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Abstract
Grinding is one of the important machining processes that are widely applied in precision manufacturing. In the beginning, studies
mostly focused on dry machining. In time, emerging technologies have led to change in the development of the machining process.
New techniques and tools have been developed over the last decade that has brought the process to an advanced place. At first, flood
cooling has removed the burning problems in the grinding process. After that, a new technique was developed which is known as
minimum quantity lubrication (MQL). This technique is a recognized opportunity to eliminate environmental concerns. This paper
reviews some of the common aswell as advancedMQL systems specifically used in grinding operations. The effect ofMQL and other
cutting parameters on cutting forces, surface roughness of the machined workpiece, tool wear, temperature, specific cutting energy,
and residual stress is outlined. This paper also addressees the recent trend of cooling systems in the grinding process. After reading this
research paper, one can easily get an overview of the previously conducted research to find the output parameter trends in MQL
condition. The reader can infer from this paper in which direction the development trend in grinding is in the machining process.

Keywords Grinding .Minimum quantity lubrication (MQL) . AdvancedMQL . Performancemeasures, Grinding environment

1 Introduction

The increase in the awareness of industries makes easier the
understanding of the importance of environmental change,
and this opens new areas for competition in the world market
[1–4]. Coolants and lubricants have an important place in the
industry in terms of both environmental, health, and economic
aspects. In the manufacturing sector, lubrication and cooling

cost is a significant factor in total product costs [5]. Cooling
lubricant cost ranges from 7 to 17% of the total cost of the final
product, depending upon the material type and production
type [6, 7]. For the protection of the environment and labor,
the use of the conventional cooling method is going to be
replaced with new and advanced cooling techniques in the
future for sustainable manufacturing [8]. New technologies
such as cryogenic-assisted machining [9], solid lubrication
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and oil in water, near dry machining, or MQL became popular
recently [8–20]. The MQL technology is not only environ-
mentally friendly but also a key factor for cost reduction in
manufacturing sectors [21–24]. The reduction of lubricant
fluids in the manufacturing shops can improve the work qual-
ity and economically competitive production [23].MQL spray
application during grinding is represented in Figure 1. Here,
the working principle of the oil-air mixture, which takes a
pulverized form, in the grinding process is shown as a
representation.

In recent times, dry machining is essential for the metal
processing industries [26–28], but one cannot simply remove
the use of lubricants in the manufacturing process [29]. They
play an important role in the process like lubrication, reduction
of friction, and chip removal.Without the use of lubrication, the
workpiece may have defects. It is therefore recommended to
use a small amount of lubricant in the machining process [30].

For surface smoothing and better workpiece finish, grinding
is widely used among machining processes in the industry. It
involves material removal by contact between grinding wheel
having sharp cutting particles and workpiece [31]. The better
surface finish of the workpiece becomes a critical factor accord-
ing to the recent demand [32–34]. Better surface finish reduces
the effect of major failure and increases the component integ-
rity. It is an important factor in terms of fatigue life performance
[35]. High specific energy is required in grinding operation due
to the shearing with adverse grit geometry. Sliding grains in the
contact zone cause the high temperature on the surface ground
[36]. Surface damage occurs due to this high temperature in the
form of burning, tensile residual stress, deformed layer, and
oxidization [37]. To reduce workpiece temperature and to de-
crease the risk of thermal damage, conventional coolants have
been used in the grinding process since they enhance the pro-
cess performance [38].

Dry machining requires no extra cost as it can be applied
easily without the need for any equipment. However, it is not
recommended for use due to the deficiencies in removing the
excess heat generated [39, 40]. Conventional cooling (flood

cooling) has been the leading method used for years to elim-
inate these deficiencies. However, due to environmental,
health, and cost issues of conventional cooling/lubrication ap-
plications, MQL is an advanced technology in this context
with its guaranteed and fully accepted methodology [41].

Grinding covers a wide application area among the abra-
sive processes with providing high material removal rates dur-
ing finishing and ultra-precision machining. Considering the
developments in the manufacturing sector and demands for
high reliability, high productivity and minimum cost push
the researchers for the improvement of processes. Also, recent
advances became more and more repetitive for improved pre-
cision for the surface texture of the produced part. In this
context, this review paper outlines first the effect of MQL on
machining operations. Then, in the perspective of grinding,
MQL applications and their impact on surface roughness, cut-
ting forces, cutting temperature, tool wear, specific cutting
energy, and residual stress are highlighted respectively.

Table 1 summarizes the performance of different cooling
technologies with star ratings including several MQL ap-
proaches, cryogenic, and dry conditions. As it can be seen,
when setup cost increases depending on the technology, sur-
face integrity and tool life reduce dramatically. This situation
is clearly shown when comparing dry and other technologies.
There is no much difference in the view of power supply,
gross cost, and eco-friendly machining according to this com-
prehensive survey [42].

2 Minimum quantity lubrication

The name of MQL itself defines the expression which pur-
poses to use a little amount of lubrication. The usage of min-
imum liquid provides to reduce temperature and friction be-
tween workpiece and cutting tool. The word “minimum”
varies in the different manufacturing processes, depending
upon the different parameters. In many operations, minimum
quantity lubrication is the key to success for dry machining.

Fig. 1 Schematic representation
of MQL application in grinding
operation (Copyrights reserved)
[25]
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As a rule, it is important to apply the cutting fluid to the cutting
area and make it easier to reduce the coefficient of friction
with oil particles. It is also aimed to decrease the temperature
for removing the maleficent effect of heat on material such as
wear and residual stress.

All the MQL parameters must be set appropriately to get
optimal output [43]. Lubricants/coolants are used for cooling
and to remove chips, and more commonly oils and emulsions
are used depending upon the manufacturing process. The
ways for reducing the heat on the cutting area is an intriguing
issue classified and presented in Figure 2. The emulsion ex-
hibits excellent heat transfer properties as they have a high
water content. Fluid lubrication benefit is lost when only com-
pressed air is used. Oil and water capacity to transfer chips is
more than air. Basically, minimum quantity lubrication and
minimum quantity cooling both come under the umbrella of
minimum quantity cooling lubrication.

Minimum quantity lubrication is done through two
methods, one is through a commercial-based MQL system
made by different companies. Another is the one created by

a self-made customized fabricated setup. MQL uses high-
pressure air and impinges at high speed from a nozzle on the
workpiece tool zone. Air pressure varies from 1 bar to 8 bars
according to requirement. It uses very less amount of fluid in
the range of 20–1200ml/h, and it combines air and oil to make
aerosol [18, 45]. The different researchers utilized this system
for the experimental study [46, 47]. In the machining process,
the material is removed by the cutting edge of the cutting tool
which causes the chip to shear off from the workpiece. Energy
is released in the form of heat in two zones, i.e., primary zone
and secondary shear zone. Deformation zones and heat gen-
eration are demonstrated in Figure 3. Totally, elastoplastic
deformation, friction, and sliding lead to heat generation and
further temperature increase. It is accepted as the main reason
for tool wear, and therefore, reducing the heat provides a clear
advantage for improving the quality of machining. It is hard to
avoid energy realize in the primary zone. It is due to the
breakage of molecular bonds on the workpiece. This heat
dissipates into the workpiece and chip. In the secondary shear
zone, friction and heat are produced which causes the tool and
chip to warm. Premature cutting tool wear is occurred due to
this heat. MQL can significantly reduce heat by effectively
lubricating the chip-tool interface.

This paper focuses on the MQL applications for the grind-
ing process and its ultimate results about surface roughness,
cutting forces, cutting temperature, tool wear, specific cutting
energy, and residual stress. In this context, the MQL system
and grinding mechanism are explained in detail in order to
show the importance in the literature. Then, a section is sepa-
rately organized to give the effect of MQL implementation on
process parameters. The main objective is to demonstrate the
impact of MQL on grinding and the underlying mechanism of
it. A number of articles have previously been published on this
field that shed light on the paper. It is tried to outline the
previous papers in tables with more detail and visualize the
cutting mechanism and surrounding equipment. In the mean-
time, possible effects of utilization of MQL on grinding such
as cost, energy consumption, and efficiency are comprehen-
sively handled with the help of open literature.

Table 1 Performance ratings of different cooling technologies [42]

Sr. no Cooling technology Setup cost Gross cost Surface integrity Tool life Power needs Eco-
friendly

Neatness Cooling utilization

1 Dry ***** *** * * *** *** ***** *****

2 MQL/MQCL *** ***** **** **** **** **** **** ****

3 Cryogenic ** **** ***** ***** **** ***** ***** ***

4 H.P.C. * *** ***** **** ** *** ** **

5 Biodegradable oil **** **** **** **** *** ***** ** *

6 NFMQL **** *** ***** ***** *** **** *** ***

7 LN2MQL ** *** ***** ***** *** **** **** ***

8 RHVT-MQL *** *** ***** ***** *** **** **** ****

Fig. 2 Different approaches for reduction of heat during machining
(Copyrights reserved) [44]
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3 Effect of MQL on machining characteristics

Machining operations include many machinability characteris-
tics which show the quality of the operation performed. After
the process is completed, it is needed to measure some features
that belong to theworkpiece and cutting tool generally accepted
as the main criteria of the high performance. During chip re-
moval in grinding machine, the cutting wheel rotates with a
determined speed producing cutting forces, consuming cutting
power, and creating a surface texture. This procedure leads to
wear on the grinding wheel, and initial conditions show varia-
tion in time. Therefore, at the end of the process, mentioned
developments may change the quality characteristics such as
surface roughness, cutting forces, tool wear, and specific ener-
gy. Considering high frictional medium due to rubbing and
plowing and high material removal volume, MQL application
facilitates chip removing mechanism. In this section, the effect
of MQL usage on machining characteristics is criticized in the
light of literature. In the following, Table 2 summarizes the
papers concerned about surface roughness, forces, tool wear,
temperature, residual stress, and energy while conducting
MQL-assisted grinding operation.

3.1 Effect of MQL on surface roughness

It has long been recognized that surface roughness is an im-
portant indicator for the acceptance/rejection criterion of a
finished product. Surface finish is an important output param-
eter in the grinding process and an important index of machin-
ability performance [76]. Machine components and their life
also depend upon their surface finish. Commonly excellent
surface finish is achieved by different machining processes
like honing, lapping, super finishing, and grinding process.

Surface roughness occurs more in continuous machining pro-
cesses like turning of a ductile material. Surface roughness is
also an important parameter to determine the behavior of a
material in the environment [77]. Smooth surfaces have less
coefficient friction than rough surfaces, and they wear less.
Irregularities in the surface of the material can be the cause
of corrosion. The performance of any mechanical component
can be predicted by the roughness. Various studies have been
carried out in the literature under MQL cooling/lubrication
medium to improve surface roughness in grinding operations,
and some of them are summarized in this subsection.

Kelly and Cottrell [78] observed impressive surface rough-
ness values in experimentation withMQL. This was due to the
effective lubrication provided by the MQL. Tawakoli et al.
[25] investigated the effect of workpiece and MQL condition
in the grinding process. It was noted that the surface finish
value obtained in theMQL environment was better because of
good lubricity and good cooling of abrasive grains at the cut-
ting zone. Silva et al. [79] worked on tempered and annealed
steel with alumina oxide abrasive in an MQL environment.
They found a better result inMQL grinding than flood cooling
due to the best lubrication and effective penetration of fluid in
the cutting zone. Braga et al. [80] worked on diamond-coated
carbide drills under MQL condition with a flow rate of
10ml/h. They found that the quality of holes is either same
or in some cases better than flood cooling. Surface roughness
values were better than all environments tested. Davim et al.
[81] used Taguchi optimization and founded that MQL is
necessary for good surface roughness. Surface roughness
showed an increase in MQL because of high temperature.
Barczak et al. [50] performed experimentation on BS
534A99 and BS 970 080M40. They observed low friction
conditions under the MQL process and better surface

Fig. 3 Heat generation in metal
cutting (Copyrights reserved) [48]
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roughness. Emami et al. [72] worked on engineering ceramics
under MQL conditions. The effect of different lubricants was
analyzed. The optimum surface roughness value was found at
0.22 um. Silva [13] investigated the effect of ABNT 4340 in
the grinding process. It was observed that the surface rough-
ness value was better for MQL condition was better than flood
cooling. It was due to good lubrication. Tawakoli et al. [62]
checked the effect of nozzle position for the surface roughness
of 100Cr6. They emphasized that the adjustment position of
the nozzle is a significant factor for effective application of
MQL oil mist. Silva et al. [82] studied the MQL technique for
ABNT 4340 steel in plunge surface grinding. In his analysis, it
was concluded that Ra values are very less. While using the

MQL technique, Al2O3 grinding wheel provides a better sur-
face finish compared to CBN wheel. However, Al2O3 pro-
vides a lower surface finish than CBN in flood cooling.
Alves et al. [83] worked on hardened steel parts under
MQL. It was noted that the flood cooling method provided a
better surface finish than the MQL technique, at the same time
surface roughness values obtained at a flow rate of 80 ml/h are
lower, and these values are comparable to industrial applica-
tion. In optimized conditions, surface roughness was 71.7%
lower than MQL and 47% lower than the flood dispensing
method. Sadeghi et al. [60] performed experimentation to
check the effect of MQL on surface roughness of the titanium
alloy. In their study, vegetable and synthetic ester oils used in

Table 2 Machining characteristics in MQL grinding operations

Ref. Cutting conditions Oil type Machining characteristics used

[49] MQL and dry Vegetable Surface roughness, tool wear

[25] MQL, dry, wet, and air jet Mineral oil, fat alcohol, ester, hydrocracked
oil, white oil, synthetic, pure water

Cutting forces, surface roughness

[50] MQL, dry, and wet Synthetic Power, cutting forces, temperature, and surface roughness

[51] MQL Air, water Cutting forces, surface roughness, residual stress

[52] MQL Vegetable Residual stress, grinding force, and temperature

[53] MQL Mix—50% based mineral oil and 50%
soybean oil; synthetic cutting fluid and
integral fluid—mineral oil-based lubricant

Surface integrity

[54] MQL Vegetable Grinding force, temperature, and energy ratio coefficient

[55] MQL, dry, flood Synthetic Grinding power, wheel volumetric wear, material
removal and grinding ratio

[56] MQL and wet Neat oil and soluble oil Surface integrity, residual stress

[57] MQL, dry, wet, and air jet Synthetic, mineral, water, white oil, ester,
alcohol

Cutting forces, surface roughness, and specific grinding energy

[58] MQL Groundnut oil Grinding force, specific energy, temperature and surface roughness

[59] Dry, wet, MQL Synthetic Grinding forces, temperature, and surface roughness

[60] MQL, dry, and wet Synthetic Grinding forces, surface roughness, and surface morphology

[61] Dry, MQL, cryogenic
MQL

Synthetic Temperature, surface roughness, grinding force, specific
energy, and chip morphology

[62] MQL, dry, and wet Synthetic Grinding forces, surface roughness

[63] MQL, dry, and wet Synthetic Surface roughness, grinding force, specific grinding energy

[64] MQL, dry, and wet Synthetic Temperature

[65] MQL and wet Vegetable, synthetic Surface roughness, grinding force, hardness

[66] MQL, dry, and wet Pure water and water-based nanofluid Temperature, grinding forces, surface roughness, surface
morphology

[67] MQL, dry, and wet Vegetable, synthetic Grinding forces, surface topography, and surface temperature

[68] MQL and dry Synthetic Grinding forces, surface roughness, and wheel wear

[69] MQL, dry, and wet Mineral, vegetable, and synthetic esters Grinding forces, surface roughness, microhardness

[70] MQL, dry, and wet Synthetic Grinding power, forces, temperature, and surface roughness

[71] MQL Synthetic Forces, temperature, surface roughness

[72] MQL Mineral, hydrocracked, synthetic,
and vegetable oils

Specific energy, cutting forces, surface roughness

[73] MQL Mineral oil Grinding force, surface roughness

[74] MQL, dry, and wet Synthetic Grinding forces, surface roughness

[75] Dry, MQL Graphene-enhanced plant-oil Grinding force, temperature and specific energy, surface integrity
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MQL system were compared based on surface quality charac-
teristics. The grinding ability of fluids was also assessed with
conventional cooling. As a result, the surface roughness under
MQL-assisted machining was larger than under conventional
grinding. In addition, MQL-assisted grinding with synthetic
oil offered a good surface condition than vegetable oil.
Oliveira et al. [84] tried to improve the MQL process in the
grinding process. Better surface roughness and less roundness
error are obtained with a drastic reduction of lubricant. It was
due to MQL having a cleaning jet that provides cooling lubri-
cation conditions in the grinding process. It is a cleaner and
cost-effective process. Alves et al. [85] checked the effect
MQL parameter for the plunge surface grinding of SAE
52100. It was noted in this study that the MQL oil flow rate
did not affect the surface roughness values. The conventional
cooling method has better surface finish than the MQL tech-
nique. Surface roughness value 3.5 um was constant for all
MQL flow rates. Zhang et al. [86] studied the behavior of
MoS2 nanoparticles in the MQL grinding process. It was seen
that the dry grinding process produces higher surface rough-
ness values comparing with a flood, MQL, and nanoparticles
jet MQL. Dry grinding has also burned on the workpiece
surface, and flood grinding has the lowest surface values with
good surface quality among all. Paraffin and palm oil surface
roughness values were 33.3% and 44.4% less than dry grind-
ing, and Rz values were 30.4% and 32.1% less, respectively
(Figure 4).

Emami et al. [73] investigated the behavior of MQL in the
grinding of Al2O3 engineering ceramics. It was found that
surface roughness values for MQL are less than the conven-
tional wet grinding method. In MQL, lubrication is higher
than conventional cooling which makes the surface roughness
values decrease. It is a clear fact that the neat lubricant oil
gives better lubrication for machining. This efficient lubrica-
tion reduces wheel-workpiece friction. Hadad et al. [87] per-
formed grinding experiments for hardened 100Cr6 (AISI
52100) steel. Accordingly, the grindability of 100Cr6 steel

increases with using the MQL system. In grinding operations,
surface roughness under MQL oil was less compared to other
methods such as fluid, dry, air jet, and water-based MQL
conditions. Rabiei et al. [74] worked on soft steels (CK45
and S305) and hard steels (HSS and 100Cr6) in MQL grind-
ing process. It is noted that surface roughness values were
much better in MQL in hard steels. The reason for lower
waviness is less friction in MQL. Hard steel, on the other
hand, has a brittle structure, so its surface damage is lower
than soft steel. It is seen that the use of MQL for hard steel
can decrease the friction coefficient. Kedare et al. [88] carried
out an experimental work under an MQL environment.
Results show that surface roughness value MQL is less con-
ventional flood lubrication. MQL provides a good result at
less cutting speed and less depth of cut. Belentani et al. [89]
worked on quenched and annealed form of SAE 4340 steel
under MQL in CBN-assisted grinding. As a result, when com-
pared to typical MQL, MQL with water (1/5) produced supe-
rior outputs in terms of surface roughness and roundness er-
rors, and the responses were remarkably similar to those ob-
tained when utilizing flood coolant. Wojcik and Nadolny [90]
investigated the influences of cutting fluids administered with
MQL on grinding process for nickel-based alloys, i.e., Nickel
201, Inconel 600, and Monel 400. They reported that the
properties of Biocut 3000 offer the most advantageous prop-
erties of machined surface roughness as well as a simulta-
neous increase in grinding power compared to outputs when
using Ecocut Micro Plus 82.

3.2 MQL effect on grinding forces

Force is an important output parameter commonly measured
in the machining process. High compressive and frictional
contact stresses produce cutting forces during grinding oper-
ation. Cutting forces knowledge is essential for the design of
the tool, fixture design, material removal rate, cutting tool
wear, surface roughness, etc. A variety of researchers have

Fig. 4 Surface roughness under different MQL conditions (Copyrights reserved) [86]
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beenmentioned normal and tangential forces in their papers in
order to focus the several machining results. Tawakoli et al.
[60] concluded that compared to fluid cooling and dry mode,
MQL-assisted grinding decreases tangential forces signifi-
cantly due to the presence of lubricant condition the grinding
wheel, allowing for improved grain sliding at the workpiece–
tool interface. DuringMQL-assisted grinding of Al2O3 ceram-
ic material, the performance of four types of lubricants, viz.,
mineral, hydrocracked, synthetic, and vegetable oils, was
assessed in terms of cutting force, specific energy, and surface
roughness by Emami et al. [72]. It was emphasized that oil
with MQL not only improves cutting force, but it also helps to
reduce the environmental impact of cutting fluids by including
environmentally acceptable oils. In a study made by Barczak
et al. [50], a comparison of three cooling methods was con-
ducted: traditional flood cooling, dry grinding, and MQL

grinding. A general purpose alumina wheel was used to grind
common steels EN8, M2, and EN31. The authors’ results
show that MQL can offer similar performance to flood
cooling. Tawakoli et al. [62] done tests under various MQL
grinding environments to establish the MQL parameters’ per-
formance with regard to grinding forces. The findings suggest
that the nozzle’s setup location is a critical aspect in the proper
application of MQL oil mist. Tawakoli et al. [60] also pre-
pared a set to grind 42CrMo4 soft steel and 100Cr6 hardened
steel under a different environment. As seen in Figure 5,
grinding force ratios were less when MQL oil with Al2O3

wheel was used.
Silva et al. [82] investigated the performance of the MQL

method under various lubrication and cooling modes while
grinding 4340 steel. It was stated that when compared to the
traditional cooling condition, the MQL approach lowered the

Fig. 5 Force ratio when grinding of a and b 100Cr6 hardened steel and c and d 42CrMo4 steel (Copyrights reserved) [60]
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tangential cutting force to a considerable level. Rabiei et al.
[74] worked on soft steel and hard steel in MQL grinding
process. It was stated that specific tangential grinding forces
for dry and conventional fluid-assisted grinding were higher
than MQL. This was due to the effective lubrication of wheel
grains in the cutting zone. This makes the result of lower
cutting forces in the cutting zone. Figure 6 outlines specific
tangential grinding force for soft steel.

Hadad et al. [87] performed grinding experiments of hard-
ened 100Cr6 steel with different cutting fluids in an MQL
environment. As a result, the MQL grinding procedure with
MQL oil was shown to significantly improve the grindability
of 100Cr6 material in terms of grinding force as well as sur-
face roughness.

3.3 MQL effect on tool wear

Tool wear is an unavoidable process developing on the cutting
tool during machining operations. Grinding wheel wear is a
complex phenomenon that depends on many effective con-
tributors that need to be controlled. Excessive wheel wear
leads to deterioration of workpiece surface and dimensional
accuracy of the produced part. This situation causes loss of
material, time, and labor eventually. As being the ultimate aim
of the production process, the workpiece sample presents an
important part of the whole manufacturing chain. Machine
downtime problems mostly occur due to the sudden failure
of the cutting tool. Also, cutting tool costs cover 6–12% of
the total costs [91–95].

The wear behavior of the grinding wheel under MQL and
other cooling/lubrication conditions has been studied by var-
ious researchers; some of these are summarized in this sub-
section. Oliveira et al. [84] worked on the wheel wear during
grinding of the AISI 4340 steel. Clogging of grinding wheel
pores from chips was the major cause of volumetric wheel

wear. The decrease in wheel wear in MQL with the cleaning
jet shows that cooling-lubrication is improved. It is also noted
in the study that MQL reduces health hazards. In grinding
AISI 4340 hardened steel with a CBN wheel at three flow
rates using a wheel cleaning jet-assisted MQL, the results of
MQL and traditional techniques were compared by Javaroni
et al. [96]. Consequently, wheel cleaning jet-assisted MQL
exhibited superior performance than others. In addition, when
compared to MQL without wheel cleaning, the use of the
wheel cleaning jet decreased wheel wear by up to 73 percent,
resulting to sustainable and effective grinding. In another re-
search study done by Javaroni et al. [97] grinding of AISI
4340 material under MQL technique with cooled wheel
cleaning jet. Authors emphasized that the MQL technique
with cooled wheel cleaning jet reduced wheel wear by 98
percent compared to conventional MQL mode as provided
in Figure 7.

Adibi et al. [98] investigated MQL grinding of carbon
fiber-reinforced SiC matrix composites, which is recognized
for being a cost-effective and ecologically friendly grinding
method, and its efficiency was compared to that of traditional
fluid and dry grinding methods. It was reported by researchers
that in dry grinding, wheel wear was the most important fac-
tor, while MQL grinding had the lowest wheel wear ratio.
Garcia et al. [99] investigated the effect of adding water to
the MQL method in grinding AISI 52100 steel in order to
eliminate the shortcomings identified in the traditional MQL
method. It was stated that when compared to the conventional
approach, theMQL technique’s reduced coolant capacity with
pure oil and lower lubrication capacity with water resulted in
more grinding wheel wear. Javaroni et al. [100] studied
grindability of advanced ceramics under MQL and conven-
tional cooling methods, and they reported that when compared
to conventional cooling-lubrication, the MQL approach re-
sulted in a significant increase in wheel wear.

3.4 MQL effect on cutting temperature

Cutting temperature is a natural process triggered by the work-
piece and tool contact under high pressure during grinding.
The main factor in cutting temperature is friction at the contact
area between the tool and workpiece. And this is accepted as
the primary cause of tool wear. It is important to remove and
move away the chips as fast as possible from the cutting area
safely. Also, the thermal conductivity of the work material
plays a significant role in accumulated heat [75]. Workpiece
and cutting tool material properties such as hardness and
toughness have an influence on the process and temperatures
[101]. Under these conditions, a group of parameters are im-
plemented during the process, and the main aim is generally
reducing the cutting temperatures. Cutting speed is accepted
as the most effective factor on temperature as it accelerates the
friction coefficient. Therefore, it is expected that MQL makes

Fig. 6 Specific tangential grinding forces for soft steels S305 (Copyrights
reserved) [74]
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it easier to decrease heat by including water for cooling and oil
for the reduction of friction. Many attempts have been per-
formed to measure the effect of MQL on grinding in the past
[102–104].

Sasahara et al. [105] worked on CFRP (carbon fiber-
reinforced plastics) to analyze the temperature. The surface
temperature was noted to be 375.9 °C in dry grinding with a
wide temperature region. The temperature value was 236.4 C in
the conventional cooling system with an external nozzle. This
temperature was still higher epoxy resin (120–180 °C). It is
seen that the internal cooling system was effective, and 65.1
°C temperature was found, and the temperature is lower than
the glass transition temperature of the epoxy resin. Hadad et al.
[87] analyzed the effect of dry, fluid (wet), andMQL conditions
on grinding process of 100Cr6 material. Temperatures were
measured under the ground surface for different depths and
for different environments, i.e. dry, MQL, and fluid.
Maximum temperature is found for dry grinding that was ex-
pected. In their conclusion on MQL, the authors found that
although this technique lubricates well in the grinding process,
it failed to meet the grinding cooling requirements compared to
liquid grinding in terms of temperature response curves obtain-
ed in experiments with MQL. In another study performed by
Hadad and Sadeghi [106], similar observations were reported.
Benkai et al. [54] conducted an experimental study to determine
the effect of seven different vegetable oils into MQL system on
temperature as well as forces and energy ratio coefficient in
grinding of nickel-based alloy. As a result, it was reported that
palm oil is the base oil that produces the best MQL grinding
results, with a tangential grinding force of 26.98 N, a normal
grinding force of 87.10 N, a grinding temperature of 119.6 °C,
and a 42.7 percent energy ratio coefficient. Barczak et al. [50]
who ground some steels, i.e., EN8, M2, and EN31, concluded
that when grinding soft materials under MQL, the temperature
can be reduced to levels close to conventional cooling, while
MQL can be insufficient for grinding hard materials. Shen and
Shih [107] investigated the grinding temperature using CBN
wheels under MQL environment. Based on the experimental

results, the authors reported that the insufficient cooling prob-
lem of MQL grinding can be overcome by using CBN wheels.
Sanchez et al. [108] worked the effect of hybrid MQL-CO2
grinding technology on coolant capacity and reported that the
temperature obtained with the MQL-CO2 system is quite close
to the temperature obtained with conventional cooling. Hadad
and Hadi [67] emphasized that in the grinding process under
MQL, the temperature can be significantly reduced compared
to dry grinding. However, MQL grinding cannot provide a
better cooling capacity compared to liquid grinding.
Nevertheless, it was emphasized that MQL grinding is a sus-
tainable technique that can be used in the future.

3.5 MQL effect on specific cutting energy

During cutting, high pressure between the cutting tool and
workpiece produces high cutting forces. Due to the dynami-
cally changing of contact area of grinding and hard particle-
dependent abrasive cutting mechanism, variable cutting forces
were also generated. Specific energy is defined as the energy
required for the per unit of metal removed [109]. The cutting
forces cause specific cutting energy with the effect of the
rotation of the wheel during grinding. Mainly, cutting forces
and cutting speed are in inverse proportion, and their common
impact determines the total specific cutting energy [61].
Actually, it is desired to consume minimum energy while a
whole machining operation. On the other hand, obtaining the
required range of surface roughness heavily depends on the
implementation of proper cutting forces. This is a contradic-
tory situation that needs to be solved which also presents an
intriguing issue from the perspective of optimization. A hand-
ful of papers have been published in literature about specific
cutting energy during grinding operation [63, 110–112].

Emami et al. [72] checked the effect of the MQL param-
eter on specific energy. Lower specific energy is achieved
when using synthetic oil in rough grinding. The optimum
parameter for minimum specific energy suggests that is
best achieved in rough grinding. Optimum energy was

Fig. 7 Wheel wear results under
different conditions (Copyrights
reserved) [97]
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found at 4.93 J/mm3. Zhang et al. [86] studied the effect of
MQL on specific grinding energy. Figure 8 and Figure 9
show the specific grinding energy for different grinding
environments and nano-MQL variations, respectively.
Accordingly, the highest specific energy value was found
for dry grinding which is 155.6 J/mm3 due to high friction,
and in conventional flood grinding, the specific energy was
lowest, i.e., 50.20 j/mm3 as seen in Figure 10. Moreover,
MQL grinding shows a better result than dry grinding. It is
possible to see from Figure 11 that while palm oil offers
the best results, in fact, there is no much difference be-
tween different types of oils on producing specific cutting
energy. Tawakoli et al. [60] reported that MQL-assisted
grinding provides a significant reduction in coefficient of
friction and specific energy for both hardened and mild
steel, which can be attributed to the high lubricating effect
in the contact zone that maintains grain sharpness. Wang
et al. [114] ground nickel-based alloy GH4169 under MQL
using different cutting fluids. The authors’ results revealed
that MQL grinding using vegetable oil offered a lower
specific grinding energy than flood cooling. Among the
grinding fluids, castor oil provided the best lubricating
properties. The friction coefficient and specific grinding
energy of castor oil were 0.30 and 73.47 J/mm3, respec-
tively, which decreased by 50.1% and 49.4% compared to
flood grinding. Chakule et al. [115] investigated the influ-
ence of different machining modes on critical indicators in
grinding process. They reported that the specific grinding
energy for MQL is significantly lower than for dry grind-
ing but slightly higher compared to wet grinding. The spe-
cific energy for wet, MQL, and dry grinding was deter-
mined as 18.95 N/mm2, 24.32 N/mm2, and 36.25 N/mm2,
respectively. Thus, the MQL process was highlighted as a
sustainable technique compared to wet cutting.

3.6 MQL effect on residual stress

Residual stress is formed on the surface after the production
process mostly due to plastic deformation [116]. As seen in
Figure 10, mechanical and thermal effects change the distri-
bution of stress on the surface, and distortions may produce as
a result. Residual stress affects stiffness, fatigue strength, and
service life of a part produced [117]. Residual stress also plays
an important role in eliminating the dimensional instability of
the high-precision parts.

MQL, which is one of the cooling lubricationmethods used
in grinding operations, is considered to be environmentally
friendly and economical. However, it is important to deter-
mine the effect of the MQL process on the residual stresses

Fig. 8 Specific grinding energy under different cooling/lubrication con-
ditions (Copyrights reserved) [86]

Fig. 9 Four basic oils and specific grinding energy for the nanoparticle
(Copyrights reserved) [86]

Fig. 10 Residual stress caused by thermal and mechanical effects
(Copyrights reserved) [113]
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on a surface obtained in the grinding process, which is a final
finishing process. Therefore, some researchers investigated the
effect of MQL grinding on residual stresses and reported them
in the literature. Some of these are summarized in this review
article. For example, Silva et al. [82] studied the residual stress
in grinding. Authors reported that residual compressive stresses
were obtained under all lubrication/cooling conditions. In addi-
tion, the highest residual stress obtained with the Al2O3 wheel
under MQL at air pressure of 30 m/s and flow rate of 40 ml/h
was −376 MPa versus −160 MPa obtained with conventional
cooling. Alves et al. [83] studied the residual stress in the MQL
environment and reported that residual stress obtained from
was larger. Da Silva et al. [79] worked on inlet engine valve
grinding. Authors highlighted that residual compressive stress-
es are assumed to enhance the mechanical properties of com-
ponents by increasing fatigue strength and product service life.
However, residual tensile stress is detrimental to mechanical
strength, corrosion, and wear. Accordingly, according to the
outcomes made by the authors as shown in Figure 11, the
MQLmethod created higher residual compressive stresses than
the traditional cooling system, which is a beneficial event. Both
MQL and traditional conditions exhibited a substantial im-
provement in residual compressive stress values as compared
to dry grinding. Shao et al. [118] investigated residual stress in
MQL grinding of 1018 steel. It was reported that MQL and
flood cooling grinding created compressive residual stress on
the machined surface, while dry grinding produced extremely
high tensile residual stress. Moreover, in terms of residual
stresses, MQL grinding may achieve very comparable results
to flood cooling grinding while lowering lubricant costs dra-
matically. Naskar et al. [119] studied the influence of various
grinding oils in MQL on surface integrity during grinding of
Inconel 718. It was found that the residual stress is minimal for
neat oil followed by conventional cooling. Huang et al. [120]
emphasized that based on a specified harden layer, MQL grind-
ing can increase machined surface integrity, including greater
surface compressive stresses and reduced surface roughness.
As a result, MQL grinding is regarded as a superior option over
dry grinding.

4 MQL with nanofluids

Nanoparticles have different types of mechanical properties
according to the specifications of metals used such as high
strength, high hardness, high chemical stability, and high
melting point. In this context, crystal structure, metallic bonds,
shape of the particles, and the magnitude of the particles have
a considerable effect on the main mechanism and influence on
the process. That is why all of the geometric, tribological,
chemical, and physical situations should be taken into consid-
eration especially thinking of the microstructure. The main
aim of adding nanoparticles of solid particles into the lubri-
cants is to gain different sliding, frictional, filling, and wear
mechanisms. As being a microstructural and dynamically
changing medium of tool and workpiece contact area, mea-
suring the effect of these tiny particles is hard sometimes. It is
desired to compose these particles with lubricant in order to
form a surface film on the top of the surface of the workpiece.
As seen in Figure 12, this differs the friction mechanism into
an antifrictionmechanism, and filling the voids on the tool and
workpiece occurs as a result of wear which paves the way for
reducing cutting forces and consumed energy. And in some
situations, particles utilized may lead to a polishing effect on
the surface with upgrading the surface quality.

Nanoparticles have also higher thermal conductivity than
the base fluids, so their mixture with base fluid enhanced the
thermo-physical properties. Many researchers have recently
worked on the nanoparticles and their effects on output pa-
rameters of the different machining processes, i.e., grinding,
turning, drilling, and milling. The heat transfer rate of the
conventional fluid can be increased by adding nanoparticles.
For example, mineral oils have excellent lubrication properties
and have a poor thermal property which restricts it to use in
industry. Therefore, the addition of nanometer-sized particles
in the base fluid can improve the thermal properties.

Nanofluids are special cutting fluids supported by nanopar-
ticles such as CNTs,MoS2, SiO2, and Al2O3 used for affecting

Fig. 11 Comparative results of residual stress (Copyrights reserved)n
[79]

Fig. 12 Tribological effects of nanoparticles (Copyrights reserved) [121]
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the lubricating characteristics. Utilizing lubricants in different
forms provides several advantages for improving machining
quality in terms of materials and cutters. Considering the
mechanism of grinding, it is difficult to apply the lubrication
between the tool and workpiece properly. Especially thinking
of the brittle materials, grinding may lead to challenging is-
sues in the deformation procedure. There is a need to improve
the current situation of the grinding mechanism. Therefore,
solid particle reinforced lubrication methods have been popu-
lar in the last years in machining. Regarding the diversity of
nanoparticles such as oxide, nitride, and carbide, hundreds of
types of nanoparticles can be integrated into lubricants. This
brings a considerable number of nanofluids with the addition
of the oil types. It is important to experimentally measure the
different types of nanofluids in different machining opera-
tions. As mentioned in the previous sections, the use of base
liquid MQL was at the same level or lagging behind conven-
tional cooling in terms of grinding performance in some stud-
ies reported from literature. In particular, the use of base fluid-
based MQL was less effective than conventional cooling in
reducing the grinding temperature. Therefore, the use of base
fluids supplemented with nanoparticles (nanofluids) is accept-
ed as an opportunity to both increase performance and con-
tribute to sustainable manufacturing in MQL-grinding pro-
cesses as seen in Figure 13. In the perspective of this paper,
grinding-based studies have been handled in using nanofluids
and their contributions to performance enhancement.

Shen and Bin [123] did work onMQL grinding of cast iron
using water-based Al2O3 and diamond nanofluids, and they
claim that highly concentrated nanofluids can enhance the G-
ratio, which is defined as the volume of material removed per
unit volume of grinding wheel wear. Nanofluids showed that
they can reduce grinding forces, improve surface roughness,
and avoid workpiece burn-in. In addition, nanofluid-based
MQL grinding can lower the grinding temperature substan-
tially as compared to dry grinding. In surface grinding, the
outcomes of nanofluid-based MQL on YG8 grade of

Tungsten carbide have been studied by [124], in which
MoS2, Al2O3, and graphite were dispersed in paraffin and
sunflower oil. Further, the outputs studied were specific ener-
gy, surface quality, and cutting force at dry, wet, and base
fluid-MQL environments as well as nanofluid-MQL. Their
results indicated that the proper selection of nanoparticles in
the nanofluid-basedMQL system improves process efficiency
via reduction of specific energy, grinding force, and increas-
ing surface quality. Another study is conducted by
Nandakumar et al. [125], which evaluates the performance
ofMQL grinding of a nano SiC-reinforced Al matrix compos-
ites via SAE20W40 on a horizontal spindle grinding machine.
In their study, nano TiO2-filled cashew nut-shell oil and sim-
ple cashew nut shell oil were used as the base oils, and re-
sponse surface methodology was applied. Moreover, parame-
ters such as workpiece speed, depth of cut, wheel speed, and
wt% nano SiC have been considered, and their results indicate
that a significant reduction of tangential forces along grinding
zone temperature is achieved by using nanofluids. The tribo-
logical performance of nanofluids in the course of grinding
operation of Ti6Al4V was studied by [126], in which the
percentage concentration and effect of MQL flow rate have
been evaluated. In their work, the performance of grinding
was assessed by microscopic images, analysis of ground sur-
face, and coefficient of friction. The formation of tribofilm on
the ground surface was due to the application of nanofluids.
Moreover, it was stated that the use of MQL in conjunction
with Al2O3 nanoparticles aids in the effective flushing of chip
material from the grinding zone, therefore resolving the major
issue encountered in Ti6Al4V grinding. Enhanced cooling
lubrication of sunflower oil with multi-walled carbon nano-
tubes for a grinding AISI52100 steel is studied by [127]. They
asserted that wettability of ordinary sunflower oil was signif-
icantly improved by nano-suspension. Moreover, significant
reduction of specific heat along with wear rate of a wheel,
compressive residual stress, and surface quality improvement
were the highlights of their work. Another grinding

Fig. 13 Schematic representation of nanofluid application in grinding (Copyrights reserved) [122]
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investigation on nanoparticle jet MQL grinding of hardened
45 steel was carried out by [128]. In their study, ZrO2, PCD,
and MoS2 nanoparticles were also compared in terms of
grinding performance. As a result, nanofluids provided the
best lubricating performance due to the friction oil layer pro-
duced by nanoparticles at the grinding wheel/workpiece con-
tact, which had excellent antifriction and anti-wear character-
istics. Also, MoS2 nanoparticles had the best lubricating ef-
fectiveness, according to the findings. Wang et al. [121] made
a comparison of nanofluid MQL and conventional cooling
conditions according to specific cutting energy as shown in
Figure 14. It can be said that there is a significant decrease in
specific sliding grinding energy compared to flood and MQL
applications when using the nanofluids. Lee et al. [129] per-
formed an experimental study on the micro-grinding process
with nanofluid MQL. The experimental results indicated that
nanofluid MQL is effective for enhancing the surface quality
and reducing grinding forces when compared to compressed
air mode and base fluid MQL. Furthermore, it was demon-
strated that the type, size, and volumetric concentration of
nanoparticles were important parameters to have an effect on
the performances of the micro-grinding process. Zhang et al.
[86] carried out an experimental study on the effect of nano-
particle concentration on the lubrication property of
nanofluids for MQL grinding of Ni-based alloy. It was em-
phasized that their findings indicate that palm oil-based
nanofluids combined with MoS2 nanoparticles provide the
best lubricating property in nanoparticle-based MQL environ-
ment. Shen et al. [130] worked on the effect of MoS2 nano-
particles in grinding process. MoS2 particles were added in
commercially available cutting oil. It was noted that cutting
oils containing MoS2 nanoparticles decreased the tangential
grinding force and friction between contacted surfaces consid-
erably. Furthermore, in MQL applications, this technique en-
hances overall grinding performance by increasing the G ratio.
Mao et al. [66] investigated the grinding characteristics in the

minimum quantity lubrication process. Al2O3 nanoparticles
were added in deionized water. Nanoparticle size varies from
40 to 80 nm. It was concluded that with the addition of nano-
particles, grinding temperature and forces are reduced, and
also the minimum value of surface was achieved, i.e., <0.2
um. It was also concluded that water-based nanofluid gives
better temperature reduction than other fluid.

5 MQL with hybrid nanofluids

Recently, the use of hybrid nanofluids, which are thought to
be more effective instead of mono-type nanofluids, has started
to increase rapidly. As shown in Figure 15, hybrid nanofluids
are novel fluids created by mixing two or more different types
of nanoparticles into a base fluid. Hybrid nanofluids are pro-
spective fluids with better thermophysical characteristics and
thermal performance than mono-nanofluids, which are com-
monly used for heat transfer [132]. By dispersing the nano-
particles, which have two different characteristics, in a liquid,
the superior properties of both particles can be combined in a
hybrid nanofluid. For example, it can be thought of as the
dispersion of a nanoparticle with superior thermal conductiv-
ity and a nanoparticle with superior fluidity or lubricity in a
base liquid. To enhance heat conductivity and conserve ener-
gy, metal or oxide nanoparticles into nanofluids are common-
ly used. To put it in another way, energy optimization refers to
the proper management of resources and energy consumption
via the application of cutting-edge technologies and current
sciences to achieve maximum efficiency or minimal energy
usage [132]. From this point of view, the use of nanofluids,
especially hybrid nanofluids, in precision operations such as
grinding is beneficial for many indicators. Some researchers
reported that hybrid nanofluids outperform conventional
cooling, pure-MQL, and mono nanofluid-based MQL in
grinding operations. For example, Kumar et al. [133] studied
the impacts of mono and hybrid nanofluids on grinding force,
specific grinding energy, grinding force ratio, and surface in-
tegrity during the grinding of Si3N4 ceramic. They highlighted
that when compared to deionized water-based liquid, the
grinding force and specific grinding energy for MoS2+WS2
hybrid nanofluids were reduced by 27% and 39%, respective-
ly. When compared to flood grinding, surface roughness and
chip layer depth of workpieces employing MoS2+WS2 hybrid
nanofluid were decreased by 41 percent and 86 percent, re-
spectively. Zhang et al. [134] examined the lubricating prop-
erties of Al2O3/SiC hybrid nanofluid-based MQL in grinding
of nickel-based alloy. In their experiment, the mean grain size
of Al2O3 and SiC nanoparticles was adjusted to 50 nm. It was
stated that the mixed nanoparticles comprising Al2O3 and SiC
nanoparticles give lower surface roughness than mono nano-
particles because of the synergistic effect. In addition, the
hybrid nanofluids reinforced byAl2O3/SiC (2:1) nanoparticles

Fig. 14 Comparison of specific sliding grinding energy under various
cooling/lubrication environments (Copyrights reserved) [121]
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acquired the best surface quality and specific grinding energy,
therefore suggesting the greatest lubricating performance.
Zhang et al. [135] carried out an experimental study to evalu-
ate the grinding performance Nickel-based alloy under MoS2/
CNT added hybrid nanofluid MQL. The MoS2/CNT hybrid
nanofluids provide a greater lubricating effect than single
nanoparticles, according to the findings. Also, it was found
that the hybrid mixing ratio and nanofluid concentration that
work best are 2:1 and 6%, respectively. Rabiei et al. [136],
who evaluated the performance of MWCNT, Al2O3, and hy-
brid MWCNT/Al2O3 nanofluids during ultrasonic-assisted
grinding, emphasized that the minimum grinding forces, pow-
er consumption, and temperature occur with hybrid nanofluid
MQL and ultrasonic-assisted grinding process. Taghizadeh
and Zarepour [137] worked the influence of Al2O3-
MWCNT hybrid nanofluid on surface condition while grind-
ing of Ni-based alloy Inconel 600. Applying a nanofluid with
a mixing ratio of 75–25 percent for Al2O3-MWCNT nano-
particles, volume concentration of 0.6 percent, and size of
20 nm and 15 nm for Al2O3 and MWCNT nanoparticles,
respectively, achieves the greatest surface quality. Molaie
et al. [138] reported that through two separate lubrication
processes—the third body and the sliding layers—the hybrid
Al2O3/graphite nanofluid generated superior lubrication than
conventional coolants, resulting in the lowest grinding force
and specific energy. Experimental findings by Zhang et al.
[139] demonstrated that the size and mixing ratio of nano-
particles in the Al2O3/SiC hybrid nanofluid significantly
affect MQL grinding performance. As can be seen in
Table 3, it is possible to increase these studies further. It
can be clearly concluded that the grinding performance
with both mono nanofluids and hybrid nanofluids is en-
hanced compared to base fluid MQL as well as dry and
wet environment.

6 Challenges

In the previous sections, the effective performance of both
hybrid nanofluids and mono nanofluids in grinding operations
was noted as remarkable. However, it has been reported that
nanofluids have various disadvantages in terms of their prep-
aration and economic, environmental, and health aspects dur-
ing the period from production to elimination [158]. The sta-
bility of nanofluids, which is achieved by providing long-term
homogeneous dispersion of nanoparticles in the base fluid, is
one of the basic requirements of nanofluid applications. The
stability of a nanofluid is vital for it to maintain its
thermophysical properties. However, the homogenous disper-
sion behavior of nanoparticles is significantly affected by a
long time period, and weakening of its stability is one of the
frequently encountered problems. Surfactants or dispersants
are important additives used to prepare stable nanofluids.
Surfactant, on the other hand, has been found to have a sub-
stantial impact on the transport characteristics and heat trans-
fer performance of nanofluids, as well as weakening the influ-
ence of suspended nanoparticles on heat transfer [159].

The flow pressure of the coolant is one of the important
criteria that determines the efficiency of nanofluid application.
In particular, the effect of fluid flow rate on performance is
important in nanofluid-based MQL application in grinding
operations. The high density and viscosity of nanofluids com-
pared to the base fluid lead to a pressure drop and an increase
in pump power in the lines where nanofluids are used [160].
Therefore, it is possible to emphasize that pressure drop and
high pump power are another disadvantage of nanofluids.

The high production cost of nanoparticles is one of the
factors that may limit the application of nanofluids in metal
cutting operations. In addition, nanofluids can be produced by
single-stage or two-stage methods [161]. However, the

Fig. 15 An illustration showing
the difference between hybrid
nanofluids and mono nanofluids
(Copyrights reserved) [131]
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presence of advanced and sophisticated equipment in both
methods is among the main reasons for the high increase in
production costs [158]. A comparative table for the cost esti-
mation of different cooling techniques is given in Table 4
including raw material, tool, cleaning, and disposal. In this
perspective, disposal and raw material costs present a disad-
vantaged part of the nanofluids compared to other techniques.
The best side of usage of nanofluids is bringing moderate tool
costs. However, in general, it can be concluded that the use of
nanofluids is a high-cost operation.

Although very little oil and nanoparticles are used in
nanofluid-based MQL application, environmental damage
caused by industrial activities in the production process of
nanoparticles should be taken into account. Moreover, pro-
duced nanoparticles can directly or indirectly harm human

health and the environment. Interaction with these substances
can be inhalation, direct contact, etc. possible ways. These
particles may enter the blood through inhalation and ingestion,
causing toxicity in various organs [132]. In summary, the
negative effects of nanoparticles and nanofluids on the envi-
ronment and human health can be counted among the limita-
tions of the method.

7 Conclusions and future directions

Using of lubricants in machining operations has drawn atten-
tion in machining processes in the last decade. The popularity
of this method becomes the complexity of the machining
mechanisms particularly in turning, milling, drilling, and

Table 3 Some studies on nanofluids used in grinding in the literature

Ref. Nanofluid type Grinding environment Machining characteristics

[135] MoS2/CNT MQL Grinding forces, surface roughness

[140] MoS2 Dry, flood, MQL Grinding forces, surface roughness

[121] MoS2, SiO2, ND, CNTs, Al2O3, ZrO2 Flood, MQL Grinding forces, surface roughness

[141] MWCNTs Dry, MQL Grinding forces, surface roughness, temperature

[142] Al2O3, MoS2, CNTS, SiO2, ND, ZrO2 MQL Surface morphology

[143] SiO2 MQL Grinding forces, surface roughness

[144] Alumina and hBN Flood, MQL Grinding forces, surface roughness, residual stresses

[145] Al2O3 Cryogenic, MQL, cryogenic MQL Surface roughness, temperature, and specific energy

[146] MoS2 MQL Grinding forces, surface roughness, specific
grinding energy, temperature

[147] CNT MQL Surface roughness

[148] Al2O3 MQL Force, surface roughness, specific energy, wheel wear

[126] Al2O3, CuO MQL Surface roughness

[149] MoS2, CNTs MQL Cutting forces, surface roughness

[150] TiO2, SiO2, Al2O3,
CuO, NiO, and
MWCNTs

MQL Grinding forces, temperature

[86] MoS2 Dry, flood, MQL Surface roughness and specific grinding energy

[128] MoS2, ZrO2, and
PCD

Dry, flood, MQL Grinding forces, specific energy

[151] MoS2 Flood, MQL Grinding forces, specific energy, temperature

[152] Graphite, WS2 and MoS2 Dry, MQL Grinding forces, surface roughness,

[122] Ag, ZnO Dry, wet, MQL Cutting forces, surface roughness, tool wear

[133] MoS2 – WS2 Dry, wet, MQL Specific grinding forces, specific grinding energy,
surface roughness

[139] Al2O3/SiC MQL Specific grinding force, surface roughness

[153] MoS2, ZrO2, CNT, Polycrystalline
diamond, Al2O3, and SiO2

MQL Surface roughness, temperature, and grinding forces

[111] MoS2, ZrO2, CNT Flood, MQL, Dry, Specific grinding energy

[154] CuO Dry, wet, MQL Grinding forces, temperature, surface roughness

[155] Copper Dry, flood, MQL Surface roughness

[110] MoS2, carbon nanotube (CNT), and ZrO2 MQL Surface roughness and specific energy

[156] Graphene, graphite, and MoS2 Dry, MQL Cutting forces, surface roughness, specific grinding energy

[157] Carbon nanotube particles Dry, MQL, flood Temperature
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grinding. Machining takes an important place in industrial
networks both handling the finishing operations and consum-
ing energy. Therefore, it is crucial to optimize the operating
conditions for improving efficiency and reducing manufactur-
ing costs. MQL-based lubrication and cooling have made
paradigm-shift effect on machining performance of the pro-
cesses compared to dry and flood-assisted machining. As be-
ing a specific cutting mechanism, grinding stands a significant
point in the manufacturing chain. Application of a variety of
cooling and lubrication approaches provides improvement in
machining characteristics such as surface roughness, wheel
life, cutting forces, and specific energy. This paper focuses
on the performances of different cooling/lubrication types
and MQL in the view of the literature. In the following, con-
cluded remarks are listed from this comprehensive literature
review:

1. MQL is a green manufacturing approach providing usage
of the least amount of lubrication material during machin-
ing. That is why sustainability brings many advantages in
terms of recovery, waste, efficiency, and costs.
Researchers have performed many studies for solving
the optimization problem in which the MQL ingredients
ensure the best findings in addition to its ecological per-
spective. In this context, consumed energy is excessive in
machining operations and grinding which shows the im-
portance of the usage of MQL for minimization of specif-
ic cutting energy.

2. Dynamic changes in cutting forces during grinding oper-
ation owing to the continuous cutting mechanism produce
high cutting energy. Setting proper cutting forces depends
on the cutting parameters and properties of workpiece
material individually. However, high cutting forces may
lead to high tool wear and poor surface texture. It was

seen in the literature that applying MQL significantly re-
duces cutting forces.

3. Wheel wear is a challenging issue due to the abrasive
mechanism between tool and workpiece under a narrow
area, and wheel structure shows different characteristics
from other types of cutter in machining processes.
Therefore, progressive wear should be kept under control
on the peripheral surface of the wheel; otherwise, the pro-
cess can result in sudden loss of tool. MQL applications
provide improved machinability in terms of generating a
surface film on the workpiece which fills the contact area.
Also, reinforcement by nanoparticles during the applica-
tion of MQL affects the cutting mechanism and plastic
deformation in a better way depending on the particle
magnitudes, shape, and content. With general results
when comparing the flood, dry, and MQL, it is seen that
MQL provides better findings; however, flood cooling
application provides better results than MQL in some
cases. That is why the comparison of lubrication/cooling
conditions is an intriguing issue in machinability.

4. High temperatures are an important source for the devel-
opment of tool wear due to their effect on material struc-
ture and deformation. Application of MQL expedites
cooling of the cutting area with the aid of water andmakes
easier the cutting mechanism with the help of oil and
soluble additives. It is basically the main solution for rapid
tool wear and change of material structure stem from the
high temperatures.

5. Surface roughness is one of the significant purposes of
machining processes for every type of operation.
Residual stress causes stress accumulation on the surface
of a material which may result in micro-cracks and unex-
pected developments during the service of a component.
MQL and nanoparticle-reinforced MQL reduce plowing

Table 4. Cost estimations for different cooling techniques [162]

Cooling type Raw material cost Fluid consumption Equipment costs Tool cost Cleaning costs Disposal costs

Cutting fluids ** ***** **** *** ***** *****

Dry machining * * * ***** * *

MQL ** ** *** ** ** **

Solid lubricant **** *** *** *** *** ****

Cryogenic cooling *** *** ***** *** * *

Gaseous cooling *** *** **** **** * *

Sustainable cutting fluids *** **** **** ** **** ***

Nanofluids ***** **** **** *** **** *****

*Very low

**Low

***Medium

****High

*****Very high
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effect on the surface since easier cutting is possible com-
pared to dry grinding. There is a need to clarify the most
effective lubricant parameters on surface roughness.

6. Some researchers pointed out that flood application may
provide better results in terms of some machining charac-
teristics in a comprehensive study. This situation presents
a difficulty that reveals the importance of conventional
applications may produce good results. It still needs to
perform much more experimental test for confirmation
of their performances. MQL requires an investment cost
initially; however, much better results can be obtained,
and the cost can be compensated in the light of literature.

7. Mono nanofluids into MQL can be used as an alternative
to cases where pure-MQL application is insufficient to
improve the performance of grinding operations. In fact,
it has been witnessed that hybrid nanofluids with MQL
give better results than mono nanofluids. Therefore, both
mono and hybrid nanofluid-based MQL method can be
seen as an opportunity for grinding operations. However,
there is a need for more experimental study by researchers
as there are so many variables and combinations that af-
fect performance in these applications.

8. Although base MQL is environmentally friendly, low-
cost, and easy-to-apply method, some limitations in
nanofluid-based MQL application may push researchers
to find different solutions due to some difficulties of
nanoparticles/nanofluids during production, preparation,
and employment of them such as low stability, pressure
drop and high pump power, high cost and environmental
damage, and human health problems. Therefore, it is in-
evitable that more work should be done to clear the way
for the method to be more sustainable by eliminating the
mentioned problems.
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