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Abstract
Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design
method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping
relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor
to represent the tolerance information and theMonte Carlo simulationmethod is used to establish the responsemodel of the torsor
parameters and the tolerance variation bandwidths. An assembly accuracymodel is then established by combining a machine tool
topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint
surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally,
according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability,
and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance
principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide,
is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the
tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method.

Keywords Monte Carlo simulation; . Small displacement torsor; . Tolerance modeling; . Assembly accuracy model; . Static
geometric accuracy optimization ofmachine tools

1 Introduction

Static geometric accuracy is the basis of machine tool design,
where the static geometric accuracy of a machine tool refers to
its overall geometric and position accuracy under no external
load and includes the flatness error of each part of the machine
tool, circumferential runout error of the rotating parts, straight-
ness error of the moving parts, positioning error, etc. [1]. With
the increasing complexity of machine tool structures and their
accuracy now entering the submicron level, especially for

high-end CNC equipment, errors previously assumed insig-
nificant have evolved into factors that must be considered.
Efforts must be made to further research into static geometric
accuracy design theory and practice. The static geometric ac-
curacy of a machine tool is mainly determined by the geomet-
ric accuracy of the translational and rotational axes and can be
evaluated by six geometric error elements (also called the six
degrees of freedom error) produced by each moving part dur-
ing the movement process [2]. Due to the mapping relation-
ship between them, the static geometric accuracy of a machine
tool can be guaranteed by the tolerance of the machine parts.
The geometric accuracy robust design method, also known as
the robust design method for machining accuracy, is the most
commonly used static accuracy design method for machine
tools. In this method, the geometric error elements of machine
tools are optimized based on the volumetric error modeling,
geometric error element identification, and key geometric er-
ror element traceability, and by comparing the accuracy reli-
ability at different positions in the machine tool workspace to
improve the error parameters according to identified sensitiv-
ity coefficients.
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Researchers have aimed to improve the optimization process
of geometric accuracy inmachine tools in variousways. Dorndorf
et al. [3] established a precision prediction model for a two-axis
machine tool and, based on the predicted machine tool accuracy,
proposed an optimized quasi-static error estimation method to
determine the best level of geometric error. However, this method
does not consider reliability sensitivity; further, the reliability
probability based on this narrow-bound method under multiple
failure modes should be an interval value rather than a specific
value. Krishna [4] and Jain [5] used optimization methods to
simultaneously allocate machine tool manufacturing and assem-
bly tolerances based on their minimum manufacturing cost but
did not consider the importance of reliability sensitivity for opti-
mizing the error distribution parameters. Huang [6] established a
sequential linear optimization model based on process capability
design. Jin [7] proposed a tolerance design method in the early
design stage of auto parts. In their investigation of a large-scale
CNC gantry rail grinder, Yu et al. [8] established a volumetric
error model by employing the multibody system theory to predict
the machine tool geometric accuracy. However, their design
method based on reliability theory does not consider the cost of
the machine tools; further, the machine tool’s performance can
only be improved by optimizing the sensitivity under single-
failure mode. Cheng et al. [9] proposed an accuracy allocation
method for multi-axis machine tools. Based on the prediction of
the five-axis CNCmachine tool’s accuracy and the traceability of
key geometric errors, their method established a machine tool
geometric accuracy optimization model in which the machine
cost was minimized using the key geometric error source as the
control variable and the machining performances as constraint
conditions. Cai et al. [10] proposed an optimizationmethod based
on a robust design to ensure machining accuracy using a high-
order moment normalization technology to derive the machining
accuracy reliability under single and multiple failure modes.
Unfortunately, this high-order moment normalization technique
is greatly affected by the skewness of the performance function,
i.e., a large skewness induces large errors. Based on the traditional
cost and reliability analysis models [3–6], Zhang et al. [11, 12]
introduced a weighting function to propose a geometric error
optimal allocation method for machine tool cost and reliability;
however, the reliability of machining accuracy was determined
using the ideal and actual working time of adjacent parts, thereby
requiring a lot of statistical data. Cheng et al. [13] proposed an
error estimation method to improve the reliability of the machin-
ing accuracy of multiaxis machine tools by constructing an sen-
sitivity analysis model of accuracy reliability based on the com-
bination of a comprehensive volumetric error prediction model of
the machine tool, Rackwite Fiessler theory, and improved first-
order second-moment method using the minimum cost of the
machine tool as the objective function and the reliability of the
machining accuracy as the constraint condition. Wu [14] pro-
posed a geometric accuracy optimization method of three-axis
vertical machining design based on reliability theory, in which

the volumetric error model of a machine tool is used to predict the
machining accuracy, reliability theory is used to derive the ma-
chine tool machining accuracy reliability calculation model, and
the working position with the worst reliability is found. Then,
according to the reliability sensitivity analysis of the worst reli-
ability position, the geometric error variables that have a signifi-
cant impact on the reliability of the machining accuracy of the
machine tool are found and the geometric parameters of the ma-
chine tool are optimized under the condition of ensuring the reli-
ability of machining accuracy.

In each of these machine tool design methods, the geomet-
ric error elements are used as decision variables during opti-
mization [2, 11, 15, 16]. In some cases, the flatness and per-
pendicularity tolerances of the assembly joint surface can be
estimated using the optimized geometric error element values
based on the control relationship between the geometric error
elements and tolerances of the moving parts. However, other
tolerance types (such as dimensional tolerances, straightness,
and cylindricity) cannot be improved. A relationship model
reflective of both the geometric error elements of machine tool
parts and the tolerance of the joint surface of the parts is thus
required to better realize a machine tool’s early-stage accuracy
design and later-stage accuracy evaluation.

Therefore, an optimization design method of a machine tool’s
static geometric accuracy based on tolerance modeling is pro-
posed in this study, and thework flow chart is shown as in Fig. 1.
The specific steps of the method are as follows. An in-depth
study of the tolerance analysis methods based on mathematical
definitions employing the small displacement torsor (SDT) to
express tolerance information is performed. Considering the tol-
erance principle and constraint conditions, the constraint relation-
ship between the torsor parameters of the SDT and the tolerance
is found. Then, a Monte Carlo simulation is used to establish the
response model of the SDT parameters and actual tolerance
change bandwidth. Next, an experimental analysis is performed
using the size tolerance to verify this tolerancemodelingmethod.
Subsequently, an accuracy model of the assembly is established
according to the formation mechanism of the joint surface error
and the topology of the machine tool, thus allowing the tolerance
information of the joint surface of the parts to be integrated into
the accuracy model. Then, a tolerance optimization model is
developed in which the tolerance manufacturing cost is mini-
mized, the tolerances of the component joint surface are the
design variables, and the assembly accuracy reliability and toler-
ance design principles are the design constraints. Thus, the lowest
tolerance manufacturing cost under the given set of joint surface
tolerances meeting the accuracy reliability and tolerance design
principle constraints is obtained and can be used to guide the
actual tolerance of the joint surface when designing machine
parts. Finally, this methodology is verified using a case study
of a machine tool linear axis motion guide assembly, in which
a simulated annealing genetic algorithm is used to solve the
tolerance optimization model.
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2 Tolerance modeling based on Monte Carlo
simulation

2.1 Tolerance representation based on small
displacement torsor

In the new geometrical product specifications standards, the
surface of an object can be abstracted into basic elements such
as points, lines, and surfaces. The variation of these basic
elements with respect to the nominal position can be
expressed by SDTs [17, 18], in which a rotational vector, θ
= (α,β,γ), represents the small displacement vector of the ro-
tational degree of freedom; a translational vector, d = (u,v,w),
represents the small displacement vector of the translational
degree of freedom; and the composite vector, or SDT, D =
(θ,d) = (α,β,γ,u,v,w), where α, β, γ, u, v, and w are the torsor
parameters, represents the deviation of the surface of the geo-
metric feature’s tolerance relative to the nominal position.
Bourdet [18] used the variation of these parameters to describe
the change of the surface of the tolerance within the tolerance
domain. The SDT can quantitatively describe the dimensional,
shape, directional, position, and runout errors of the feature
deviation [19], allowing complex modeling of 3D tolerance

zones. Tolerance domains and the SDT representation corre-
sponding to common tolerances are summarized in Table 1.

2.2 Mathematical model of size tolerance based on
Monte Carlo simulation

Size tolerance comprises fixed and positioning size tolerances
[20]. According to the constant characteristics of geometric
shapes in the newGPS standard system, the shape of the surface
was assumed to remain unchanged after the size tolerance
changes, i.e., a straight line remains straight and a plane remains
unchanged [21]. Commonly used positioning size tolerances
include Type I and Type II plane positioning dimensions [22].
In a Type I dimension composition ring, the workpiece dimen-
sion chain constitutes a ring in which both end elements are
restricted, one of which has a tolerance value. In a Type II
dimension composition ring, the elements at both ends are
bound by tolerances. Here, a Type I plane positioning size
tolerance was used to establish a tolerance mathematical model
comprising three steps: expressing the size tolerance via the
SDT, determining the tolerance boundary and deriving con-
straint equations, and Monte Carlo simulation.

Fig. 1 The work flow chart of the optimization design method of machine tool static geometric accuracy using tolerance modeling
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2.2.1 Expression of size tolerance based on the SDT
and constraint inequalities

The Type I plane positioning tolerance zone is shown in Fig.
2, where D is the nominal size; TU and TL represent the upper
and lower tolerances of the tolerance zone, respectively; and

tolerance, T = TU + TL. The z-axis of the local coordinate
system is parallel to the plane normal, and the origin of the
coordinate system is at the center of the plane, where z = 0
represents the nominal tolerance plane and z(x,y) represents
the changing plane.

From Table 1, the SDT representation corresponding to the
variation plane z(x,y) of the Type I plane positioning tolerance
is (α,β,0,0,0,w). According to the control conditions of the
tolerance domain boundary, the constraints of the dimensions
of the changing plane and the position of change can be
expressed respectively as

−TL≤z x; yð Þ≤TU

− TL þ TUð Þ≤Δz x; yð Þ≤TL þ TU
ð1Þ

where z(x,y) = dZ + x∙β + y∙α is the equation of the chang-
ing plane andΔz(x,y) is the difference between the z value of
any two points on the changing plane z(x,y).

At its extremum, the z value lies at one of the four vertices
of the matrix plane; thus, compliance with the tolerance range
can be studied by checking the four vertices—A, B, C, and

Table 1 Tolerance type and small displacement torsor (SDT) representation

Fig. 2 Type I plane positioning tolerance zone
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D—of the changing plane, i.e., in x and y coordinates, (a,b),
(−a,b), (a,−b), and (−a,−b), respectively. According to the
equation of the changing plane, the coordinates of the four
vertices can be expressed as

SA ¼ a; b; dz þ a⋅β þ b⋅αð Þ
SB ¼ −a; b; dz−a⋅β þ b⋅αð Þ
SC ¼ a;−b; dz þ a⋅β−b⋅αð Þ
SD ¼ −a;−b; dz−a⋅β−b⋅αð Þ

8><
>: ð2Þ

By introducing Eq. (2) into Eq. (1), we can get

−TL≤dz þ a⋅β þ b⋅α≤TU

−TL≤dz−a⋅β þ b α≤TU
−TL≤dz þ a⋅β−b⋅α≤TU

−TL≤dz−a⋅β−b⋅α≤TU

8><
>: ð3Þ

From Eqs. (1) and (3), the variation and constraint inequal-
ities of the SDT parameters of the Type I plane position tol-
erance can be expressed as

−
T
2b

≤α≤
T
2b

−
T
2a

≤β≤
T
2a

−TL≤w≤TU

8>>>>><
>>>>>:

ð4Þ

−T ≤x⋅β þ y⋅α≤T

−TL≤wþ x⋅β þ y⋅α≤TU

ð5Þ

where x and y represent the coordinate values of the four
vertices in the x- and y-directions, respectively.

These constraint inequalities cause the relative ideal varia-
tion interval of the torsor parameters to be smaller, making it
difficult to clarify the relationship between the tolerance zone
and actual variation area of the torsor parameters.

2.2.2 Using Monte Carlo simulation to solve the SDT size
tolerance parameters

According to the variation and constraint inequalities presented
in Eqs. (4) and (5), Monte Carlo simulation can be used to sim-
ulate the parameter variation order and the type of torsor param-
eter distribution. In this process, a random number is used to
simulate the changing surface of the actual tolerance. When the
random number meets the constraint conditions, it is retained;
otherwise, it is eliminated. When the random number samples
were large enough and met the conditions, the samples were
analyzed and the bandwidth of the fluctuation interval of each
torsor parameter was computed. The mean bandwidth was then
used to obtain the actual fluctuation interval of the torsor param-
eter in the following three-step process.

(1). Assuming normal distribution functions of each size tol-
erance torsor parameter, the probability density function
φ(x) was expressed as

φ xð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

x−μð Þ2
2σ2 x ¼ α;β;wð Þ ð6Þ

where the effective distribution range of the normal distri-
bution curve is 6σ and the distribution center coincides with
the center of the variation interval. The nonzero torsor param-
eters of the size tolerance are α, β, w. According to the vari-
ation inequality (Eq. (4)), the mean and standard deviation of
the ideal distribution parameters—α, β, and w—are (0, T/6b),
(0, T/6a), and ((TU–TL)/2, T/6), respectively.

(2). Simulated sampling of torsor parameters was then per-
formed for the six variation sequences of the three torsor
parameters. To accurately simulate the formation mech-
anism of dimensional errors, sampling tests were per-
formed for all variation sequences. The sampling pro-
cess is shown in Fig. 3.

Fig. 3 Sampling sequence: α→β→ w
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The sequence of changes is α→β→w, k = 1, K is the number
of qualified samples, and K1 and K2 are constants and deter-
mined using the research object. The discriminants, k1 ≤ K1
and k2 ≤ K2, prevent oversampling of parameters from the pre-
vious stage to avoid falling into an infinite loop due to the inabil-
ity of the parameters of the latter stage to meet the constraints.
After six types of variation sequence sampling tests, the variation
interval bandwidth sample number of α, β, w is 6K.

(3). Finally, the χ2 fitting test method was used to test the
distribution type of the torsor parameters; as an example,
the workflow of this test for x (x = α, β, w) is shown in
Fig. 4.

2.2.3 Establ ishing the response surface function
of the bandwidth of the change interval and SDT size
tolerance parameters

Although the Monte Carlo simulation method allows
performing sampling tests of arbitrary plane size toler-
ances and obtaining the response value of the change
in bandwidth of the torsor parameters, it is difficult to

clarify the mapping relationship between the size tol-
erance and change in bandwidth response of the torsor
parameter using this method. Here, a response surface
model of the variation intervals of the torsor parameter
and tolerance bandwidth was constructed using the re-
sponse surface method [14], as detailed below.

(1). Given the maximum range of variation of the size
tolerance (Tmin,Tmax), n values of Ti (i = 1, 2,...,n)
at equal intervals within (Tmin,Tmax) were selected,
where Ti is used as the research object. Monte
Carlo simulation was used to obtain the actual
variation interval bandwidths Fi

a, Fi
β, Fi

w (i = 1,
2,...,n) of the torsor parameters (α, β, w) of the
size tolerance. Finally, the n interval bandwidth
response values of the torsor parameters were
obtained.

(2). Suppose that the design variables are the set of toler-
ances T, Fy (y = α, β, w) is the performance function
sought, and (Ti, Fi

y)(i = 1,2,..., n; y = α, β, w) is a
modeling sample. Then, selecting the quadratic polyno-
mial without cross terms as the response function [14],

Fig. 4 Workflow of the χ2 fit test
method
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the constructed response surface function between Fy
and T was constructed as

Fy ¼ cy0 þ cy1T þ cy2T
2 y ¼ α;β;wð Þ ð7Þ

where cyi (i = 0,1,2) is the coefficient to be calculated.
The method of least squares was used to solve the unbiased

estimate of C = [c0
y c1

y c2
y]T.

bCy ¼ XTX
� �−1

XTY ð8Þ

where X ¼
1
1
⋮
1

T1

T2
⋮
Tn

T2
1

T2
2

⋮
T2
n

2
664

3
775,Y ¼

Fy
1

Fy
2

⋮
Fy
n

2
664

3
775, and bC ¼ bcy0 bcy1 bcy2� �

is the set of unbiased estimators of C.

(3). The multiple correlation coefficient R2, expressed in Eq.
(9), was then used to verify the prediction accuracy of
the response surface model.

R2 ¼ 1−
∑
n

i¼1

bFi
y−F y

� �
∑
n

i¼1
Fy
i −F y

� � y ¼ α;β;wð Þ ð9Þ

where bFy
i represents the response surface prediction value

of ith test point, ‾Fy is the mean value of experimental calcu-
lation, Fy

i represents the calculated test value of the ith test
point, and the multiple correlation coefficient R2 describes
the degree of dispersion between the predicted and true values,
where 0 < R2 < 1. The larger the R2 value, the smaller the
degree of dispersion.

2.2.4 Case analysis

Assuming that a = 30 mm and b = 50 mm in Fig. 2, the torsor
parameters (α, β, w) of the size tolerance obey normal distri-
bution and the maximum variation ranges of TS and TF are
0.3~0.8 and 0.05~0.3 mm, respectively. Fifteen values were
selected at equal intervals within the maximum tolerance
range to obtain 150 test points, (Ti,S,Ti,F)(i = 1,2,...,150). The
program was coded in MATLAB and was used to calculate
the actual variation interval Fi

x (i = 1, 2,...,150; x = α, β, w) of
the torsor parameters at each point. The 150 points,
representing response surface modeling samples, were then
used to establish the response surface model of the torsor
parameters (α, β, w) between the actual variation interval
bandwidth and size tolerance as

Fw ¼ 0:0657þ 0:57TS þ 0:84T F þ 0:076T2
S þ 0:359T2

F
Fα ¼ 0:0026þ 0:024TS þ 0:0124T F þ 0:003T 2

S þ 0:0059T2
F

Fβ ¼ 0:0014þ 0:188TS þ 0:086T F þ 0:002T 2
S þ 0:0085T2

F

8<
:

ð10Þ

The resulting variation interval bandwidths were compared
with their ideal counterparts, as determined using Eq. (2); the
results are shown in Figs. 5, 6, and 7 (representingα, β, andw,
respectively).

From the calculated residual bandwidth or the difference
between the ideal and actual change in interval bandwidth, it
can be seen that the actual change interval bandwidth is small-
er than the ideal change interval bandwidth; the trend of
change remains the same, and the residual bandwidth fluctu-
ates less. To evaluate this decrease with respect to the band-
width of the ideal variation interval, the average reduction
ratio (i.e., the residual bandwidth divided by the ideal varia-
tion interval bandwidth × 100) was calculated and is summa-
rized in Table 2.

After comprehensively considering the constraint condi-
tions and the sequence of torsor parameters, the actual varia-
tion interval bandwidths of the three torsor parameters (α, β,
w) of the size tolerance obtained via Monte Carlo simulation
were reduced by 20.11%, 17.24%, and 16.87%, indicating the

Fig. 5 Bandwidth of α variation interval

Fig. 6 Bandwidth of β variation interval
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improved design capability of the proposed method. Further,
the R2 values of the response surface models of all three spin-
ner parameters of the size tolerance were >0.985, indicating
their high prediction accuracy.

3 Static precision design method of machine
tools

3.1 Error modeling of the joint surface of the
assembly

Part assembly can be regarded as the cooperation and con-
straints between the geometric features of the parts. The joint
surface formed by assembling the part surfaces through the
assembly connection is the assembly node that realizes the
product performance [23]. In an ideal joint surface, the assem-
bly surfaces of the two assembly parts are considered coinci-
dent. However, due to the size and shape errors of the assem-
bly surface, the coupling surface gathers coupling errors of
multiple tolerances, which results in the nonoverlapping of
the ideal assembly planes of the parts and assembly errors.
Here, the plane of the joint surface was used to illustrate the
formationmechanism of the joint surface error in the assembly
process, where the joint surface error was modeled by com-
bining the actual positional and orientational deviations from
the ideal assembly plane. As shown in Fig. 8, the position and
posture of the two ideal assembly planes deviate due to the
dimensional, shape, position, and assembly errors in the as-
sembly plane of the parts. This deviation can be described as a

change in the position and orientational of the ideal assembly
plane, PB, relative to the ideal reference assembly plane, PA.
Among them, the error transfer relationship from PA to PB is
PA→PA′→PB′→PB, which is used to describe the formation
mechanism of the joint surface error, as shown in Fig. 9.

Let MAA′, MA′B′, and MB′B represent the positional and
orientational error transformation matrix from plane PA to
plane PA′, from plane PA′ to plane PB′, and from plane PB
to plane PB′, respectively. Assuming that flatness is the main
tolerance item of the assembly plane, the tolerance zone is the
area between two parallel planes, as shown in Table 1. The
SDT of the flatness tolerance is expressed as [α, β, 0, 0, 0, w],
and MAA′ and MB′B can be written as

MAA
0 ¼

1
0

−βAA
0

0

0
1

αAA
0

0

βAA
0

−αAA
0

1
0

0
0

wAA
0

1

2
664

3
775

MB
0
B ¼

1
0

−βBB
0

0

0
1

αBB
0

0

βBB
0

αBB
0

1
0

0
0

wBB
0

1

2
664

3
775

8>>>>>>>>>><
>>>>>>>>>>:

ð11Þ

Plane PA and plane PB are a pair of assembly
planes. We express the assembly error of plane PA as
the change of the positional and orientational error of
the ideal assembly plane relative to the actual assembly
plane, which is represented by MAA′. The assembly er-
ror of the plane PB is expressed as the change of the
positional and orientational error of the actual assembly
plane relative to the ideal assembly plane, which is
expressed by MB′B. Because the assembly errors of
plane PA and plane PB have been defined separately,
it is assumed that plane PA and plane PB are ideal
assembly, that is, the positional and orientational error
transformation matrix of the two planes is the identity
matrix [24], thus, MA′B′ can be written as

MA
0
B
0 ¼ E ¼

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

2
64

3
75 ð12Þ

According to the homogeneous transformation principle of
rigid body motion, the transformation matrix of the positional
and orientational errors of the ideal assembly plane PB relative
to the ideal reference assembly plane PA is equal to the joint

Fig. 7 Bandwidth of w variation interval

Table 2 Reduction ratio in the variation interval bandwidth and
accuracy of the response surface model

Item α β γ

Reduction ratio 20.11% 17.24% 16.87%

R2 0.992 0.987 0.989

Fig. 8 Position and posture change of the assembly joint surface
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surface errormodel of the assembly plane and can be expressed as

MAB ¼ MAA
0*MA

0
B
0*MB

0
B

¼
1
0

−βAA
0

0

0
1

αAA
0

0

βAA
0

−αAA
0

1
0

0
0

wAA
0

1

2
664

3
775

1
0

−βBB
0

0

0
1

αBB
0

0

βBB
0

−αBB
0

1
0

0
0

wBB
0

1

2
664

3
775
ð13Þ

3.2 Assembly accuracy model

The accuracy of a machine tool can be described by a chain of
assembly error transmissions comprising multiple compo-
nents’ joint surfaces as the joint surface is an important node
for assembly error transmission [25]. The size tolerance be-
tween different bonding surfaces directly affects the error
range of the bonding surface. If the cumulative law of error
transmission of each bonding surface is mastered, the impact
of part accuracy on machine tool accuracy can be described
quantitatively. The associated size error of the joint surface on
both sides of a part is summarized in Fig. 10, where TSP1 and
TSP2 represent the variation range of the shape and positional
error of the two sides of the part, respectively, TD represents
the dimensional error, and TD limits the variation range of TSP1
and TSP2. As the error transmission process of machine tool
parts is similar to the homogeneous transformation of rigid
body motion and because the assembly accuracy of each part
of a machine tool can be understood as the allowable range of

motion of the movement of the pair in the system, the assem-
bly error of a machine tool can be calculated according to the
principle of homogeneous transformation.

Using the machine tool geometric error transfer
model detailed by Fu [26] and Ding [27], an error
model of each joint surface was established. Then,
the parts participating in the assembly were numbered
according to the transfer order based on the machine
tool topology. Finally, a geometric error transfer model
from the base assembly to the final assembly was
established. The resulting assembly error transfer rela-
tionship of n parts assembled in the form of joint sur-
faces is shown in Fig. 11.

Here, the right plane of part Pn is the precision output plane
and the left side of partP1 is the reference assembly plane. The
transformation matrix Mall of the positional and orientational
errors of the precision output plane relative to the reference
assembly plane was derived as

Mall ¼ E1*M112*E12*M212*E23*M312*E34*…*Mi12*…
*En−2n−1*Mn−112*En−1n*Mn12*En

ð14Þ
where E1, E12, E23, E34, and En represent the transformation
matrix of the positional and orientational errors of the junction
plane of the reference assembly plane and part P1, joint sur-
face of parts P1 and P2, joint surface of parts P2 and P3, joint
surface of parts P3 and P4, and precision output plane, respec-
tively. Further, M112, M212, M312, Mi12, and Mn12 respec-
tively represent the positional and orientational transformation
matrices of the actual assembly plane relative to the ideal
assembly plane in the assembly direction of parts P1 to Pn.

In an ideal state, the positional and orientational error ma-
trix M0 of the precision output plane relative to the reference
assembly plane can be expressed as

M0 ¼ M112*M212*M312*M412*…*Mi12*…*Mn−112*Mn12 ð15Þ

The geometric error transfer matrix of the assembly, also
known as the assembly accuracy model, which expresses the
deviation of output accuracy from the ideal state owing to the
existence of the joint surface error of the various parts of

Fig. 9 Formation mechanism of
joint surface error

Fig. 10 Size error of the joint surface of the part
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machine tools, can be expressed as

Eall ¼ Mall−M 0 ð16Þ

3.3 Tolerance-cost model

The tolerance optimization allocation method aims to provide
reasonable optimization criteria and appropriate constraints to
ensure product assembly accuracy and optimize tolerance al-
location [1, 28]. Reasonable tolerance allocation requires a
variety of factors to be considered, such as product quality,
manufacturing cost, and process stability. Manufacturing cost
is often used as the objective function for tolerance optimiza-
tion. As many factors affect product processing costs, the pro-
duction costs of products also vary greatly. Existing tolerance-
cost models [7, 10, 15] each provide different processing cost
relationships. Although the coefficients used in different
tolerance-cost models vary, processing costs are generally
proportional to the processing size. Thirteen commonly used
tolerance-cost models [24], including exponential, reciprocal,
reciprocal square, reciprocal power, and modified exponential
models, as well as their manufacturing costs corresponding to
different types of tolerances, are summarized in Table 3.

In the commonly used reciprocal square model, the dimen-
sion chain of machine tool parts comprises n tolerances to be
determined; the total part-processing cost function C of the
tolerance manufacturing of the machine tool can be expressed
as

C ¼ ∑
n

i¼1
Ai þ Bi

T2
i

	 

ð17Þ

where Ti is the i
th tolerance, i = 1,2,…,n, A is the fixed cost

constant not related to the tolerance, and B is the characteristic
parameter of the cost curve related to the tolerance. The pa-
rameters A and B are calculated using empirical data from
production curves.

3.4 Reliability constraint inequality of assembly
accuracy

In mechanical reliability theory, there can be m assembly ac-
curacy reliability state functions representing machine tool
accuracy. The ith reliability state function Hi can be expressed
as

Hi− f i Uð Þ ¼ I i−Si ð18Þ

where Ii is the assembly error required by the precision
design of the machine tool and Si is the assembly error obtain-
ed using the geometric error transfer model; Si is a function of
the error parameters included in the error transfer model.

After the assembly accuracy reliability status function of
the assembly is determined, if the mean value and distribution
law of each error parameter are known, the bandwidth of the
variation interval of each error component can be used to
determine the assembly accuracy reliability. According to
the tolerance modeling method based on Monte Carlo

Fig. 11 Geometric error
transmission of the assembly

Table 3 Tolerance-cost model of different features

Tolerance type Tolerance-cost function

Size and shape tolerances of external features c Tið Þ ¼ 15:1138e−422874Ti þ Ti
0:8611Tiþ0:01508

Size and shape tolerances of inner hole features c Tið Þ ¼ 12:6691e−37:5279Ti þ 2:486e
0:000978

Ti

Position tolerance
c Tið Þ ¼ 8:2369e−35:8049Ti þ 1:3071e

0:0063
Ti T i≤0:13

1:23036 Ti > 0:13

�
Size and shape tolerances of plane features c Tið Þ ¼ 5:0:26e−15:8903Ti þ Ti

0:3927Tiþ0:1176

Straightness tolerance of shaft (hole) c Tið Þ ¼ 2:784e−36:63Ti þ 1:125e0:00075

Shaft to shaft runout (or coaxiality) tolerance c Tið Þ ¼ 0:0373e−3:08Ti
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simulation detailed in Section 2.2, the response surface func-
tion between the SDT parameters of different tolerance types
and the actual variation bandwidth of the tolerance can be
converted into a tolerance function. This tolerance function
is a function of an independent variable, represented as
Ri(T)(T = T1,T2,...,Tn), where n is the number of tolerance
items related to the assembly accuracy and Ti is the i

th toler-
ance related to the output accuracy of the assembly end. As
Ri(T) has no explicit function expression, it is an implicit
function. Assuming that the reliability value of the output
accuracy of the assembly end that must be satisfied is ri, the
reliability constraint of the output accuracy of the assembly
end can be expressed as

ri−Ri Tð Þ≤0 i ¼ 1; 2;…;m ð19Þ

3.5 Tolerance optimal allocation model of machine
tool geometric accuracy

Tolerance optimization allocation allows the optimal alloca-
tion of tolerances by selecting the appropriate optimization
criteria and constraints while ensuring product accuracy re-
quirements [21, 29]. In practice, processing cost is the primary
factor considered in tolerance design and machine tool accu-
racy design requirements are the preconditions that must be
met. Here, a machine tool static geometric accuracy tolerance
optimization model was constructed by minimizing the pro-
cessing cost [30] using the tolerance contained in the joint
surface of the parts as decision variables and the reliability
of the output accuracy of the assembly end and the tolerance
selection principle as the constraints. The latter of these con-
straints indicates that for the same functional element, the size
tolerance TD is greater than the position tolerance TP, which is
greater than the shape tolerance TS, i.e., TD > TP > TS, which
can be expressed as

TjS−TjP ≤0
TjP−TjD≤0

j ¼ 1; 2;⋯; t
�

ð20Þ

Suppose that the total processing cost CF of the machine
tool is

CF Tð Þ ¼ ∑
n

i¼1
Ci T ið ÞT ¼ t1; t2;⋯; tnð Þ ð21Þ

From Eqs. (19), (20), and (21), the tolerance optimization
model of machine tool static geometric accuracy can be writ-
ten as

minCF Tð Þ
s:t:ri−Ri Tð Þ≤0 i ¼ 1; 2;…;m; T ¼ t1; t2;⋯; tnð Þ
TjS−TjP≤0
TjP−TjD≤0

8><
>: ð22Þ

where ri is the reliability value that must be met by the ith

assembly accuracy, i = 1,2,...,m, and n is the number of toler-
ance items related to the output accuracy of the assembly.

A simulated annealing genetic algorithm was used to solve
the tolerance optimization model, thereby minimizing the tol-
erance manufacturing cost while maintaining the reliability of
the assembly accuracy and tolerance design principles.

4 Example analysis of machine tool linear axis
motion guide based on tolerance modeling

A simplified structure of the linear axis motion guide used for
this case study comprised three parts, as shown in Fig. 12: the
slider, screw, and guide rail and support. The slider and screw
nut were simplified into a spiral surface, whereas the slider
and guide rail were simplified as a flat surface.

The linear axis motion guide moves in the x-direc-
tion; accuracy in this direction is mainly affected by the
accuracy of the motion of the screw–nut pair. The tol-
erances were selected according to the tolerance design
principle (see Section 3.5). From the simplified draw-
ings of the parts shown in Fig. 13, it can be seen that
the size tolerances were mainly concentrated in the y--
direction and that the influence on the z-direction was
relatively small. The y-direction accuracy was mainly
affected by the precision of the guide rail manufactur-
ing. The guide rail errors caused by machining include

Fig. 12 Simplified structure of
linear axis motion guide of the
machine tool
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the straightness error in the horizontal plane, straight-
ness error in the vertical plane, and parallelism
(torsion) errors of the front and rear guide rails in the
vertical plane. If the displacement error of the origin P
of the slider coordinate system in the x-, y-, and z-di-
rections are represented as u, v, and w, respectively,
then the design requirement of the linear axis motion

guide is S (S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2

p
) < 0.03 mm with a

reliability of ≥97%. Finally, the relative tolerances of

the joint surface of the screw–nut motion pair and the
joint surface of the guide rail are analyzed.

The reference coordinate systems O1, O2, O3, and O4 used in
Fig. 12 are set on plane D, plane C, axis b, and axis a, respec-
tively. In the tolerance design process, the minimum assembly
failure boundary must not be exceeded under any working con-
ditions, i.e., the minimum limit size is constant; thus, the coordi-
nate origins of O1,O2, andO3were set to theminimum limit size
position. Planes C andD are the ideal assembly planes of the slide

(a) Guide rail and support

(b) Screw

(c) Slider

Fig. 13 Simplified drawing of the
parts. (a) Guide rail and support.
(b) Screw. (c) Slider
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rail groove and support rail, respectively, and together form the
plane-connecting surface S1. The spiral surfaces A and B are the
ideal assembly cylindrical surfaces of the screw nut and screw,
respectively, and constitute the joint spiral surface S2. Axis a is
the ideal axis of the helix surface A and axis b is the ideal axis of
the helix surface B. The shape error of the spiral joint S2’s surface
is not considered; the position and orientational errors of the axis
of the joint surface determine the position and orientational errors
of the shaft. The joint surface of the linear axis motion guide
assembly and the tolerance items are shown in Table 4; the tol-
erance design follows the principle of tolerance independence.

4.1 Assembly accuracy model and accuracy reliability
status function

To develop the model, several assumptions were made, includ-
ing that the plane D of the linear axis motion guide assembly is
the reference assembly plane, D′ is the actual assembly plane,
and ED′D is the transformation matrix of the positional and
orientational errors between the ideal and actual assembly
planes D and D′, respectively. Similarly, if plane C is the refer-
ence assembly plane and C′ is the actual assembly plane, then
ECC′ is the transformation matrix of the positional and orienta-
tional errors between the ideal and actual assembly planes C
and C′, respectively. If a and a′ represent the actual and ideal
axes, respectively, then Eaa′ is the transformation matrix of the
positional and orientational errors between the ideal and actual
axes a and a′. If b and b′ represent the ideal and actual axes,
respectively, then Eb′b is the transformation matrix of the posi-
tional and orientational errors between the ideal and actual axes
b and b′, respectively. Finally, MCb is the position transforma-
tion matrix between the ideal axis b and the ideal plane C, and
MaP is the position transformation matrix between point P and
the ideal axis a. According to the tolerance representationmeth-
od based on the SDT [5, 17], the transformation matrix of the
positional and orientational errors between the ideal and actual
assembly planes can be expressed as

EDD
0 ¼

1 0 βDD
0 0

0 1 −αDD
0 0

−βDD
0 αDD

0 1 wDD
0

0 0 0 1

2
664

3
775

ECC
0 ¼

1 0 βCC
0 0

0 1 −αCC
0 0

−βCC
0 αCC

0 1 wCC
0

0 0 0 1

2
664

3
775

Ebb
0 ¼

1 0 βbb
0 0

0 1 0 vbb0
−βbb

0 0 1 wbb
0

0 0 0 1

2
664

3
775

Eaa0 ¼
1 −δaa0 βaa0 uaa0
δaa0 1 0 vaa0
−βaa0 0 1 waa0

0 0 0 1

2
664

3
775

ð23Þ

MCb ¼
1 0 0 41
0 1 0 0
0 0 1 35
0 0 0 1

2
664

3
775MaP ¼

1 0 0 150
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ð24Þ

The accuracy model of the linear motion axis guide rail
assembly can then obtained from Eq. (16) as

MDP ¼
1 −δ β u
δ 1 α v
β −α 1 w
0 0 0 1

2
664

3
775

¼
EDD

0*ED
0
C
0*EC

0
C*MCb

*Ebb
0*Eb

0
a0*Ea0a*MaP

−MDb*MaP

0
@

1
A ð25Þ

Here, plane C, plane D, spiral surface A, and spiral surface
B are positioned during the assembly process. Therefore, the
changing planes C′ and D′ and the actual axes a′ and b′ are
assumed entirely coincident. The positional and orientational
error transformation matrix of C′, D′, a′, and b′ can be
expressed as an identity matrix, namely ED′C′ = Eb′a′ = I4×4。

As the comprehensive error S (S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2

p
) of the

linear axis motion guide assembly is used as a technical index
to evaluate the reliability of assembly accuracy, the main fac-
tor affecting the performance of the motion guide is the dis-
placement error of the screw working point in the x-, y-, and
z-directions. Therefore, according to the design requirements
of the linear axis motion guide assembly accuracy,EDD′,EC′C,
Ebb′, Ea′a, MCb, and MaP were substituted into Eq. (25), ig-
noring the high-order small items. The assembly accuracy

Table 4 Joint surface of the linear axis motion guide assembly and tolerance items

Item Joint surface Relevant surface tolerance Tolerance zone(mm)

Joint surface S1 Plane junction Plane D Size tolerance t1 0.12
Straightness t2 0.04
Parallelism t3 0.12
Straightness t4 0.04

Plane C Size tolerance t5 0.021
Straightness t6 0.015
Parallelism t7 0.025
Straightness t8 0.025

Joint surface S2 Spiral surface junction Spiral surface B Size tolerance t9 0.4
Straightness t10 0.012
Size tolerance t11 0.236

Spiral surface A Size tolerance t12 0.224
Cylindricity t13 0.007
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model of the linear axis motion guide can then be expressed as

u ¼ 35 � βDD
0 þ βC

0
C

� �þ βbb
0 � βaa0−βDD

0−βC
0
C

� �þ wC
0
C � βDD

0

þ wa0a � βDD
0 þ βC

0
C þ βbb

0
� �þ wbb

0 � βDD
0 þ βC

0
C

� �
−191 � βDD

0

þ βC
0
C þ ua0a � βbb

0

v ¼ −150 � δa0a � αDD
0 � þ αC

0
C−1

� �
−va0 �a � αDD

0 þ αC
0
C−1

� � � αDD
0 þ αC

0
C

� �
þ αDD

0 þ αc0 c

� � � 150 � βbb
0 þ 150 � βa0a−wbb

0−wa0a

� �þ 191αDD
0 þ βC

0
C

−35 � αDD
0 þ αC

0
C

� �
−αDD

0 �wC
0
C

w ¼ wC
0
C þ wDD

0þwa0a þ wbb
0−150 � βa0a þ βbb

0
� �

−ua0a � βbb
0 þ βDD

0 þ βC
0
C

� �
þ 150 � δa0a αDD

0 þ αC
0
C

� �
þ va0a þ vbb0
� � � αDD

0 � αC
0
C

� �
−35 � αDD

0 � αC
0
C þ βDD

0 � βC
0
C

� �
−191 � βDD

0 þ βC
0
C

� �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð26Þ

4.2 Solution of response surface function of the torsor
parameter and the actual change interval bandwidth
based on Monte Carlo simulation

When using the response surface method, the correlation of
the tolerance screw parameters influences the optimized

design value of the tolerance. Here, as the principle of toler-
ance independence, i.e., the dimensional and shape tolerances
are independent, was employed during optimization, the
torsor parameters of the tolerance were also independent.
Therefore, the correlation between parameters was not consid-
ered when performing response surface fitting. Monte Carlo
simulation was used to establish the response surface function
between the corresponding tolerance and actual variation in-
terval bandwidth of each error parameter in the position and
attitude error transformationmatricesEDD′,EC′C,Ebb′, andEa′

a, which can be expressed as Eqs. (27) and (28).

Fα
DD

0 ¼ 3:306x10−5 þ 0:0056t1 þ 0:0087t2i þ 0:0069t2 þ 0:0042t22 þ 0:0012t3 þ 0:0043t23 þ 0:0096t4 þ 0:0075t24
Fβ

DD0 ¼ 2:653x10−5 þ 0:0082t1 þ 0:0030t2i þ 0:0077t2 þ 0:0031t22 þ 0:0031t3 þ 0:0056t23 þ 0:0075t4 þ 0:0083t24
Fw

DD
0 ¼ 0:0014þ 0:64t1 þ 0:067t2i þ 0:48t2 þ 0:099t22 þ 0:93t3 þ 0:055t23 þ 0:41t4 þ 0:068t24

Fα
C
0
C ¼ 6:35x10−5 þ 0:115t5 þ 0:045t25 þ 0:0124t6 þ 0:013t26 þ 0:0356t7 þ 0:069t27 þ 0:0893t8 þ 0:078t28

Fβ
C
0
C ¼ 2:28x10−5 þ 0:115t5 þ 0:045t25 þ 0:308t6 þ 0:016t26 þ 0:308t7 þ 0:016t27 þ 0:17t8 þ 0:032t28

Fw
C
0
C ¼ 0:0015þ 0:115t5 þ 0:045t25 þ 0:133t6 þ 0:058t26 þ 0:496t7 þ 0:065t27 þ 0:25t8 þ 0:0562t28

8>>>>>><
>>>>>>:

ð27Þ

Fβ
bb

0 ¼ 4:66x10−5 þ 0:0124t9 þ 0:013t29 þ 0:0082t10 þ 0:034t210 þ 0:0063t11 þ 0:014t211
Fv

bb
0 ¼ 0:0014þ 0:115t9 þ 0:045t29 þ 0:0079t10 þ 0:064t210 þ 0:0081t11 þ 0:062t211

Fw
bb

0 ¼ 0:0017þ 0:133t9 þ 0:058t29 þ 0:089t10 þ 0:0036t210 þ 0:011t11 þ 0:0035t211
Fβ

α
0
α ¼ 1:023x10−5 þ 0:0082t12 þ 0:034t212 þ 0:0063t13 þ 0:014t213þ

Fδ
α
0
α ¼ 0:997x10−4 þ 0:0079t12 þ 0:064t212 þ 0:0081t11 þ 0:62t211

Fu
α
0
α ¼ 0:0020þ 0:089t12 þ 0:0036t212 þ 0:011t13 þ 0:0035t213

Fv
α
0
α ¼ 0:0014þ 0:016t12 þ 0:0017t212 þ 0:013t13 þ 0:0033t213

Fw
α
0
α ¼ 0:0015þ 0:029t12 þ 0:0038t212 þ 0:036t13 þ 0:0087t213

8>>>>>>>>>>><
>>>>>>>>>>>:

ð28Þ

By setting the coordinate system of each component of the
linear axis motion guide assembly, the resulting relationships
between the mean value, standard deviation, and actual vari-
ation interval of the geometric error parameters of each joint
surface were obtained and are shown in Table 5. The torsor
parameters of each tolerance were assumed to follow a normal
distribution and the random numbers were generated using the
rands function in MATLAB. Monte Carlo simulation was
then performed to obtain the true tolerance distribution.
Finally, the response surface method was used to fit the toler-
ances and torsor parameters; the mapping relationship be-
tween them was then obtained for the next step of tolerance
optimization.

4.3 Determination of the tolerance optimization
model

As summarized in Table 4, the linear axis motion
guide assembly contained 13 tolerances, including six
plane feature tolerances (t1, t2, t3, t4, t5, t6, t7, t8), three
inner hole feature tolerances (t9, t10, t11), and two-axis
feature tolerances (t12, t13). From the tolerance-cost
model described in Table 3 and the total cost model
of component tolerance manufacturing (see Eq. (17)),
the objective function c(T) of the processing cost of
the linear axis motion guide assembly can be expressed
as
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min ¼ c Tð Þð Þ ¼ min A*

∑
8

i¼1
5:026e−15:8903ti þ ti

0:3927ti þ 0:1176

	 


þ ∑
11

i¼9
12:6691e−37:5279ti þ 2:486e

0:000978
ti

� �
þ ∑

13

i¼12
15:1138e−42:2874ti þ ti

0:8611ti þ 0:01508

	 


2
6666664

3
7777775

ð29Þ

where T = t1, t2,..., t13. As the current cost model, developed
in the 1990s, varied from current cost data, a cost coefficient A
= 15 was added to the processing cost objective function.

From Eq. (19), the reliability state functionH of the assem-
bly accuracy of the linear axis motion guide can be written as

H ¼ g Uð Þ ¼ 0:03−S ¼ 0:03−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2

p
ð30Þ

From Eq. (26), the reliability state functionH of the assem-
bly accuracy of the linear axis motion guide is a function of 14
SDT parameters, as

U ¼ u1; u2; u3; u4; u5; u6; u7; u8; u9; u10; u11; u12; u13; u14ð Þ
¼ αDD

0 ; βDD
0 ;wDD

0 ;αC
0
C;βC

0
C;wC

0
C; βbb

0 ; vbb0 ;wbb
0 ; βa0a; δa0a; ua0a; va0a;wa0a

� �
ð31Þ

If the mean value and distribution law of each error param-
eter (14 SDT parameters) are known, then the accuracy reli-
ability status function of the linear axis motion guide (Eq.
(30)) can be determined from the change interval bandwidth
of the 14 SDT parameters. When the SDT parameters obey
normal distribution, according to the tolerance modeling
method detailed in Section 2.2, the response surface function
between the 14 SDT parameters and the actual variation band-
width of the tolerance can be constructed.

The accuracy reliability R(T) of the linear axis motion
guide rail assembly can be expressed as a function of tolerance
T(T = t1, t2,..., t13). According to the design requirements of
the linear axis motion guide, the inequality of the assembly
accuracy and reliability of the linear axis motion guide can be
written as

0:97−R Tð Þ≤0 ð32Þ

According to the tolerance selection principle, the size tol-
erance is greater than the position tolerance and the position
tolerance is greater than the shape tolerance. The tolerance
constraint condition of the linear axis motion guide assembly
can then be expressed as

Table 5 Variation interval, mean value, and standard deviation of torsor parameters

Number Torsor parameters Actual variation interval Mean value Standard deviation

1 αDD′ [-FαDD′/2, FαDD′/2] 0 FαDD′/6

2 βDD′ [-FβDD′/2, FβDD′/2] 0 FβDD′/6

3 wDD′ [t1/2-F
wDD′/2,t1/2+F

wDD′/2] t1/2 FwDD′/6

4 αC′C [-FαC′C/2, FαC′C/2] 0 FαC′C/6

5 βC′C [-FβC′C/2, FβC′C/2] 0 FβC′C/6

6 wC′C [t3/2-F
wC′C/2, t3/2+F

wC′C/2] t3/2 FwC′C/6

7 βbb′ [-Fβbb′/2, Fβbb′/2] 0 Fβbb′/6

8 vbb′ [-t5/2-F
bb′/2,t5/2+F

vbb′/2] t5/2 Fvbb′/6

9 wbb′ [-t6/2-F
wa′a/2, t6/2+F

wa′a/2] t6/2 Fwbb′/6

10 δa′a [-Fδa′a/2, Fδa′a/2] 0 Fδaa′/6

11 βa′a [-Fβa′a/2, Fβa′a/2] 0 Fβa′a/6

12 ua′a [-t9/2-F
ua′a/2, t9/2+F

ua′a/2] t9/2 Fua′a/6

13 va′a [-Fva′a/2, Fva′a/2] 0 Fva′a/6

14 wa′a [-Fwa′a/2, Fwa′a/2] 0 Fwa′a/6

Table 6 Tolerance optimization results of the linear axis motion guide rail assembly (mm)

Item t1 t2 t3 t4 t5 t6 t7 t8

Initial value 0.120 0.040 0.012 0.040 0.021 0.015 0.025 0.025

Optimization value 0.104 0.043 0.021 0.037 0.032 0.029 0.029 0.036

Item t9 t10 t11 t12 t13 Cost (RMB) Reliability

Initial value 0.400 0.012 0.236 0.224 0.007 860.19 95.38%

Optimization value 0.330 0.017 0.250 0.287 0.013 762.61 97.57%

1807Int J Adv Manuf Technol (2022) 118:1793–1809



TjS−TjP ≤0
TjP−TjD≤0

�
ð33Þ

From the cost function (Eq. (29)) and constraint inequality
(Eqs. (32) and (33)) of the linear axis motion guide assembly,
the tolerance optimization model of the linear axis motion
guide assembly was obtained as

min C Tð Þ
s:t: 0:97−R Tð Þ≤0T ¼ t1; t2;⋯t13ð Þ
TjS−TjP ≤0
TjP−TjD≤0

8><
>: ð34Þ

4.4 Results analysis

The experiment was performed on a PC using a 2.80GHz
CPU and 32G of memory and required a calculation time of
319.72 s. Using a simulated annealing genetic algorithm to
solve the tolerance optimization model (i.e., Eq. (34)), the
resulting tolerance optimization values corresponding to the
lowest cost are detailed in Table 6.

Because the tolerance design of the hole and shaft needs to
refer to the tolerance design standard, the optimized values
were compared with those in the Chinese standards JB/T
1800.3–1998 as the best tolerance design values for the linear
axis motion guide assembly. To verify the effect of tolerance
optimization, the assembly accuracy reliability and processing
cost corresponding to the initial tolerance value and the opti-
mized values are summarized in Table 5. The optimized as-
sembly processing cost and accuracy reliability were 762.61
RMB and 97.57%, representing a cost reduction by 11.34%
and an increase in the reliability of 2.19%. Therefore, the
proposed optimization method can achieve tolerance optimi-
zation and processing cost control while ensuring the reliabil-
ity of assembly accuracy.

5 Conclusion

In this study, an optimization-based design method of ma-
chine tool static geometric accuracy based on tolerance
modeling is proposed to address the lack of tolerance design
capabilities in state-of-the-art robust machine tool accuracy
designs based on reliability theory. The proposed method em-
ploys the SDT, Monte Carlo simulation method, response
surface method, and reliability theory. Using the proposed
method, a case study involving the tolerance optimization of
a linear axis motion guide was described and solved.
Optimization allowed for a reduction in assembly processing
cost of 11.34% and an increase in the reliability of assembly
accuracy from 95.38% to 97.57%, thereby meeting the

assembly accuracy requirements and verifying the effective-
ness of the proposed method.

Due to the wide variety of tolerances, the tolerance princi-
ples used in different applications vary, as do the constraint
inequalities and variation inequalities of the established toler-
ance volume parameters and the final tolerance response
models. Future efforts should aim to establish a tolerance
model library, as this would allow a more convenient realiza-
tion of the static precision and high-efficiency design of CNC
machine tools. In addition, due to the complexity of the static
precision design method and the structure of machine tools,
realizing precision CNC machine tools requires a targeted
software system. Further, experimental verification is required
to effectively perform the static precision design of machine
tools.
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