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Abstract
Chatter is the main problem that limits the application of industrial robots in the field of machining process. It is critically
important to establish an adaptive chatter detection solution for robot machining process and realize the online detection of
chatter. However, different from machine tool chatter, the chatter in robotic machining process is more complex to be detected
due to the variable stiffness characteristics and weaker stiffness of normal industrial robot, and the existing literature has less
research on this problem. This paper presents a comprehensive solution for online chatter detection in robotic machining process.
Firstly, in order to detect the chatter in robotic machining process and avoid mode mixing problem in variational mode decom-
position (VMD) process, an adaptive variational mode decomposition (AVMD) method based on kurtosis and instantaneous
frequency is proposed, which realizes the adaptive selection of the decomposition parameter. Secondly, optimal decomposition
parameters are calculated by using genetic algorithm. By optimizing the discrete step length of decomposition parameter, it
greatly reduces the optimization time. Last but not least, approximate entropy, energy entropy, and proposed entropy drift
coefficient are extracted to distinguish chatter and stable machining state. Simulation and experimental results show that the
proposed method can meet the real-time requirements of online detection and detect the occurrence of chatter effectively.
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Chatter features

1 Introduction

During the last few decades, industrial robots have been wide-
ly used in many industries for various applications, including
welding [1], material handling [2], painting [3], assembly [4],
and machining [5]. Among them, robotic machining has
attracted significant attention from both academics and indus-
try because of its low cost, strong flexibility, and taking up

small space [6, 7]. However, the stiffness of an industrial robot
is usually less than 1 N/μm, while the stiffness of machines
tools is often greater than 50 N/μm [8], which makes chatter
easier to happen in robotic machining than traditional machine
tools.

Chatter in the machining process belongs to the self-
excited vibration, which seriously affects the surface quality
of the workpiece and limits the machining efficiency [9, 10]. It
is critical that vibration needs to be controlled within an ac-
ceptable range [11]. Chatter vibration has become a major
obstacle to achieve stable and efficient robotic machining
and is generally caused by mode-coupling or regeneration of
chip thickness [12]. There are many literatures addressing the
chatter issues during the machining process including the
chatter mechanism, chatter detection, and suppression strate-
gies in the past decades, such as Hayati et al. in [13] proposed
a boring bar with an internal frictional damper to reduce chat-
ter vibrations of boring bars. Dong et al. in [14] presented an
updated numerical integration method (UNIM) to analyze the
stability of delay-differential equation (DDE) to avoid chatter
vibrations in milling process. Yuan et al. in [15] developed a
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novel method to mitigate chatter vibrations in the thin-wall
milling of the structures with half-opened side walls through
designing a supplementary device. However, few literatures
have been devoted to chatter detection in robotic machining
process. Cen et al. [16] presented a discrete wavelet transform
(DWT)–based online chatter detection algorithm and chatter
suppression strategy applied to robot milling. Tao et al. [17]
proposed a novel approach to identify the chatter in robotic
drilling process based on multi-synchrosqueezing transform
(MSST) and energy entropy. Sun et al. [18] used rotary ultra-
sonic milling (RUM) technology to suppress chatter in robotic
milling process. Pan et al. [8] claimed that the mode coupling
chatter was the dominant chatter in the robotic milling pro-
cess, and the occurrence of the chatter during other machining
applications was ignored. Through the mode analysis and
milling experiments, Marcel Cordes et al. [19] found that only
low-frequency robot’s structural modes cause chatter in mill-
ing of titanium. Lin et al. [20] proposed a SC-based (spindle
configuration) deformation model, which establishes a map-
ping between the spindle configuration and the deformation of
the robot end effector. The loss of stability in robotic machin-
ing process often results in violent vibration of the robot itself,
which will exacerbate the damage to the robot body and cutter.
Early chatter detection allows operators to interfere in the
robotic machining process and avoid damage to robot body.
Significant research has been conducted on chatter detection
in traditional machining process [21]. Various sensor signals
have been used to monitor chatter, such as cutting force, vi-
bration acceleration, motor current, sound, torque signal, or
the combination of them. Wang et al. [22] proposed to seg-
ment vibration signal and current signal to create a multi-
sensor fusion network for motor condition monitoring, which
not only improves the effectiveness of feature extraction but is
also adaptive to varying machining parameters. After years of
research, scholars generally believe that acceleration signals
and cutting forces are more capable of detecting chatter in
machine tool processing for their comprehensive performance
in price, installation, signal quality, and information usability.
In order to obtain more information in robotic machining dy-
namics, a tri-axial acceleration sensor is installed on the spin-
dle, and the collected acceleration signal is used as monitoring
vibration signal.

The statistical characteristics of vibration signal in the time
domain and frequency domain varied with the change of vi-
bration, and this change is usually disturbed by the back-
ground noise [23]. Therefore, advanced signal processing
methods are critical for the subsequent analysis in the chatter
detection process. Extensive research has been focused on
researching signal processing methods, and significant prog-
ress has been achieved [24–26]. Traditional spectral methods
based on fast Fourier transform (FFT) are excluded because of
the nonlinear and non-stationary nature of chatter signals.
Wavelet analysis and later wavelet transform (WT) and

wavelet packet transform (WPT) are powerful analytical tools
in both the time and frequency domains. But it is difficult to
determine the suitable wavelet base and decomposition layers.
Chen et al. [27] proposed a feature extraction and optimization
method based on recurrence quantitative analysis and affine
propagation clustering to monitor chatter. Shi et al. [28] intro-
duced a new method using ordered-neuron long short-term
memory (ON-LSTM) and population-based training (PBT)
to detect chatter in high-speed milling processes. Dong et al.
[29] used the complexity index of vibration signals to identify
chatter in milling of thin-walled part and found the change
laws of the complexity of vibration signals from stably milling
to chatter. Especially, more and more machine learning
methods have been used in signal feature extraction and
achieved good results. Qiao et al. [30] proposed a novel end-
to-end deep learning network named adaptive weighted
multiscale convolutional neural network (AWMSCNN) to
adaptively extract robust and discriminative multiscale fusion
features from raw vibration signals. Yang et al. [31, 32] re-
spectively implemented the FTNN (feature-based transfer
neural network) and PK-MMD (polynomial kernels induced
maximum mean discrepancy) to construct models for intelli-
gent signal analysis and both methods presented higher clas-
sification accuracy. Empirical mode decomposition (EMD)
was proposed by Huang et al. [33] as a self-adaptive analysis
method. This method is based on the local characteristic time
scales of a signal and may decompose a complicated signal
function into a set of complete and almost orthogonal compo-
nents named intrinsic mode functions (IMFs) and without re-
quiring the selection of the wavelet base and the decomposi-
tion layers. A lot of studies in recent years have investigated
efficient methods of detecting chatter with EMD in traditional
machine tool processing. In order to detect the onset of chatter
vibrations, the recurrence quantification analysis and the
EMD are employed in the milling process of titanium alloy
Ti6242 [34]. Peng [35] adopted EMD based on time-
frequency analysis for the detection of tool breakage inmilling
process. Cao et al. [21] combined the benefits of WPT and
EMD to extract features according to the Hilbert-Huang spec-
trum for chatter detection. However, EMD suffers from many
issues, such as mode mixing, boundary effect, and sensitive to
noise. To solve these problems, some alternative methods
have been introduced. Cao et al. used a self-adaptive analysis
method, termed ensemble empirical mode decomposition
(EEMD), to analyze vibration signals and extract two nonlin-
ear indices to indicate chatter [36]. Fu et al. [37] presented a
comprehensive solution by combining EEMD and Hilbert
spectral analysis method to extract features in milling process.
Although EMD can effectively decompose the non-stationary
signal, it lacks theory basis and cannot be evaluated from
mathematical basis.

The chatter frequency generated during the robotic machin-
ing process may be changeable because of the constantly
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changing stiffness with different joint configuration [19],
which makes the chatter detection more complicated in robot-
ic machining process. Variational mode decomposition
(VMD) was introduced by Dragomiretskiy and Zosso [38],
which has solid theoretical basis and can decompose the signal
into several sub-components concurrently. Meaningfully,
VMD can overcome the mode mixing problem of EMD,
and can exhibit good performance of signal processing.
However, the problem of selecting the number of decomposed
modes K and the penalty coefficient α still affects the decom-
position results.

In order to determine the parameters of VMD, Yang et al.
[39] searched for the optimal decomposition parameters based
on the simulated annealing method (SA), and accurately de-
tected the occurrence of chatter by calculating the approxi-
mate entropy and the sample entropy, but the SA method
requires large amounts of time. Liu et al. [40] introduced an
automatic selection method based on particle swarm optimi-
zation (PSO) and the maximum crest factor of the envelope
spectrum (CE) to solve the problem of parameter selection.
Liu et al. [41] proposed an automatic selection method of
decomposition parameters based on kurtosis values. They se-
lected the optimal decomposition parameters by comparing
the kurtosis values of the reconstructed signal and achieved
good decomposition results. However, choosing the optimal
sub-component based on chatter frequency was not suitable
for situation in robotic machining where the chatter frequency
is uncertain. The complexity of chatter characteristics in
robotic machining increases the difficulty of extracting
chatter components from vibration signal. In order to pre-
vent chatter from occurring and avoid severe chatter from
damaging the robot and tool system, it is urgent to pro-
pose a chatter detection method suitable for robotic ma-
chining process.

In this study, a comprehensive solution for chatter detec-
tion in robotic machining process has been proposed. Firstly,
in order to avoid possible mode mixing problem due to over-
decomposition, the adaptive variational mode decomposition
(AVMD) method based on kurtosis and instantaneous fre-
quency is presented, which realizes the adaptive selection of
the decomposition parameter. Secondly, optimal decomposi-
tion parameters are calculated by using genetic algorithm. By
optimizing the discrete step length of decomposition parame-
ter, it greatly reduces the optimization time. Last but not least,
approximate entropy, energy entropy, and proposed novel
chatter feature based on entropy are extracted to distinguish
chatter and stable machining state.

The rest of paper is organized as follows. Section 2 briefly
describes the methodology of chatter detection in robotic ma-
chining. Section 3 describes experimental setup and the chat-
ter characteristics of the robotic milling. The analysis of sim-
ulation and experimental results are presented in Section 4,
and conclusions are given in Section 5.

2Methodology of chatter detection in robotic
machining

2.1 Variational mode decomposition method

Variational mode decomposition (VMD) is a non-recursive
methodwhich has a rigorousmathematical derivation process,
and overcomes the problem of mode mixing compared with
empirical mode decomposition (EMD). The purpose of VMD
is to decompose a real valued input signal into a discrete
number of intrinsic mode functions (IMFs), uk, that have spe-
cific sparsity properties while reproducing the input. It is as-
sumed each mode to be mostly compact around a center pul-
sation wk, which is to be determined along with the decompo-
sition. VMD can be treated as a constrained variational prob-
lem, which is represented as follows:

min ukf g wkf g ∑
k

∂t δ
�
t
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þ j

πt
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1
,…,wk} represents their center frequencies, respective-

ly. y is the original signal, δ is the Dirac distribution, and ∗
denotes the convolution operator. Meanwhile, by introducing
a quadratic penalty term α and Lagrange multipliers λ, the
constrained problem is transformed into an unconstrained
problem:
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By mean of alternate update rnþ1
k , wnþ1

k , λn + 1, Lagrange
expression’s saddle point can be looked for. Then the solution
of this quadratic optimization problem is obtained by letting
the first variation vanish for the positive frequencies:

bunþ1

k wð Þ ¼ arg min w−wkð Þ2 brk�w			 			2dw�
 �
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The center frequencies are solved as:

wnþ1
k ¼

∫∞0w brk wð Þ
			 			2dw

∫∞0 brk wð Þ
			 			2dw ð5Þ

wherebrnþ1
k wð Þ is identified as a wiener filtering of the current

residualby wð Þ−∑bri wð Þ, and wnþ1
k is the center of gravity of the

corresponding mode’s power spectrum.
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2.2 Adaptive variational mode decomposition
method

The penalty coefficient α and the number of decomposed
modes K are critically important in the decomposition process
for variational mode decomposition (VMD) and must be cho-
sen in advance. In this study, to evaluate the decomposition
performance of K and α in signal processing, adaptive varia-
tional mode decomposition (AVMD) method based on kurto-
sis and instantaneous frequency is firstly established. On the
one hand, in order to avoid the mode mixing problem caused
by over decomposition in VMD, an adaptive search method
for the maximum value of decomposedmode numberK based
on instantaneous frequency is proposed in this paper. On the
other hand, the kurtosis reflects the index of the degree of
deviation of the signal from the Gaussian distribution, and is
particularly sensitive to the chatter component in the machin-
ing signal. Therefore, the kurtosis is used as an index to eval-
uate the enhancement performance of the chatter component.
The steps of the proposed adaptive VMD method are as
follows:

Step (1). Automatic search of parameter Kmax. Kmax is the
maximum value of K that guarantees no over-de-
composition. The initial values of K and α are giv-
en as K = 2, α = 1/2fs (fs means the sampling fre-
quency), and α remains unchanged in this step.
The signal is decomposed into K sub-components
using VMD, and the instantaneous frequencies of
sub-components are calculated by the Hilbert
method respectively. Then instantaneous frequen-
cies of any two sub- components are compared
with each other. If any two sub-components have
close frequency (5%), the maximum value is
Kmax = K and the process switches to Step (2).
Else, K =K + 1 and do Step (1) again.

Step (2). Determine the parameter value range. It is critically
important that α cannot be less than 1/2 of the
sampling frequency for avoiding mode mixing
problem [42]. Therefore, ranges of decomposition
parameters are given by K ∈ [2, Kmax] and
α ∈ [1/2fs, 2fs].

Step (3). Calculate the kurtosis of sub-components. The sig-
nal is decomposed into K sub-components by
VMD. Then solve the kurtosis of sub-components
separately, and the kurtosis is calculated by

Y ¼ 1

N
∑N

i¼1

xi−x
σi

 !4

ð6Þ

where xi represents the discrete data in sub-components, x is
the mean value,N is the data length, and σi is the standard var.

Step (4). Obtain the decomposition parameter set. Under the
ith set of decomposition parameters {Ki,αi}, the
local maximum kurtosis value can be calculated
as Yi. Then the parameter set can be constructed
as {Ki,αi, Yi}.

2.3 Optimization method of decomposition
parameters

In this research, genetic algorithm (GA) was selected to search
for the global optimal parameters based on the natural evolu-
tionary processes that enable species to adapt to their environ-
ment [43]. In the process of GA optimization, the discrete step
length of individual variables has a key impact on the efficien-
cy of parameter optimization, especially for parameter α with
a larger range of values. In order to shorten the calculation
time and ensure the stability of the optimization parameters,
the influence of the step length of α on the optimization result
will be analyzed in the research. The optimization process of
decomposition parameters is as follows:

Step (1). Given the ranges of decomposition parameters and
the parameters are binary coded.

Step (2). Select the step length of individual variables and
generate initial population.

Step (3). Calculate fitness function. Fitness. value = Y.
Step (4). Choose individual with high fitness value and

achieve new population.
Step (5). If the termination condition is met, then the last

generation is decoded in binary and the optimal
results can be obtained. If no, proceed to Step (3).

2.4 Sampling strategy and chatter features

Researchers generally need to detect the occurrence of chatter
by calculating changes in time-domain and frequency-domain
characteristic parameters, and cannot directly judge from the
time-domain signal trend, whether it is the original vibration
signal or the sub-components obtained by variational mode
decomposition (VMD) method. The occurrence of chatter is
often accompanied by the increase of signal complexity and
the change of energy. In view of good performance of quan-
tifying the complexity of the signal, the energy entropy [41]
and the approximate entropy [44], together with the proposed
entropy drift coefficient, were used as features for chatter
detection.
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2.4.1 Sampling strategy

A rolling time window sample strategy proposed by Fu et al.
[37] was used in this research. Frame length and frame shift
are two key sampling parameters and the size of the frame
length mainly affects the calculation time, while the size of
the frame shift affects the sampling time. In order to meet the
real-time requirements, it is very important to choose the ap-
propriate sampling parameters. The rolling sampling strategy
is described as Fig. 1.

2.4.2 Entropy drift coefficient

Using an absolute threshold of entropy would be problematic
because the levels of the entropies change with the cutting
conditions. In order to detect the changes of entropy quantita-
tively, a trend evaluation coefficient based on entropy has
been proposed in this research, which is called entropy drift
coefficient (EDC). The entropy drift coefficient can be calcu-
lated as follows:

EDC ið Þ ¼ ∑i
i−m En i−1ð Þ−En ið Þð Þ; i > mþ 1 ð7Þ

En(i) means the entropy value of the ith sampling segment
(frame length), and m is the extension length of the segment.
This coefficient can detect whether the entropy value contin-
uously changes in a short time, and then reflect the change
characteristics of the vibration signal.

2.5 Online adaptive chatter detection strategy based
on AVMD

The chatter detection strategy proposed in this paper mainly
includes three parts: (1) adaptive adjustment of ranges of de-
composition parameters; (2) parameter optimization process
using genetic algorithm (GA); (3) online chatter detection.
The first two processes have to be conducted in advance be-
cause the optimization process is time-consuming, and the
offline source signal comes from historical data with similar
cutting conditions, which would be updated with the increase

of cutting process. The online chatter detection strategy of
robotic milling is described in Fig. 2.

3 Chatter characteristics of the robotic milling

3.1 Experiment setup

In order to test the effectiveness of the proposed method, a
series of end milling tests were conducted. Experiments were
performed on a MOTOMAN ES165D robot equipped with a
ABG0311A1 spindle. Detailed parameters of machining robot
are listed in Table 1. A tri-axial accelerometer (PCB356A15)
was mounted on the spindle housing to measure the vibrations
in three directions of X, Y, and Z during the milling process.
Vibration signals were sampled with NI-9218 and then trans-
mitted to a PC which was used for data storage and signal
processing. The sampling frequency was set as fs = 5120Hz.
Cutting experiments were conducted by straight cut. The chat-
ter monitoring platform of robotic milling is depicted in Fig. 3.

In this paper, 6061 aluminum alloy is selected as the work-
piece to be processed. During the machining process, no cut-
ting fluid was used. The cutter was a solid carbide end mill
with three teeth, and the detailed characteristics parameters are
listed in Table 2.

3.2 Hammer tests

Chatter vibrations are usually caused by themost flexible, dom-
inant structural modes of the machine-workpiece system. To
analyze the source of chatter in robotic milling, frequency re-
sponse functions (FRFs) were obtained by exciting the system
with an impact hammer and measuring the vibration response
with accelerometers. The results are illustrated in Fig. 4. Hij

means the FRF in i direction when striking from the j direction.
The highest compliance is observed at around 565 Hz mode in
Hyy and some lower compliance were found near 1338 Hz and
1805Hz. These high-frequency modes describe the high-
frequency natural frequency of the robotic milling system. As
shown in Fig. 4b, some low-frequency modes surely exist,

Frame shift

Frame length

i-th segment(i-1)-th segmentFig. 1 Rolling time window
sampling strategy
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while their amplitudes are very small compared with those of
high-frequency mode. In order to prevent the failure in mea-
suring low-frequency modes of accelerometers, Marcel
Cordes et al. [19] used a laser Doppler vibrometer Polytec to
test the FRFs. They found that the low-frequency modes did
exist in robotic milling system (14Hz and 26Hz in their

research) with higher amplitudes, and proved that the low-
frequency modes are mainly related to the robot’s configura-
tion, while the high-frequency modes (850Hz and 2325Hz in
their research) belong to the spindle-tool assembly. In order to
describe the chatter characteristics of the robotic milling sys-
tem more completely, this paper will make an analysis based

vibration signal Set the initial value of K and 

Calculate the fitness function
Choose individual with high fitness 

value and achieve new population

Decompose signal into IMFs

Calculate chatter features

Vibration signal collected online

Whether chatter 

occurs?

Adjust machining parameters

Optimizing 
process  using 

genetic 
algorithm

Decompose the signal into IMFs 

using VMD

Calculate the instantaneous 

frequency of IMFs
K=K+1

Whether there is close 

instantaneous frequency ?

Yes

No

Yes

No

Determine the range of according to 

sampling frequency fs

Adaptive 
variational 

mode 
decomposition

Kmax=K

Is the termination condition met？

Select optimal step length of K and 

DecodingRecord the group of K and 

Find out the IMF with biggest 

kurtosis value

Yes

No

Online chatter 
detection in

robotic
machining 

process

Fig. 2 The flow diagram of
online chatter detection method
based on AVMD

Table 1 Key parameters of
machining robot Load Repeated

positioning
accuracy

Spindle
power

Spindle
weight

Spindle
rated
speed

Spindle rated
torque
(S1/S6)

165 kg ± 0.2 mm 11 kw 18 kg 21000 rpm 5 Nm/8.5 Nm
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on their experimental results. In this research, [9, 62, −34,
−81, −93, 67] (degree) was used as robot’s configuration of
the hammer tests, and the motor control was in action during
the test.

3.3 Chatter tests in robotic milling

In traditional machining process, chatter vibration is closely
related to spindle speed and axial cutting depth according to

Servo drives

Spindle Rotary tableRobot (6-axis)

...

EtherCAT

Vibration signal acquisition

NI-9218 Triaxial accelerater

USB Data

Data

Controller

Robotic milling equipment

robot

spindle

rotary table

tool

accelerater

workpiece

Fig. 3. The chatter monitoring
platform of robotic milling

Table 2 Tool parameters
Tool diameter (mm) Helical angle (degree) Number of teeth Tool length (mm) Blade length (mm)

10 45 3 75 30

Fig. 4 Measured direct FRFs and
two cross FRFs. a Results in the
range of 0–2500Hz. b Results in
the range of 0–200Hz
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Altintas [45]. In order to activate the chatter phenomenon
in robotic milling, this research purposely chose spindle
speeds n from 3000 to 12,000 rpm, the axial depth of cut
from 1 to 6 mm, and the radial depth of cut from 2 to 10
mm. In addition, the same posture as the hammer tests
was adopted in the milling tests and the frequency re-
sponse functions are assumed to be constant because the
milling distance is not large (the maximum is 50mm in
the y direction). Since this article focuses on chatter de-
tection in robotic milling, it is unreasonable to analyze all
groups of signals and eight representative results were
picked out. The measured signals and obtained spectrums
using fast Fourier transform (FFT) are depicted in Fig. 5,
where f represents the spindle rotation frequency. The
parameters of these results are listed in Table 3.

In this research, the workpiece factor can be ignored when
analyzing the source of chatter because the rigidity of work-
piece clamping is far greater than that of robot and tool instal-
lation. By removing the rotation frequency of spindle and
cutter teeth, abnormal frequency components (indicated by
the red arrow and red words) are observed from Fig. 5.
Based on the experimental results of hammer tests, abnormal
frequencies (1367Hz and 1368Hz) in cases 2 and 4 are close to
one of the natural frequencies of the robotic milling system,
1338Hz, obtained from the hammer test. These kinds of vi-
bration are mainly caused by spindle-tool system and the chat-
ter source could be the spindle shaft and slender tool, while
abnormal frequencies (49Hz, 55Hz, 62Hz) in cases 6, 7, and 8
are closely related to the low-frequency modes, which are
mainly caused by the structural vibration of the robot.

Fig. 5 Measured vibration signals
(left) and the Fourier spectrums
(right) of signals between red line:
(a) results of case 1; (b) results of
case 2; (c) results of case 3; (d)
results of case 4; (e) results of case
5; (f) results of case 6; (g) results
of case 7; (h) results of case 8
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4 Results and discussion

4.1 Simulation signal analysis

4.1.1 Simulation signal construction

In order to verify the effectiveness and feasibility of the pro-
posed method, a simulation signal is constructed and ana-
lyzed. The simulation signal is made up of four components:
(a) stable cutting signal, which represents the spindle rotation

frequency and the angular frequency is 100 Hz; (b) low-
frequency chatter signal, whose angular frequency is 50 Hz;
(c) high-frequency chatter signal, whose angular frequency is
300 Hz; (d) wns(t) describes the white noise signal. The sim-
ulation signal is constructed as follows:

x tð Þ ¼
3sin 200πtð Þ þ wns tð Þ 0s≤ t < 1s

3sin 200πtð Þ þ 4cos 600πtð Þ þ wns tð Þ 1s≤ t < 2s
3sin 200πtð Þ þ 6cos 100πtð Þ þ wns tð Þ 2s≤ t≤3s

8<
:

ð8Þ

Table 3 Cutting cases for the
chatter tests No. Up/down milling Feed rate (mm/min) Axial depth (mm) Radial depth (mm) Speed (rpm)

1 Up 120 5 2 5000

2 Up 120 5 2 6000

3 Up 120 3 2 9000

4 Up 120 3 3 7000

5 Up 120 3 2 12000

6 Up 90 3 10 6000

7 Up 120 3 10 6500

8 Up 120 3 10 7500

Fig. 6 Chatter detection results
obtained using AVMD: (a) simu-
lation signal; (b) approximate en-
tropy; (c) energy entropy; (d) en-
tropy drift coefficient (EDC) cal-
culated by approximate entropy
(m=5); (e) entropy drift coeffi-
cient (EDC) calculated by energy
entropy
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4.1.2 Adaptive adjustment of ranges about decomposition
parameter

The initial decomposition parameters are set as K = 2, α = 1/
2fs. According to the calculation steps described in
Section 2.2, the result of Kmax is 9. Therefore, the range of
decomposition parameters isK ∈ [2,Kmax] andα ∈ [1/2fs, 2fs].

4.1.3 Optimizing process using genetic algorithm

The genetic algorithm (GA) is applied to the optimization
process of decomposition parameters. The optimization step
of K is 1, and the optimization step of α is 0.02fs. The opti-
mization calculation is carried out according to the steps de-
scribed in Section 2.3. The results show that the optimal

Fig. 7 Chatter detection results
obtained using EMD: (a) approx-
imate entropy; (b) energy entro-
py; (c) entropy drift coefficient
(EDC) calculated by approximate
entropy (m=5); (d) entropy drift
coefficient (EDC) calculated by
energy entropy

Fig. 8 Kmax value of different
penalty coefficient α
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kurtosis value is 4.47, where the decomposition parameters
areK = 9 andα = 4960. Then the optimal sub-component with
maximum kurtosis value is selected to calculate proposed
features.

4.1.4 Chatter detection based on proposed features

According to the decomposition parameters obtained above,
the simulation signal x(t) is decomposed by variational mode
decomposition (VMD). Set the sampling parameters as frame
length = 64 (number of data) and frame shift = 32, then select
the sub-component with maximum kurtosis value to calculate
the approximate entropy, energy entropy, and entropy drift
coefficient (EDC) value frame by frame. The results are
shown in Fig. 6.

The simulation signal consists of two abnormal frequency
components; the first one (300Hz) appears at 1s and the sec-
ond (50Hz) appears at 2s. As shown in Fig. 6, the approximate
entropy and energy entropy show numerical mutation at 1s
and 2s, which is synchronized with the time-domain signal.
Obvious changes in entropy value show that approximate en-
tropy and energy entropy are sensitive enough to be used for
detecting whether there is abnormal chatter component in the
signal or not. Huge changes also appear in EDC parameters.

Empirical mode decomposition (EMD) method uses the
signal’s intrinsic characteristics and does not require the selec-
tion of the decomposition layers [33]. As a comparison, sim-
ulation signal is decomposed into several sub-components by
using EMD and the calculation results of chatter features are
illustrated in Fig. 7. The energy entropy obtained by EMD

Fig. 9 Time series (left) and
spectrogram (right) of IMFs from
AVMD decompositions of the
signal in case 2
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shows obvious mutation when the signal component changes,
but the approximate entropy does not have a huge upward or
downward trend. Similar results are found in the diagrams of
EDC (Fig. 7(c)). The EDC value of energy entropy fluctuates
greatly in themiddle section (1–2s), whichmakes it difficult to
set a stable threshold. Therefore, the calculation results of the
simulated signal show that the VMD-based feature extraction
method proposed in this paper is convenient for calculation
and can effectively detect the chatter component in the signal.

4.2 Results of the AVMD method

To prove the feasibility of the proposed method, three differ-
ent values of parameter α are selected to calculate Kmax by
proposed adaptive variational mode decomposition (AVMD)
method, and the results of eight groups of signals are shown in
Fig. 8. Kmax has an obvious increasing trend with the increase
of α. Considering that the range of α is [1/2fs, 2fs], it can be
found that the selected Kmax, through utilizing α = 1/2fs, can
reach a minimum value of Kmax. Thus, it is effective to avoid
over-decomposition by using Kmax calculated from α = 1/2fs.
The decomposition results of part signals (2–3s) in case 2 are
shown in Fig. 9. The signal in case 2 is decomposed into eight
sub-components from low frequency to high frequency,
where each frequency band contains clear frequency compo-
nents and no overlapping frequency component is found in
adjacent sub-components.

As a comparison, part signals (2–3s) in case 2 are
decomposed into twelve sub-components by using empirical

mode decomposition (EMD) method and the results of the
first four sub-components are illustrated in Fig. 10. Different
from the filtered signal by AVMD, the sub-components
decomposed by EMD present overlapping frequencies, which
cause the chatter component to be scattered on different sub-
components, resulting in loss of signal energy, and greatly
affecting the detection effect of abnormal frequency compo-
nents. Therefore, proposed method can achieve sub-
components with individual frequency, which is essential to
improve the accuracy of chatter detection.

4.3 Results of the decomposition parameter
optimization

By setting different kinds of discrete step length of individual
variable α, the maximum kurtosis value and the decomposi-
tion parameters are calculated according to the genetic algo-
rithm (GA). The calculated maximum kurtosis values and
decomposition parameters of group 1 signal are depicted in
Fig. 11. The optimal parameters of the eight groups of steps
are clearly marked in the figure (red points and red texts). The
optimal results of K = 4 are calculated under eight kinds of
step lengths, while the parameter α fluctuates around 4800
in cases of short step length (0.001fs, 0.002fs, 0.005fs, 0.01-
fs, 0.02fs, 0.05fs). The results show obvious convergence, that
is, the change of step length of α will not affect the optimiza-
tion result of parameter K, but only parameter α. When the
step size reaches 0.1fs, the optimization result of α reaches
2560, which is far away from the optimization results in cases

Fig. 10 Time series (left) and
spectrogram (right) of IMFs from
EMD decompositions of signals
in case 2
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of lower step lengths. Similar results are also found on the
optimization results of other groups of data.

In order to better analyze the influence of discrete step
length of parameter α on the parameter optimization results,
the parameter K which is not affected by the step length is
ignored. Eight kinds of step lengths are used to calculate the
optimization parameters of each group of signals respectively
and the results are shown in Fig. 12, in consideration of the
maximum kurtosis value calculated by using 0.001fs which is
better than others. The maximum kurtosis value of 0.001fs is
taken as the benchmark. The kurtosis ratios are calculated as
follows:

Kurtosis ratio Step length of α½ �

¼ Maximum Kurtosis Step length of α½ �
Maximum Kurtosis Step length of α ¼ 0:001fs½ � ð8Þ

It is not difficult to find that the kurtosis ratio is close to one
when the step length is less than 0.01fs, and the calculated

optimal penalty coefficient α has a slight fluctuation. But the
kurtosis ratio calculated from the 2, 3, and 6 groups of signal
data will drop significantly when the step length is greater than
0.02fs, and the penalty coefficient will change drastically. The
kurtosis values calculated from the 1, 4, 5, 7, and 9 groups of
signal data drop significantly when the step length is greater
than 0.05fs, and the optimal penalty coefficient α begins to
change significantly. Therefore, relatively stable and reliable
optimized parameter of α can be obtained when the step
length is less than 0.01fs. This discovery will provide a refer-
ence for scholars to optimize the decomposition parameters of
VMD, and save the calculation time while ensuring the opti-
mization performance.

4.4 Verification of real-time performance

It is critical to consider the calculation time of proposed adap-
tive variational mode decomposition method (AVMD) for an
online detection system. A shorter calculation time helps to
achieve a faster detection frequency, which can detect chatter

Fig. 11 Optimal decomposition
parameters of signals in case 1
under eight different step lengths
(select only the top 30 points in
eight cases)
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as early as possible, so as to control the vibration and damage
within an acceptable range [46]. In this section, through ana-
lyzing the calculation time of proposed method, a reasonable
selection rules of sampling parameters would be provided
according to the real-time requirements and calculation time
in actual detection situation.

Liu et al. [47] has analyzed the time complexity of varia-
tional mode decomposition (VMD), but few scholars have
analyzed the performance of VMD in the case of online de-
tection. In the sampling strategy described in Section 2.4,
frame length and frame shift are two key sampling parameters
and the size of the frame length mainly affects the calculation
time, while the size of the frame shift affects the sampling
time. As shown in Fig. 13, the boundary line divides the graph
into two regions: A and B. T-F curve describes the mean
computing time (calculation time of proposed method using

data from case 1) under different frame lengths. In order to
ensure the continuity and stability of online detection, the
selection of sampling parameters must follow two principles:
(1) The mean calculation time meets the requirements of on-
line detection time (assuming that the fluctuation of calcula-
tion time is very small). (2) The sampling time meets the
requirements of online detection time, and in a detection
cycle, sampling and calculation are carried out at the same
time. The online detection cycle was set as Td ≤ 0.01s, then
the first principle determines the upper bound of the frame
length. The second principle determines the upper bound
of frame shift length. In view that the frame length cannot
be less than the sampling length, the sampling parameters
must be selected in the semi-part B. Thus, the selection of
sampling parameters should be limited in the red line area
in Fig. 13.

Fig. 12 Optimal results of
different step lengths for eight
groups of signal data ((a) case 1,
(b) case 2, (c) case 3, (d) case 4,
(e) case 5, (f) case 6, (g) case 7,
(h) case 8)
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Considering the fluctuation of calculation time, the sam-
pling length is set to 32, so that the sampling time is 0.0063s,
less than the required 0.01s. For the frame length, Scholars
believe that its value should be large enough to reduce energy
loss and ensure signal quality [37], but too large length will
lead to a drastic increase in computing time. In this study, the
frame length was set as 64, and the mean calculation time was
5.2ms < 10ms.

In order to test the real-time performance of proposed
method, some monitoring experiments were carried out on
vibration signals under four groups of milling parameters.
The monitoring process lasted for 1.5 s, and a total of 239
calculations were performed. The calculation time is shown
in Fig. 14 and the red line represents the requirement of real

time. For signals with small K, such as case 1, case 3, and
case 4, the calculation time is almost less than 0.01s,
which can ensure that the monitoring period would not
be affected. For signals with large K, such as case 2,
calculation time in some segments is more than 0.01s.
The occurrence of this situation is related to the time-
consuming VMD process, and calculation result shows
that VMD decomposition accounts for 95% of the calcu-
lation time. For the signal with large decomposition pa-
rameters, the real-time performance of chatter detection
can be ensured by reducing the frame length.

As shown in Fig. 15, reducing the frame length can
effectively reduce the detection time, and most of the
calculations can be controlled within 0.01s. Part of the

Fig. 13 Detection time of the
proposed method for the signals
in case 4 (fs=5120 Hz. Testing
platform: Windows 10, Intel (R)
Core (TM) i7-10700F CPU @
2.90GHz)

Fig. 14 Single calculation time of proposed method for cases 1–4 (frame
length = 64 (0.0125s), frame shift length = 32 (0.00625s))

Fig. 15 Single calculation time of proposed method for cases 5–8 (frame
length = 32 (0.00625s), frame shift length = 32 (0.00625s))
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timeout point does not appear continuously; it will not
have a destructive impact on the continuity of detection.
Therefore, the proposed method can control the detection
time in a certain range and meet the requirements of on-
line detection.

4.5 Chatter features analysis

The sampling strategy mentioned in the Section 2.4 was used
to divide the signals of each group (frame length = 64
(0.0125s), frame shift = 32 (0.00625s)) and the approximate
entropy of each segment was extracted by using proposed
adaptive variational mode decomposition (AVMD). As
depicted in Figs. 16 and 17, the approximate entropy of case
1 decreases at 0.81s and the spectrum of the signal in this
period shows an abnormal frequency of 2476 Hz, which is
0.14s ahead of the violent growth time (0.95s) of the signal
amplitude. In addition, abnormal tool marks appeared on the
workpiece of group 1, as shown in Figs. 18, 19, 20, and 21.

For signal in case 4, the approximate entropy decreases in
0.42s, and the spectrum shows that there is an abnormal fre-
quency of 1368hz with large amplitude. Similar situations also
occurred in cases 2, 3, 6, and 8. The large decrease of approx-
imate entropy is often accompanied by the emergence of ab-
normal frequency components and tool marks, which repre-
sents the generation of chatter phenomenon. It is worth men-
tioning that the lower chatter frequency of 56 Hz appears in
the signals of case 7 with the decrease of approximate entropy.
In the signals of case 5, there is no continuous decrease or
increase of approximate entropy and no abnormal tool marks
shown in Fig. 21, which indicates that it is a stable cutting
state. The method proposed in this paper can effectively
detect the chatter component in the signal, and the detec-
tion result is not affected by the chatter frequency. Thus,
there is no need to consider whether the chatter is regen-
erative or coupled, or both, which would perform an im-
portant role in promoting chatter suppression in robot
machining.

Fig. 16 Approximate entropy
obtained using AVMD and
spectrogram of transitional area: a
time series and approximate
entropy for case 1; b spectrogram
for case 1 (0.78–0.88s); c time
series and approximate entropy
for case 2; d spectrogram for case
2 (0.34–0.45s); e time series and
approximate entropy for case 3; f
spectrogram for case 3 (0.19–
0.31s); g time series and
approximate entropy for case 4; h
spectrogram for case 4 (0.41–
0.54s)
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In order to compare the advantages and disadvantages of
approximate entropy and energy entropy in signal analysis,
energy entropy is also extracted according to the same steps
as approximate entropy. As shown in Fig. 18, the energy en-
tropy of case 1 decreases at 0.93s, which is almost consistent
with the time when the signal amplitude rises sharply, but
0.12s later than the time when the approximate entropy
drops. For the signals of case 2, the energy entropy de-
creases at 0.52s, 0.15s later than the time when the ap-
proximate entropy decreases at 0.37s. The times of large
changes of the approximate entropy and energy entropy
are summarized in Table 4. Compared with energy entro-
py, approximate entropy is more sensitive and is able to
detect the change of signal complexity earlier. Therefore,
the approximate entropy was chosen to calculate the en-
tropy drift coefficient (EDC), and the calculation results
are shown in Fig. 19.

For the stable cutting vibration signals in case 5, the EDC
value is relatively stable. EDC values fluctuate in a certain
range, and there is no abnormal extremum point, while

extremum points of EDC appeared in those signals with
abnormal frequency components (cases 1–4 and 6–8). The
appearing times of extremum points are also summarized
in Table 4. Relative to the amplitude of the signal, the
calculated entropy can detect abnormal components in
the signal earlier. Although the amplitude of the signal
will also change with the occurrence of chatter, it is ob-
vious that the entropy value can provide an early warning
of chatter so as to minimize the damage to the surface
quality as much as possible.

As shown in Fig. 16e, the approximate entropy of signals in
case 7 decreases in 0.47s, and presents a continuous and sig-
nificant downward trend. Correspondingly, the entropy drift
coefficient (EDC) has an extremum point in 0.50s, as shown
in Fig. 19g. Researchers can only observe the downward trend
of approximate entropy by naked eyes, but cannot detect it by
the value of approximate entropy itself. Fortunately, EDC can
reflect the drift trend of approximate entropy by numerical
value. Table 4 shows that the occurrence times of EDC extre-
mum points are close to the drift times of approximate

Fig. 17 Approximate entropy
obtained using AVMD and
spectrogram of transitional area: a
time series and approximate
entropy for case 5; b spectrogram
for case 5 (0–1s); c time series and
approximate entropy for case 6; d
spectrogram for case 6 (0.23–
0.36s); e time series and
approximate entropy for case 7; f
spectrogram for case 7 (0.44–
0.54s); g time series and
approximate entropy for case 8; h
spectrogram for case 8 (0.49–
0.59s)

571Int J Adv Manuf Technol (2021) 117:555–577



entropy, which just verifies that EDC is consistent with ap-
proximate entropy in detecting abnormal signal. The emer-
gence of these extremum points verifies that EDC can reflect
the drift of entropy and provide conditions for setting
detection threshold. Through combining the simulation
and experimental results, the absolute value of detection
threshold about EDC can be set to 0.2. EDC is calculated
based on the approximate entropy value, by calculating
the difference of continuous m + 1 points and obtaining
a coefficient reflecting the trend of entropy drift (m is
set according to the sampling frequency and frame length
and it is set as 5 in this research). The larger the EDC, the
more away from zero the entropy kept. Although the de-
tection times of approximate entropy in Table 4 is earlier
than EDC, it is difficult to determine a stable threshold
value of approximate entropy. Therefore, the EDC pro-
posed in this paper is more suitable for online detecting
the chatter components in the signal.

For comparison, the signals were also decomposed by
using empirical mode decomposition (EMD) and the results
of energy entropy obtained from EMD are shown in Fig. 20.

From the energy entropy shown in Fig. 20a, c, d, and g, the
trend of the entropy value is similar to the results obtained by
AVMD, which can be used to distinguish between chatter
state and stable state with difficulty. From the energy entropy
shown in Fig. 20d, chatter occurs at about 0.51s, which is later
than the onset time indicated by AVMD (Fig. 18d). From the
graph shown in Fig. 20b, it is difficult to distinguish between
chatter and stable state. Another strange thing is that there is an
abrupt change in the energy entropy as shown in Fig. 20f, but
it does not exist for a long time. That makes it hard to distin-
guish whether there is abnormal component or not. This kind
of unclear sub-components may be caused by mode mixing in
EMD decomposition, which will lead to multiple features in
one sub-component, making the chatter information sub-
merged in the mixing signal and difficult to be detected. A
similar situation can also be seen in Fig. 20g. Compared with
EMD, the filtered signal using AVMD can detect the abnor-
mal components in the signal earlier and obtain sub-
components with more chatter information, which is proved
to be more suitable for online detection of chatter in robot
machining.

Fig. 18 Energy entropy extracted
by using AVMD: a energy
entropy for case 1; b energy
entropy for case 2; c energy
entropy for case 3; d energy
entropy for case 4; e energy
entropy for case 5; f energy
entropy for case 6; g energy
entropy for case 7; h energy
entropy for case 8
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5 Conclusions

Aiming at the online chatter detection problem in robotic ma-
chining, a comprehensive solution based on variational mode
decomposition (VMD) was put forward in this paper. Firstly,
the adaptive variational mode decomposition (AVMD) based
on instantaneous frequency and kurtosis can realize the adap-
tive selection of the decomposition parameter and avoid the
phenomenon of mode mixing effectively in VMD process.
Compared with the empirical mode decomposition (EMD),
proposed method possesses better decomposition perfor-
mance and can achieve sub-components with individual
frequency, which is essential to improve the accuracy of
chatter detection. Secondly, genetic algorithm was used to
optimize the decomposition parameters of VMD and a
selection strategy of discrete step length was given to
reduce calculation time. This work will provide a refer-
ence for scholars to optimize the decomposition parame-
ters of VMD, and save the calculation time while ensuring
the optimization performance. Finally, approximate entro-
py, energy entropy, and proposed entropy drift coefficient
are extracted to detect chatter information in the signal.

Compared with the approximate entropy and energy en-
tropy, proposed entropy drift coefficient (EDC) can not
only detect the chatter component in the signal, but also
achieve reasonable threshold to distinguish between chat-
ter and stable machining state. It is worth mentioning that
this paper also provides the selection strategy of sampling
parameters in real-time chatter detection application based
on VMD method, which can provide reference for
scholars. Simulation and experimental results showed that
the methods proposed in this paper can meet the real-time
requirements of online detection and detect the occurrence
of chatter effectively.

In this research, two main factors affect the performance of
online detection, one is the decomposition time of VMD, the
other is the threshold setting of chatter feature, although the
proposed scheme has realized the real-time monitoring in ro-
bot milling. It is still a challenging task for further reduction of
computation time and acquisition of stable threshold. In addi-
tion, the distinction of chatter types is necessary for better
understanding of chatter in robotic machining process.
Therefore, the optimization of detection algorithm and distinc-
tion of chatter types are our next step work.

Fig. 19 The entropy drift
coefficient (EDC) calculated
based on approximate entropy: a
EDC for case 1; b EDC for case 2;
c EDC for case 3; d EDC for case
4; e EDC for case 5; f EDC for
case 6; g EDC for case 7; h EDC
for case 8
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Fig. 20 Energy entropy extracted
by using EMD: a energy entropy
for case 1; b energy entropy for
case 2; c energy entropy for case
3; d energy entropy for case 4; e
energy entropy for case 5; f
energy entropy for case 6; g
energy entropy for case 7; h
energy entropy for case 8
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Fig. 21 The surface topography:
a group 1; b group 2; c group 3; d
group 4; e group 5; f group 6; g
group 7; h group 8

Table 4 Times with abnormal
signal detected by chatter features Signal Signal amplitude Energy entropy Approximate entropy EDC

1 0.95 s 0.93 s 0.81 s 0.84 s

2 0.67 s 0.52 s 0.37 s 0.40 s

3 0.28 s 0.27 s 0.24 s 0.26 s

4 0.54 s 0.42 s 0.42 s 0.44 s

5 – – – –

6 0.39 s 0.32 s 0.29 s 0.31 s

7 0.52 s 0.49 s 0.47 s 0.50 s

8 0.64 s 0.58 s 0.53 s 0.56 s
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