alternative is pro-
posed. For simplification, the elbow joint of the UR5 is 
conducted to display how the identification approach 
works and the sketch of the UR5 is shown in Fig. 2.

(13)
xk+1 = xk+1 + Kk+1

(
yk+1 − Ck+1xk+1

)

Pk+1 =
(
I − Kk+1Ck+1

)
Pk+1

(14)f k+1 =
[
0m+n Im

]
xk+1

Fig. 2  Sketch of the UR5
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3.1  Identification of the motor torque and friction

It is to be noticed that, in this brief, only the motor current 
i  , joint position q , and joint velocity q̇ are measurable. The 
joint driving torque is calculated by

where �̂elbow , ielbow , kelbow , and relbow denote the driving 
torque, motor current, motor torque constant, and gearbox 
ratio of the elbow joint, respectively. A composite term is 
subsequently defined as

The term celbow of the elbow joint is determined experi-
mentally by moving the elbow joint at a constant speed 
clockwise and counterclockwise while the other joints stay 
stationary (as shown in Fig. 3).

When the elbow joint rotates clockwise and coun-
terclockwise without external wrench, the manipulator 
dynamics described in terms of current can be expressed 
as

where i
gra

 is the current related to the elbow joint torque 
resulting from the gravity of Link 3, Link 4, Link 5, Link 
6, Wrist 1, Wrist 2, and Wrist 3. i

fri
 denotes the current 

corresponding to the elbow joint friction. i+
dri

 and i−
dri

 indi-
cate the motor currents with the elbow joint moving clock-
wise and counterclockwise, respectively. With (17), i

gra
 is 

calculated

(15)�̂elbow = ielbowkelbowrelbow

(16)celbow = kelbowrelbow

(17)
i
gra

+ i
fri
+ i+

dri
= 0

i
gra

− i
fri
+ i−

dri
= 0

An accurate dynamic model is assumed and thus the term 
celbow can be obtained by

where gelbow is the elbow joint torques resulting from 
gravity in (1).

Generally, the friction increases discontinuously as the 
relative velocity of the contact surfaces increases. Therefore, 
the Stribeck model is utilized to express the nonlinearity 
of the friction. Following [45], the Stribeck model can be 
described as

where f c stands for the Column friction, f s is the static 
friction, q̇s represents the Stribeck velocity, �s denotes an 
empirical parameter, and f q̇ is the viscous friction.

With (17) and (19), the friction of the elbow joint moving 
at different speed is obtained.

Consequently, the unknown parameters in (20) are 
identified.

3.2  The Weighted Moving Average with variable 
span and covariance matrix of predicted state 
noise

In order to implement the SKF, the predicted state noise w 
and the measurement noise Z must be calibrated. Note that 
the term � inp contains the noise caused by the measurement 
of q,q̇ , and i  . In contrast with [41] where the noise resulting 
from q and i is ignored, all the noise is regarded as a combi-
nation and analyzed in this research. Experiments without 
external wrench are performed. Since the joint accelera-
tion is unmeasurable, the individual joints move at constant 
speed in the experiments and the ideal joint output torques 
are calculated by

The UR5 manipulator consists of DC motors. The mean 
of the motor current can be assumed as the valid value. 
Based on the smoothed currents, the measured joint output 
torques are calculated in the same way as that in (15). In 
order to smooth the currents, a Weighted Moving Average 
with variable span is proposed (as shown in Fig. 4).

where id is the measured current at step time d  . r and d 
denote the step times. t is the number of the samples which 
are averaged in each step and the detail of how t  is deter-
mined is described in the following part. iopt

d
 stands for the 

(18)i
gra

=
(
−i+

dri
− i−

dri

)
∕2.

(19)celbow = gelbow∕igra

(20)f (q̇) = f c +
(
f s − f c

)
exp

(
−||q̇∕q̇s||𝜹s

)
+ f q̇q̇

(21)f (q̇) =
(
i−
dri

− i+
dri

)
celbow∕2

(22)𝝉dri = −CC(q, q̇)q̇ − g(q) − 𝝉 fri.

Fig. 3  Identification of the motor torque constant and friction
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filtered current at step time d  . � is an experimentally deter-
mined parameter which is used to decide whether the span 
varies or not. W(d, t) is the Weighted Moving Average and 
is calculated by

In this research, We assume that the time gap between 
any two detected changes of the current is larger than ts ⋅ t.

Implementation of the WMA with variable span is as 
follows:

Step 1 At time step d(1 ≤ d < t ), d samples ( id included) 
before id are averaged to get the optimal option iopt

d
= W(d, d) 

(as shown in Fig. 5).
Step 2 At time step d(t ≤ d  ), t  samples ( id included) 

before id are averaged to get the optimal option iopt
d

= W(d, t) . 
At the same time, id+1 is checked to make sure whether exter-
nal force occurs (as shown in Fig. 6). If external force is 

(23)W(d, t) = 2
[
idt + id−1(t − 1) + ... + id−t+1

]/
[t(t + 1)].

detected, goes to Step 3; otherwise, iopt
d+1

 is calculated in a 
similar manner to Step 2.

Step 3 In case of dramatic change in the external wrench 
or joint acceleration at time step d + 1 , a sudden rise or drop 
will occur in the current. If the change between the present 
current id+1 and the previous currents iopt

d
 exceeds � , an exter-

nal wrench is assumed. Hence, from time step d + 1 to time 
step d + t  , b samples ( id+b included, 1 ≤ b < t  ) before id+b 
are averaged to get the optimal option iopt

d+b
= W(d + b, b) (as 

shown in Fig. 7).
Step 4 At time step d + t , the filter goes back to Step 2. 

i
opt

d+t
= W(d + t, t) is calculated and verification of id+t+1 is 

performed (as shown in Fig. 8).
The errors between the target joint output torques �dri and 

the optimized torques �̂dri calculated from the filtered current 
are analyzed with the Anderson–Darling test. In particular, 
the base joint of the UR5 is commanded to move without 
external forces/torques while the current is recorded and 
processed by the WMA with span t  . The errors are shown 
in terms of relative frequency in Fig. 9. The Anderson–Dar-
ling test verifies the appearance of a Gaussian distribution 

Fig. 4  The weighted moving average based on variable span

Fig. 5  d samples (id included) before id are in the dotted-line rectan-
gle

Fig. 6  t samples (id included) before id are in the dotted-line rectan-
gle. id+1 in the dashed-line rectangle is checked

Fig. 7  b samples (id+b included) before id+b are in the dotted-line rec-
tangle
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in Fig. 9. The variance of the errors is then obtained from 
the empirical standard deviation (SD).

The covariance matrix �2
Dyn

 of the predicted state noise ep 
is further researched. For the individual joints, the variance 
varies as the span t changes. Therefore, identification experi-
ments for each joint with different t  have to be performed 
before conducting the force estimation. For example, the 
elbow joint is commanded to move at constant speed and the 
current was recorded. Figure 10 shows the dependence of 
the variance in the joint output torque errors on different 
spans. The variance drops with increasing t up to approxi-
mately t = 25 , after which there are negligible changes.

It is assumed that a greater number of samples in each 
averaging step will lead to a lower noise contribution in the 
current signal. However, excessive samples in each step will 
weaken the trends in the smoothed motor current signal 
because the actual current is changing all the time. Hence, 
the variance initially decreases as t  increases. After that, 
the variance in the joint output torque errors plateaus as the 
smoothing benefits are cancelled by the latency of the sys-
tem. Worse yet, excessive examples in each averaging step 
can lead to new errors that are not Gaussian. In that case, the 
biggest span of t = 19 , with which the noise is still normally 

distributed for the elbow joints, is determined and the related 
variance is obtained.

3.3  Measurement noise matrix

In order to extract the measurement noise, the elbow joint 
of the UR5 manipulator is moved at constant velocity as 
an example, the empirical distribution of the errors 
between the target speed q̇ and the measured mean speed 
̂̇q is shown in Fig. 11. With the Anderson–Darling test, it 
can be reasonably concluded that the actual speed is nor-
mally distributed withq̇ ∼ N

(
q̇,�2

q̇

)
 . The standard devia-

tion of the elbow joint 𝜎elbow
q̇

 is observed to vary as the 
speed changes and the trend is depicted in Fig. 12. As 
shown in Fig. 12, 𝜎elbow

q̇
 increases approximately linearly 

with the velocity from speed 0 to 0.13 rad/s and stays con-
stant above that speed. Similarly, the variance correspond-
ing to the individual joints velocity is obtained.

where q̇i
thr

 is a threshold velocity for the i joint of the 
manipulator. a , b , and c are obtained with offline identifi-
cation experiment.

(24)
(
𝜎
i
q̇

)2

=

{(
aq̇i + b

)2
, ||q̇

i|| ≤ q̇i
thr

c2, ||q̇
i|| > q̇i

thr

Fig. 8  t samples (id+t included) 
before id+t are in the dotted-line 
rectangle. id+t+1 in the dashed-
line rectangle is checked

Fig. 9  Identification of the predicted state noise e
p
 . The base joint is 

employed as an example and moves without payload. The relative fre-
quency of the errors is described as a histogram. The errors are com-
puted with �

dri
 obtained from (22) and �̂

dri
 obtained from (15). The 

red line is an added fitted line for the normal distribution, the vari-
ance of which is computed from the empirical standard deviation of 
the errors

Fig. 10  The variance of the predicted state noise e
p
 with different 

spans. The green circles stand for the noise which is normally dis-
tributed. The red crosses denote the noise that does not follow normal 
distribution
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The dynamic model of the manipulator is assumed to 
be accurate, and thus the measurement noise is caused by 
only the measured terms q and q̇ . The noise in (6) can thus 
be expressed by

where �2
mea

= M(q)�2
q̇
M(q).

4  Experiments and results

4.1  Experiments

The UR5 manipulator is used and moves to an initial position 
with a gripper attached as shown in Fig. 13a. After initializa-
tion, the gripper is commanded to move up at constant speed 

(25)Z ∼ N
(
0,�2

mea

)

with no payload. After 33.6 mm of motion, the gripper engages 
an unexpected payload (a lead-filled cup) as shown in Fig. 13b, 
and begins to lift the payload (Fig. 13c). The experiment is 
repeated with payloads of 400 to 900 g with increments of 
100 g and from 1000 to 2000 g with increments of 200 g. 
Furthermore, experiments with the TCP moving with the 
constant payload but at different speeds (0.04 m/s, 0.06 m/s, 

Fig. 11  Identification of the measurement noise matrix. The elbow 
joint is employed as an example and moves at constant speed. The 
relative frequency of the errors is described as a histogram. The 
errors are computed with the target speed q̇ and the measured mean 
speed ̂̇q  . The red line is an added fitted line for the normal distribu-
tion, the variance of which is computed from the empirical standard 
deviation of the errors

Fig. 12  The standard deviation of the elbow joint speed noise at dif-
ferent speeds

Fig. 13  a–c Demonstration scenario for the experiment. The UR5 
manipulator is initialized as a. The TCP is commanded to move up 
vertically and the effect of the cup filled with lead can be regarded as 
constant external wrench exerted on the TCP
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and 0.08 m/s, respectively) are conducted. Moreover, experi-
ments with the UR5 moving in different orientation from that 
in Fig. 13 are performed. At last, experiments of estimating 
varying contact with the SKFW and the standard Kalman filter 
based on the Weighted Moving Average with no variable span 
(SKFNW) are performed.

During the movement, the joint kinematic information 
and motor current are recorded with a sampling frequency of 
125 Hz. The effect of the gripper attached on the end of the 
manipulator and the payload is regarded as a constant force in 
the −Z0 direction.

4.2  Results

Figure 14 shows the force estimation performance with meth-
ods of the SKF presented in [40] and the proposed estimation 
approach of the standard Kalman filter based on the Weighted 
Moving Average with variable span (SKFW). The torque esti-
mation results are displayed in Fig. 15.

As the payload varies, the root-mean-squared errors 
(RMSE) of the force estimation based on the SKF and the 
SKFW are displayed in Fig. 16.

The response time of force sensing based on both methods 
varies with the payload changes as shown in Fig. 17.

The variance of the estimation errors of the approaches 
using the same payload and at different speeds are compared 
in Tables 3 and 4.

Figure 18 shows the performance of the comparison experi-
ments with the UR5 in the alternative orientation. Both meth-
ods are employed and their estimation results are displayed. 
The force estimation results based on the SKFNW and the 
SKFW are displayed in Fig. 19.

Fig. 14  Estimation of contact force (with 1400 g lead inside the cup) 
in the –Z0 direction. The applied force (black curve) is compared to 
estimation with the SKF in [40] (green curve) and the SKFW (red 
curve). The dashed black line indicates the time when external force 
is exerted on the TCP. The dashed green and red ones show the 
response time of the two estimation methods

Fig. 15  Estimation of contact torque (with 1000  g lead inside the 
cup) in the X0 direction. The applied torque (black curve) is com-
pared to estimation with the SKF in [40] (green curve) and the SKFW 
(red curve). The dashed black line indicates the time when external 
torque is exerted on the TCP. The dashed green and red ones show 
the response time of the two estimation methods

Fig. 16  The RMSE of the external force estimation based on the SKF 
and the SKFW with the lead changing from 400 to 1000 g with incre-
ments of 100 g and from 1000 to 2000 g with increments of 200 g. 
The green curve stands for the RMSE of the force estimation based 
on the SKF. The red curve denotes the RMSE of the force estimation 
based on the SKFW

Fig. 17  Comparison of the response time with different payloads. The 
green curve and the red one stand for the force estimation based on 
SKF and SKFW, respectively
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5  Discussion

The proposed contact force estimation method based on 
the SKFW works effectively in the physical experiments 
and the response time is reduced by 55.2% on average 
compared to an established SKF approach [40] (Fig. 17). 
Furthermore, the root-mean-square error between the esti-
mator force and the measured contact force is reduced by 
20.8% (Fig. 16). As to the torque estimation, the estima-
tion errors of the SKFW are smaller than those from the 
SKF (Table 4). However, the response time of the SKFW 
is similar to that of the SKF (Fig. 15).

5.1  Influence of the WMA and the variable span

The proposed SKFW method is validated with the TCP of 
the UR5 moving at different speeds (Tables 3 and 4) and in 
different orientations (Fig. 18). The proposed method ulti-
mately produces force and torque estimation errors that are 
smaller than the established method.

As displayed in Fig. 19, the SKFW works faster than 
the SKFNW when dealing with the varying contact, 
which validates the function of the variable span. When 
external force is exerted on the manipulator, the previ-
ous current samples are omitted in each averaging step 
because of the variable span. The benefit is twofold: 
Firstly, the fixed span approach has a longer response 
time. Secondly, estimation errors are reduced signifi-
cantly by the proposed approach since there are apparent 
gaps between previous current samples and the current 
samples extracted when there is external force on the 
manipulator.

In summary, both the WMA and the function of the 
variable span improve estimation performance in terms 
of response time and estimation quality. The noise in the 
measured current is reduced by the WMA and thus the 
diagonal elements of related �2

Dyn
 are reduced. Smaller 

diagonal elements of covariance matrix �2
Dyn

 lead to a 
lower response time for the system.

5.2  Influence of the generalized momentum model

Since the dynamic model is based on the format of the gen-
eralized momentum, the proposed contact force estimation 
method works independently of inversion of the manipulator 

Table 3  Variance  [N2] of the force estimation errors with different 
motions

Speed

Method 0.04 m/s 0.06 m/s 0.08 m/s

SKF 2.048 1.638 1.06
SKFW 1.734 1.306 0.8601

Table 4  Variance [(Nm)2] of the torque estimation errors with differ-
ent motions

Speed

Method 0.04 m/s 0.06 m/s 0.08 m/s

SKF 0.0950 0.101 0.0866
SKFW 0.0433 0.0340 0.0211

Fig. 18  Force estimation results of the comparison experiments (in 
different orientation from that in Fig. 13) in the –Z0 direction (with 
1000 g lead inside the cup). The applied force (black curve) is com-
pared to estimation with the SKF in [40] (green curve) and the SKFW 
(red curve). The dashed black line indicates the time when external 
force is exerted on the TCP. The dashed green and red ones show the 
response time of the two estimation methods

Fig. 19  Estimation of contact force (with 1400 g lead inside the cup) 
in the –Z0 direction. The applied force (black curve) is compared to 
estimation with the SKFNW (blue curve) and the SKFW (red curve). 
The dashed black line indicates the time when external force is 
exerted on the TCP. The dashed blue and red ones show the response 
time of the two estimation methods
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inertia matrix, and consequently the computational burden is 
low. Furthermore, joint acceleration is not required with the 
proposed method, and therefore amplification of the meas-
urement noise can be avoided. In particular, acceleration is 
computed from measured joint angles. However, measure-
ment noise is amplified via the numerical differentiation uti-
lized in a latter step. Uncertainty of the manipulator dynam-
ics is overcome in the approach presented since the noise in 
the measured current is taken into account and ultimately 
allows for definition of a more accurate dynamic model. For 
robotic manipulator tasks that require contact force informa-
tion, the presented estimation method and control approach 
are validated in terms of response time and estimation qual-
ity. In addition, the costs of physical implementation of the 
approach cost are lower than the similar standard Kalman 
filter–based approaches [40, 41] as it works independently 
of force/torque sensors. It can potentially be applied to any 
robotic manipulators where the kinematic and dynamic 
information is accessible. However, the benefits in robotic 
manipulators of different orientations and sizes have not 
been established.

5.3  Limitation of the proposed method and future 
works

It must be noted that in order to apply the proposed estima-
tion method, a time gap between every two occurrences of 
the external force during the experiment is assumed to be 
larger than ts ⋅ t . ts ⋅ t is a tiny gap and the assumption is valid 
in many manufacturing applications. However, if the robotic 
manipulator is used in an environment with high-frequency 
vibration, such as turning or milling processes, the time 
gaps between contact may become smaller than ts ⋅ t  , and 
the approach may not yield benefit. Future research should 
be conducted to evaluate the performance of the approach 
in such turning or milling (or similar) applications and if 
necessary consider additions to the SKFW calculation that 
retain the benefits of the proposed approaches.

The proposed approach is validated in a physical sys-
tem implementation with differing loading scenarios. 
The validation used key parameters that are critical for 
the effective implementation of robotic manipulators—
response time and force estimation precision. The control 
system is not aware of the force contact before occur-
rence nor the weight of the end effector loading. Using a 
series of loading scenarios shows that parameters of the 
approach are not specifically tuned to succeed in limited 
range of applications. Hence, the successful results from 
the implementation of the approach can be assumed for 
industrial applications.

Identification results vary as the environment changes. 
For example, the friction and noise are affected by the 
loading. This problem was somewhat mitigated in this 

case since the maximum load on the manipulator was 
2 kg. However, a comprehensive system identification 
method will help to obtain more accurate model param-
eters. Therefore, modern machine learning techniques 
will be employed in our future work to determine the 
friction and noise.

In the case of some particular orientations, singular-
ity may occur and thus, the magnitude of the external 
wrench in some directions cannot be observed by the 
robot. Consequently, the effectiveness of the proposed 
method will be affected. This phenomenon will be con-
sidered in the future to improve the generalizability of 
our work.

6  Conclusion

This paper proposes a novel sensorless contact force esti-
mation method. The serial manipulator is modelled in 
the format of generalized momentum and the dynamic 
parameters are identified without additional force/torque 
sensors. The noisy motor current measurements are opti-
mized by the WMA and the covariance matrix of the 
predicted state noise is determined with an optimal span 
t  . The measurement noise matrix is obtained taking the 
uncertainty in the joint speeds into account. The standard 
Kalman filter is tuned and then used to conduct con-
tact force estimation with the optimized current from 
the WMA. Experiments are then performed on the UR5 
manipulator. Compared to the existing methods in the 
literature, the proposed estimation approach improves the 
estimation results.
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