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Abstract
In manufacturing systems, there are environments where the elaboration of a product requires a series of sequential opera-
tions, involving the configuration of machines by stages, intermediate buffer capacities, definition of assembly lines, and 
routing of parts. The objective of this research is to develop a modeling and statistical analysis of complexity in manufacturing 
systems under flow shop and hybrid environments. The methodological approach starts with the structural modeling, then 
the measurement of the complexity in the systems is developed, the hypotheses are proposed, and finally an experimental 
and factorial statistical analysis is developed. The results obtained corroborate the hypotheses proposed, where statistically 
the structural design factors and the variation of production time per stage have a significant influence on the response vari-
able associated to the total complexity. Similarly, there is evidence of correlation between the performance indicators and 
the variable studied, in which the incidence with production costs stands out.
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1  Introduction

Manufacturing is the process of adding value to a material 
to build a product [1]. This art involves a repetitive sequence 
of operations that result in the production of goods and ser-
vices, which requires resources such as facilities, people, 
material, capital, energy, and information [2], allowing the 
emergence of the complexity component. Since a manu-
facturing system the intervention of these factors generate 

variations in quantity and variety of processes, products 
and services are making the systems unstable and complex. 
These are reflected (i) with materials when they do not meet 
time, quantity, and quality specifications; (ii) with labor 
when there are changes in work rhythm, absenteeism, and 
accidents; and (iii) with machines when they fail and lack 
of spare parts and tools.

According to [3], complexity in manufacturing systems 
can be static or dynamic. Static complexity refers to a char-
acteristic associated to the systems, and also to the produc-
tion processes, aligned with the structure of the facilities 
or the plant structure and considers the degree of difficulty 
for its management and control, and dynamic complexity 
refers to the analysis of the systems over time; it studies the 
trend of the actual states that the process assumes within 
the time considered. The measurement of complexity is a 
metric that is a useful and valid measure in the support of 
decision-making. According to [4], the measurement of 
complexity in manufacturing systems serves as a parameter 
to establish improvement plans, determining that systems 
with high complexity present more problems than systems 
with low complexity.

Given the above, the purpose of this research is the devel-
opment of modeling and statistical analysis of the complex-
ity in manufacturing system, considering flow shop (FS) and 
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hybrid (H) environments, which are characterized because 
all activities must be performed in the same order for the 
manufacture of the product; in this type of processes, the 
volume to be manufactured is high, has few references, and 
are continuous.

The scope of the paper covers the modeling of different 
structures considering the layout of the facilities in a pro-
duction plant [5], such as serial lines and parallel stations. 
Allowing the obtaining of key performance indicators by 
means of simulation techniques, which lead to the devel-
opment of a statistical study, with an analysis of variance 
(Anova) and multivariate. The work is divided into three 
sections: first the literature review is developed, then the 
method is established, then the results are presented, and 
finally the conclusions.

2 � Related work

Several research works on the problem of complexity of 
manufacturing systems have been identified in the literature. 
According to [6], complexity in a system is linked to the 
high number of variables and uncertainty, where [7] estab-
lishes that uncertainty is everything whose behavior is not 
known with precision and defines it as the deviation of the 
system with respect to what was planned. According to [8], 
it is derived from the structural properties of the system, 
being determined by the number and variety of elements that 
integrate it and the relationships involved in the installations.

Similarly, [9] states that increased flexibility in manufac-
turing processes and product variety lead to greater com-
plexity in the system. A complex system is understood as 
one that is composed of a large number of parts that interact 
in a non-simple way [10]. According to [11], it is also neces-
sary to take into account the number of parts, the types of 
processes, the type of operation, and the stability of produc-
tion scheduling.

According to [12], they state that complexity has begun 
to be considered as a new form of evaluation of industrial 
companies, being also one of the useful tools for the analy-
sis of improvements and business restructuring. This makes 
its management relevant since it has a direct impact on the 
system performance indicators [6]. According to [13], there 
are determining factors in manufacturing complexity such 
as (i) the product structure; (ii) the plant structure; (iii) the 
planning and scheduling functions; (iv) the flow of infor-
mation during the decision-making process; (v) the dyna-
mism, variability, and uncertainty of the environment; and 
(vi) other functions within the organization such as training, 
information, and policies.

Given the above, it is of vital importance to measure 
complexity when in an administrative environment it is 
desired to improve the operational indicators of the system 

and make efficient decisions. According to [4], the measure-
ment of complexity in manufacturing systems is a metric 
that serves as a parameter to establish improvement plans, 
and it is determined that systems with high complexity pre-
sent more problems than systems with low complexity. This 
measurement depends on the different types of complex-
ity being addressed; one of them is the static complexity 
that refers to the structures of the system and production, 
and another is the dynamic complexity that focuses on the 
behavior of the system in a time horizon. According to [4], 
when measuring complexity, it is necessary to consider on 
the one hand the system structure and on the other hand the 
uncertainty of the system. According to [7], static complex-
ity is related to the system structure, such as the number of 
products, number of processes, and number of machines, 
among others. And the dynamic complexity is a measure of 
the uncertainty in the behavior of the system during a time 
horizon, as for example, the corrective maintenance of the 
machine. This research work will focus on a measurement 
approach of static, dynamic, and total complexity, based on 
Shannon’s entropy method, in different structures of manu-
facturing systems.

3 � Method

The method to carry out the research is developed in five 
stages: (i) structural modeling of systems, (ii) measuring 
complexity in systems, (iii) hypothesis, (iv) experimental 
statistical analysis and (v) factor analysis.

3.1 � Structural modeling of systems

In manufacturing systems, operations must follow a route 
that involves the use of resources. According to [15], prod-
ucts are processed through a series of production stages, 
and the number of machines is different from one stage to 
another; some stages have only one machine, while others 
have more than one. As organizations grow and expand to 
meet their demand, they tend to have increasingly complex 
manufacturing operations [6], varying their structure from 
flow shop (FS) to hybrid (H) environment; according to [16], 
the more complexity exists in the systems and factories seek 
to expand their production capacity, acquiring additional 
parallel machines in each of the stages and transforming 
the flow line system to a hybrid flow line. Figure 1 shows a 
schematic view of the FS structure in comparison with the 
H [15].

According to [16], there are some characteristics of these 
types of structures: (i) the products follow the same linear 
path throughout the system, (ii) the jobs go from a first 
stage to the last one in order, (iii) the number of machines 
per stage can be different, (iv) buffers are present to store 
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intermediate products, (v) the process flow for each job is 
known in advance, (vi) each part is processed on at most 
one machine at each stage, and (vii) the processing time for 
each job at each visiting stage is known in advance and is 
constant. Table 1 presents several application cases found 
in the literature, where most of them belong to the process 
industry.

For the development of the structural modeling, in this 
work, all possible combinations were generated consider-
ing three stages within a process and a maximum of two 
machines per stage. Likewise, different indicators were 
established to evaluate and analyze each of the instances.

3.2 � Measuring complexity in systems

Entropic methods are based on analytical equations to measure 
complexity, facilitating entropic analysis in different types of 
scenarios and providing a quantitative basis for decision-mak-
ing. One applied method is Shannon’s information entropy, 
which is a quantitative, objective technique that allows meas-
uring both static and dynamic complexity. All the information 

used in this section is defined by [36] who based his work 
on a mathematical theory of information. Consequently, [4]
[4] take this theory as a basis and use it to measure complex-
ity in industrial organizations. The necessary information 
comes from the process, from two work focuses, (i) plan-
ning, the information collected should contain set-up times 
of each operation at each workstation, production times, and 
non-production times and (ii) the scheduling of activities, the 
information should be captured from the same development of 
the process. The results obtained are analyzed mathematically; 
Formula 1 measures the static complexity in manufacturing 
systems and Formula 2 measures the dynamic complexity.

(1)Cstatic(Cs) = −

M
∑

i=1

N
∑

j=1

Pijlog2Pij

(2)Cdynamic(Cd) = −

M
∑

i=1

N
∑

j=1

P�
ijlog2P

�
ij

Fig. 1   Flow shop and hybrid 
structure

Table 1   Literature review of 
application cases

Industry Year Author

Pharmaceuticals 2017 Bouras, A., Masmoudi, M., Saadani, N. E. H., & Bahroun, Z. [18]
1996 Guinet, A.G.P., Solomon, M. [19]

Energetics 2021 Ho, M. H., Hnaien, F., & Dugardin, F. [20]
2016 Yan, J., Li, L., Zhao, F., Zhang, F., & Zhao, Q. [21]
2013 Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. [22]

Automotive 2020 Marichelvam, M. K., Geetha, M., & Tosun, Ö. [23]
1997 Agnetis, A., Pacifici, A., Rossi, F., Lucertini, M., Nicoletti, S., 

Nicolo, F., Oriolo, G., Pacciarelli, D., Pesaro, E., [24]
Printed circuit boards 2003 Alisantoso, D., Khoo, L. P., & Jiang, P. Y. [25]

1994 Piramuthu, S., Raman, N., Shaw, M.J. [26]
1993 Tsubone, H., Ohba, M., Takamuki, H., & Miyake, Y. [27]

Glass 2020 Wang, S., Wang, X., Chu, F., & Yu, J. [28]
2017 Liu, M., Yang, X., Zhang, J., & Chu, C. [29]
1997 Leon, V.J., Ramamoorthy, B. [30]

Petrochemicals 2016 Rahmani, D., & Ramezanian, R. [31]
1998 Riane, F. [32]
1973 Salvador, M.S. [33]

Electrical and electronics 2005 Quadt, D., Kuhn, H. [34]
1988 Wittrock, R.J. [35]
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where Cs is the static complexity, Cd Static complexity, 
Pij probability of status of a given resource, M amount of 
resources, and N number of possible states.

3.3 � Hypothesis

This section identifies the factors that significantly influence the 
characteristics associated with the complexity response vari-
able: (i) structural design of the system, (ii) variability in the 
time of each stage of the process, (iii) variation in the frequency 
of arrivals, and (iv) variation in the number of arrivals of the 
entities. Therefore, the following hypotheses are proposed:

H0 (A): The effect of the structural design factor is equal 
when comparing different structures of flow shop (FS) 
and hybrid (H) environments.
H1 (A): The effect of structural design factor is different 
when comparing different structures of flow shop (FS) 
and hybrid (H) environments.
H0 (B): The effect of the time variation factor per stage is 
equal when different time levels are compared.
H1 (B): The effect of the time variation factor per stage is 
different when comparing different time levels.
H0 (C): The effect of the arrival frequency variation fac-
tor is equal when comparing different frequency levels.
H1 (C): The effect of the arrival frequency variation fac-
tor is different when comparing different frequency levels.
H0 (D): The effect of the variation factor on the number 
of arrivals of the entities is the same when comparing 
different quantity levels.
H1 (D): The effect of the variation factor on entity arrival 
quantities is equal when comparing different quantity levels.

Similarly, taking into account the results obtained in the 
performance indicators of each of the structural systems, 
such as (i) Finished products, (ii) Cycle time, (iii) Products 
in process, (iv) Throughput, (v) Productivity, (vi) Efficiency 
and (vii) Production cost. With respect to the measurement 
of complexity, the following hypotheses are made:

H0 (E): The performance indicators presented are not 
correlated with respect to the total system complexity 
measure.
H1 (E): The performance indicators are correlated with 
respect to the total system complexity measure.
H0 (F): The silver performance indicators are not cor-
related with respect to the static complexity measure of 
the system.
H1 (F): The silver performance indicators are correlated 
with respect to the static complexity measure of the system.
H0 (G): The performance indicators presented are not 
correlated with respect to the dynamic complexity meas-
ure of the system.

H1 (G): The performance indicators are correlated with 
respect to the dynamic complexity measure of the system.

3.4 � Experimental statistical analysis

The technique used is that of experimental design, to deter-
mine the level of significance of the following factors: (i) 
structural design of the system, (ii) variability in the time of 
each stage of the process, (iii) variation in the frequency of 
arrivals, and (iv) variation in the number of arrivals of the 
entities. With respect to the response variable Total com-
plexity. The study is based on the results obtained in the 
analysis of variance or ANOVA table.

3.5 � Factor analysis

Based on a multivariable correlation matrix between the 
performance indicators of each of the structural systems, 
such as (i) Finished products, (ii) Cycle time, (iii) Products 
in process, (iv) Throughput, (v) Productivity, (vi) Efficiency 
and (vii) Production cost. With respect to the total, static, 
and dynamic complexity variables, it is possible to deter-
mine if there are correlations between them and the variables 
of interest.

4 � Results

This section presents the results obtained separated by sec-
tions: (i) structural modeling, (ii) complexity measurement, 
and (iii) experimental and factorial statistical analysis.

4.1 � Structural modeling

The structural modeling considers three stages within the 
process and a maximum of two machines per stage. Varying 
the times in each one, where the yellow color represents a 
high level and the blue color a low level. Similarly, there is a 
variation in the frequency of arrivals (F) and the number of 
arrivals of the entities (Q), where the red color represents a 
high level and the green color a low level (see Fig. 2).

The modeling of the scenarios generated 256 possible 
combinations, providing, as a result for each one, the eval-
uation of the performance indicators: (i) finished products, 
Pt; (ii) cycle time, Tc; (iii) products in process, Wp; (iv) 
throughput, Th; (v) productivity, Pr; (vi) efficiency, Ef; and 
(vii) production cost, Cp. The models were implemented 
with the help of the ProModel software (Manufacturing 
Systems Simulator), which allowed the evaluation of each 
structure, considering 1 replica, a 24-h run, and a 2-h 
break. Figure 3 shows a higher performance and upward 
trend of Pt, Cp, Pr, Th, and Wp when working in wide 
H structures. Regarding Tc, the trend is downward and 
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favorable for H structures, unlike Ef, which has a down-
ward trend with higher performance in Fs environments.

4.2 � Complexity measurement

From the results obtained and from Formula 1, the static 
complexity (Cs) is calculated, considering the observed fre-
quency (Fo), probability (Pr), and entropy (E) of each of the 
structures. The last structure of block H8 with environment 
H is taken as an example for a better understanding (see 
Table 2). The calculations show a Cs equal to 1,983 bits.

Cstatic(s) = −

M
∑

i=1

N
∑

j=1

Pijlog2Pij

Consequently, taking into account Formula 2 and the 
results obtained in the simulation, the dynamic complexity 
(Cd) is calculated, considering the percentages of opera-
tion, setup, idle, waiting, blocked, and down (see Table 3). 
The calculations show a Cd equal to 7.4055 bits.

C
static

(Cs) = (0,12 + 0,12 + 0,43) + ( 0,12 + 0,12 + 0,43)

+ (0,12 + 0,12 + 0,43)

Cstatic(Cs) = 1,983 bits

Cdynamic(Cd) = −

M
∑

i=1

N
∑

j=1

P
�

ijlog2P
�

ij

Fig. 2   Types of structures for modeling
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Cdynamic(Cd) = −

M
∑

i=1

N
∑

j=1

[

0,4545 ∗ log2(0,4545)
]

+
[

0,4545 ∗ log2(0,4545)
]

+
[

0,0001 ∗ log2(0,0001)
]

+
[

0,0909 ∗ log2(0,0909)
]

+
[

0,4545 ∗ log2(0,4545)
]

+
[

0,3465 ∗ log2(0,3465)
]

+
[

0,1081 ∗ log2(0,1081)
]

+
[

0,0909 ∗ log2(0,0909)
]

+
[

0,4545 ∗ log2(0,4545)
]

+
[

0,5455 ∗ log2(0,5455)
]

+
[

0,4538 ∗ log2(0,4538)
]

+
[

0,4477 ∗ log2(0,0985)
]

+
[

0,0985 ∗ log2(0,0985)
]

+
[

0,4540 ∗ log2(0,4540)
]

+
[

0,5460 ∗ log2(0,5460)
]

+
[

0,4530 ∗ log2(45,45)
]

+
[

0,5470 ∗ log2(0,5470)
]

Figure 4 shows the results obtained for the calculation of 
Cs and Cd of all the modeled structures. It is evident that 
the greater the amplitude in the H environments, the higher 
the Cs and Cd.

4.3 � Experimental and factorial statistical analysis

The design of experiments technique was used to deter-
mine the level of significance of the factors by means of an 
analysis of variances or ANOVA table. Table 4 shows that 
the factors structural design and production time per stage 
have a p-value of less than 0.05, both in the main effects 

Cdynamic(Cd) = 7,4055 bits

Fig. 3   Performance indicator 
results

Table 2   Static complexity 
measurement results

Station A Station B Station C

Fo Pr E Fo Pr E Fo Pr E Cs

Machine 1 22 0.92 0.12 22 0.92 0.12 22 0.92 0.12
Machine 2 22 0.92 0.12 22 0.92 0.12 22 0.92 0.12
Break 4 0.17 0.43 4 0.17 0.43 4 0.17 0.43
Total 48 2.00 0.66 48 2.00 0.66 48 2.00 0.66 1.983

Table 3   Simulation results for 
stations in structure H8

Operation Setup Idle Waiting Blocked Down

Station A Machine 1 45.45 0.00 45.45 0.01 9.09 0.00
Machine 2 45.45 0.00 34.65 10.81 9.09 0.00

Station B Machine 1 45.45 0.00 54.55 0.00 0.00 0.00
Machine 2 45.38 0.00 44.77 9.85 0.00 0.00

Station C Machine 1 45.40 0.00 54.60 0.00 0.00 0.00
Machine 2 45.30 0.00 54.70 0.00 0.00 0.00
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and in the interactions; therefore, the null hypotheses—
H0(A) and H0(B)—are rejected. The opposite case occurs 
with the factors time of arrivals and number of arrivals, 
which present a p-value greater than 0.05; therefore, the 

null hypothesis—H0(C) and H0(D)—are accepted. Given 
the above, it can be inferred that factors A and B have a 
significant influence on total complexity in manufacturing 
systems, with a 95% confidence level.

A graphical analysis using Statgraphics Centurion v19 
software allows comparing the different levels of the factors 
with respect to the total complexity variable. Regarding the 
structural design factor, the results indicate that there is a 
significant difference when comparing the types of struc-
tures, with A, B, and C generating the lowest total complex-
ity and F, G, and H generating the highest total complexity 
(see Fig. 5). Given the above, it can be inferred that the 
greater the number of machines in the different stages, the 
greater the total complexity.

Regarding the production time factor by stages, the results 
obtained indicate that there is a significant difference when 
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Fig. 4   Results of static and dynamic complexity calculations

Table 4   Results of the analysis 
of variance—ANOVA for total 
complexity

Source Sum of squares Gl Medium square F-ratio p-value

Major effects
A: Structural design 349.261 49.8945 488.74 0.0000
B: Production times 36.0067 5.14382 50.39 0.0000
C: Arrival time 0 1 0 0.00 1.0000
D: Number of arrivals 0.122063 1 0.122063 1.20 0.2758
Interactions
AB 75.4261 1.53931 15.08 0.0000
AC 0 0 0.00 1.0000
AD 8.20386 1.17198 11.48 0.0000
BC 0 0 0.00 1.0000
BD 21.0011 3.00016 29.39 0.0000
CD 0 1 0 0.00 1.0000
Waste 16.4361 0.102087
Total (corrected) 506.457

Fig. 5   Graph of means between structural design factor and production time
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comparing the variation of times by stages. Being struc-
ture type 4 the one that generates less total complexity (See 
Fig. 5). Given the above, it can be inferred that when the 
times vary progressively from higher to lower, a lower total 
complexity is generated. Finally, the assumptions of the 
model were verified, taking into account the tests of nor-
mality, homogeneity of variances, and independence of the 
data. These tests show that the model complies with these 
assumptions.

Consequently, a factor analysis is developed to find 
correlations between the variables. A matrix is used to 
locate the correlations between all the variables considered 
(performance indicators) with respect to the total com-
plexity (see Fig. 6). This graph shows the Pearson prod-
uct moment correlations between each pair of variables. 
These correlation coefficients range from − 1 to + 1 and 
measure the strength of the linear relationship between the 
variables. The following pairs of variables have a p-value 

below 0.05 at the 95% confidence level, indicating correla-
tions significantly different from zero. Therefore, the alter-
native hypothesis H1(E) is approved, which establishes 
that the performance indicators presented are correlated 
with respect to the total system complexity measure, with 
greater strength with respect to production costs (Cp).

With respect to static complexity (Cs), the same test is 
applied. Figure 7 shows that the variables Tc and Ef are 
not correlated with respect to the measure of static com-
plexity, so the null hypothesis H0 (F) is approved, unlike 
the variables Ct, Pr, Pt, Th, and Wp, which have a corre-
lation with the static complexity measure, corroborating 
with a confidence level of 95% the alternative hypothesis 
H1(F).

In relation to dynamic complexity (Cd), the correla-
tion matrix indicates that all the performance indicators 
presented are correlated with respect to the system’s 
dynamic complexity measure (see Fig. 7), with greater 

Fig. 6   Correlation matrix of 
performance indicators for Ct

Fig. 7   Correlation matrix of performance indicators for Cs and Cd
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strength with respect to production costs (Cp). Therefore, 
the alternative hypothesis H1(G) is corroborated with a 
confidence level of 95%.

5 � Conclusion

This research focuses on the measurement of static, 
dynamic, and total complexity, based on Shannon’s 
entropy method, considering different structures and fac-
tors in a flow shop and hybrid environment. Structural 
modeling is initially developed taking into account 256 
possible combinations in a three-stage configuration with a 
maximum of two machines in each one. Allowing an anal-
ysis with respect to performance indicators, experimental 
and factorial statistics. The results obtained corroborate 
the hypotheses proposed, where statistically the structural 
design factors and the variation of the production time per 
stage significantly influence the response variable. Infer-
ring that the greater the number of machines in the differ-
ent stages, the greater the total complexity. In turn, when 
the times vary progressively from higher to lower, a lower 
total complexity is generated. Similarly, the existence of 
correlation between the indicators and the studied variable 
is evidenced, in which the incidence with the production 
costs stands out.
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