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Abstract
Disassembly sequence planning (DSP) can effectively increase the disassembly efficiency, shorten the disassembly cycle, reduce
disassembly costs, and reduce environmental hazards of end-of-life (EOL) products, playing an important role in manufacturing
industries. Thus, it is urgent to propose an approach to solve the DSP problem. DSP is a famous NP-hard combinatorial
optimization problem. As the size of components increases, exact algorithms can hardly obtain the optimal disassembly se-
quence. Therefore, we propose a promising intelligence algorithm, modified grey wolf optimizer (MGWO), to solve the DSP
problem. MGWO inherits the main idea of the hierarchy and hunting mechanism of the original grey wolf optimizer (GWO).
Three new operators are designed in MGWO to ensure the feasibility of solutions under the complex constraint of disassembly
precedence. The feasible solution generator (FSG) is designed to obtain feasible disassembly sequences, the neighborhood search
operator (NSO) is developed to make wolves (solutions) self-evolving, and the guided search operator (GSO) is used to make the
wolf group guided by three leaders of wolves. Two engineering cases are applied to validate the effectiveness of the proposed
operators. Then, they and two real-world applications are used to compare the MGWO with other reported methods. The results
demonstrate that MGWO can solve the DSP problem effectively.
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1 Introduction

With the renewal of modern technology and the shortening of
product life, an enormous amount of end-of-life (EOL) products
has been generated.Minimizing the adverse environmental effect
of EOL products and increasing their recovery rate become a
global trend. Disassembly, a systematic method to divide prod-
ucts into components and subassemblies, is the first and often the
most challenging process of remanufacturing EOL products [1].
A good disassembly sequence can effectively improve the disas-
sembly efficiency, shorten the disassembly cycle, and reduce the
disassembly cost. Hence, the key of the disassembly process is to
obtain the optimal disassembly sequence.

Disassembly sequence planning (DSP) studies the dis-
assembly sequence of components for a given EOL

product to minimize disassembly time and cost, maintain
stability during the disassembly process, and improve re-
covery efficiency. It has been proved to be an NP-hard
problem [2]. The common methods for solving DSP in-
clude modeling, mathematical programming, and intelli-
gent optimization algorithms. The modeling methods con-
tain AND/OR graphs, Petri nets, and matrix-based
models. Lambert [3] used an AND/OR graph to represent
the disassembly process and designed a binary integer
linear programming approach based on the AND/OR
graph to solve DSP. Cappelli et al. [4] proposed an
AND/OR graph of mechanical assemblies to represent
the solution space of disassembly sequences. Rai et al.
[5] combined a Petri net with heuristic search procedures
to solve DSP. The Petri net guides the disassembly pro-
cess through a token game. Kuo [6] proposed a Petri net–
based analysis approach to solve DSP. The Petri net de-
termined the optimal tradeoff between the cost and the
environmental effectiveness of the disassembly processes.
Li et al. [7] designed an interference matrix to represent
the geometric constraints between components. The feasi-
ble disassembly sequence was generated based on the
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interference matrix. In addition to these modeling
methods, many linear programming methods are also used
to solve DSP. Zhu et al. [8] introduced a machine-
readable disassembly information model and proposed a
linear programming-based optimization method to solve
the method. Ma et al. [9] designed an integer program-
ming method to solve DSP in a parallel disassembly en-
vironment to maximize profit. Behdad et al. [10] devel-
oped a stochastic mixed-integer nonlinear programming
method to solve DSP considering uncertain outcomes,
such as time, cost, and the probability of causing damage.
Kim and Lee [11] developed an integer programming
model to represent disassembly sequences and proposed
a branch and bound method for obtaining the lower and
upper bounds of DSP. The limitation of modeling and
mathematical programming is that they can only solve
small-scale DSP problems. With the expansion of the
scale of problems, the computational time of modeling
and mathematical programming increases exponentially.
The high computational time is unacceptable. Hence, the
intelligent optimization algorithm is the most widely
used method for solving DSP. Wang et al. [12] pro-
posed a genetic algorithm (GA) to solve DSP. Their
crossover and mutation operators can effectively help
the algorithm to find the optimal disassembly sequence.
Go et al. [13] designed an optimization model for DSP
and presented a GA to solve it. Yeh [14] proposed a
simplified swarm optimization (SSO) algorithm for solv-
ing DSP. His algorithm combined the precedence pre-
servative operator, feasible solution generator, repetitive
pairwise exchange, and self-adaptive parameter control
procedures. Then, Yeh [15] modified the SSO algorithm
by improving its update mechanism and revising its
self-adaptive parameter control procedure to make it
better solve DSP. Percoco and Diella [16] used an arti-
ficial bee colony (ABC) algorithm for DSP considering
the disassembly cost and the environmental impact. Tian
et al. [17] presented an ABC algorithm to solve DSP
considering the stochastic cost and time of product dis-
assembly. Additionally, many intelligent optimization al-
gorithms, including GA [18–20], particle swarm optimi-
zation (PSO) [21, 22], ant colony optimization (ACO)
[23, 24], teaching-learning-based optimization (TLBO)
[25, 26], and Bees algorithm (BA) [27, 28], have also
been designed for solving DSP. The limitation of intel-
ligent optimization algorithms is that their accuracy is
not exact. The intelligent optimization algorithms can
only obtain an approximate optimal solution, but cannot
guarantee to achieve an exact solution. Therefore, how
to design an intelligent optimization algorithm to bal-
ance solution quality and computational efficiency has
become the focus of our research. Besides, the parame-
ter settings in most of the above algorithms need

constant tunings, such as acceleration constant and iner-
tia weight in PSO, the probability of crossover and mu-
tation in GA, and pheromone evaporation rate in ACO.
The characteristic makes it difficult for above algorithms
to adapt to a variety of EOL products. Based on this,
we design an algorithm with few parameters, which are
adaptive and robust for various situations. It is an obvi-
ous advantage of our algorithm compared with previ-
ously reported methods.

Grey wolf optimizer (GWO) is a novel intelligence
optimization method designed by Mirjalili et al. [29], in-
spired by mimicking the hunting mechanism and the so-
cial hierarchy of the wolf group. Due to its high conver-
gence speed and simple implementation, GWO has been
applied in many industrial fields. For example, Mohanty
et al. [30] used GWO to implement a maximum power
point tracking design for maximizing power extraction in
a photovoltaic system. Jayakumar et al. [31] proposed
GWO to allocate generation and heat outputs to the com-
mitted units in a power system operation. Their proposed
method maximized power output while minimizing cost.
Lu et al. [32] applied a multi-objective GWO to the
welding shop scheduling. Besides, GWO was also used
in engineering design [33], path planning [34], and power
scheduling [35], etc. Unlike many meta-heuristic algo-
rithms, GWO does not require many parameters to be
tuned. Hence, it is very convenient to use GWO to solve
optimization problems.

However, GWO is designed for continuous optimiza-
tion problems, so it cannot be directly applied to the
DSP problem. This paper develops a modified grey wolf
optimizer (MGWO) to solve the DSP problem. The al-
gorithm inherits the significant thought of the social
hierarchy and hunting mechanism of the original
GWO. The novelty of our GWO is as follows: (1)
Three new operators, i.e., feasible solution generator
(FSG), neighborhood search operator (NSO), and guided
search operator (GSO), are designed for DSP. FSG is
developed for generating feasible disassembly se-
quences. NSO and GSO are designed to update disas-
sembly sequences and make the wolf group evolve in a
good direction. (2) In the original GWO, the δ wolf is
the third-best wolf. However, through experimental
analysis, we found that if δ wolf is set as a new wolf
generated by FSG, the performance of GWO is better
for solving DSP. (3) In addition, in the original GWO,
the first three wolves are preserved to the next genera-
tion without being guided by other wolves, but in our
GWO, α, β, and δ wolves would exchange their prey
information with each other.

The remaining sections of this paper are organized as
follows. Section 2 gives the disassembly model for
DSP. Section 3 describes the MGWO for obtaining the
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optimal disassembly sequence. Section 4 verifies the
superiority of MGWO by utilizing two case studies
and two real-world applications. Section 5 discusses

the effectiveness and superiority of MGWO. Finally,
Sec t ion 6 prov ide s the conc lus ion and fu tu re
researches.

FSG

Input: the interference matrix IM10+ of the EOL product

Output: a feasible disassembly sequence

set CA of components available for disassembly to Ø;1 Set the 

2 Set the map DA for feasible disassembly directions of components in CA to Ø;

3 For i = 1 to the length of disassembly component sequence X do

4 For each component c in the EOL product do;

5 If c X then

6 Continue;

7 End if

8 If c can be disassembled by checking IM10+ then
9 Record the feasible disassembly direction set Dc of c;

10               Push c back to CA;

11               Put Dc into DA;

12 End if

13       End for

14 Randomly choose a component c from CA;

15 Push the c back to X;

16 Randomly choose a feasible disassembly direction k of c from DA;

17 Push the k back to disassembly direction sequence D;

18 Set CA to Ø;

19 Set DA to Ø;

20 Set all the elements in row c or column c of IM10+ to 0;

21 End for

Fig. 2 The pseudo-code of FSG

MGWO

Input: the interference matrix, support matrix, material set, tool set of the EOL product

Output: the optimal disassembly sequence

1    //Initialization;

2    For i = 1 to population size do
3        Generate wolf Xi using FSG;

4        Calculate the fitness value of each wolf f(Xi);

5    End for
6    //Loop :

7    While (stop criterion is not satisfied & maximum iterations are not exceeded) do
8        // Neighborhood search :

9        Select two wolves with the two best fitness values as α and β;

10       Generate a new wolf as δ using FSG and calculate its fitness value f(δ);

11       Update α, β, and δ wolves using NSO;

12       // Guided search :

13       For i = 1 to population size do
14           Update wolf Xi using GSO;

15       End for
16   End while

Fig. 1 The pseudo-code of the
MGWO algorithm
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2 Disassembly modeling

A proper disassembly sequence is vital for high recovery
efficiency and short recovery time as a starting point for
the engineer considering recycling the EOL products.
Therefore, the first step of the DSP problem is modeling.
This section introduces a disassembly model considering

some important disassembly factors, including the geo-
metric constraints, the changes of disassembly directions,
the changes of disassembly tools, and the stability of dis-
assembly [18, 21].

2.1 Geometric constraints of the disassembly process

In the space rectangular coordinate system, the disas-
sembly directions of components are generally divided
into 6 directions dk = {−x, −y, −z, +x, +y, +z}. In this
paper, a decimal interference matrix IM10+ is defined to
denote the interference relationship between components
along +x-, +y-, and +z-axes. The interference relation-
ship between components along −x-, −y-, and –z-axes
can be obtained by the inversion of IM10+.

IM10þ ¼ I ij
� �

n�n ð1Þ
IM10− ¼ IM10þð ÞT ð2Þ
where Iij denotes the interference relationship between com-
ponent i and component j, when component i is disassembled
in the positive direction of each axis.

NSO

Input: the interference matrix IM10+ of the EOL product, the disassembly component sequence X, and

its corresponding disassembly direction sequence D
Output: an improved disassembly sequence

X and its corresponding disassembly direction 

sequence D;

Randomly select a component c from X and record its disassembly direction k;

Set the interference direction set Ic to Ø; // Ic includes the directions in which component c is 

interfaced by components preceding c
For i = the serial number of c to 1 do

of c interfered by component xi through the matrix
IM10+;

Ic = Ic ;

If the size of Ic = 6 then
a to i;

End if
End for
For i = the serial number of c + 1 to the length of X do

If c blocks the disassembly direction of xi according to D then;

the latest insertion point b to i;

End if
End for
Randomly select an insertion point pinsert between a and b;

X by inserting c into pinsert, and delete c at the original position;

For i = 1 to pinsert do
i or column i in IM10+ to 0;

End for
Dc of c by checking IM10+;

If pinsert = the serial number of c then
Dc = Dc \ {d}; // d is the original disassembly direction of c

End If
k from Dc;

1    Record the disassembly component sequence

2

3    

4    

5        Record the interference direction set

6        

7        

8            Set the earliest insertion point 

9            Break;

10       

11   

12   

13       

14           Set 

15           Break;

16       

17   

18   

19   Update

20   

21       Set all the elements in row 

22   

23   Record the feasible disassembly direction set

24   

25       

26   

27   Randomly choose a feasible disassembly direction 

28   Update D by modifying the disassembly direction of c.

Fig. 3 The pseudo-code of NSO

3 5 4 2 1 6 8 7Original component sequence

3 5 4 2

1

6 8 7

Selected component

Earliest insertion point

a = 2

Latest insertion point

b = 6

NSO

3 5 1 4 2 6 8 7New component sequence

Original direction sequence +X +Y -X -X +Z +Z +X +Y

New direction sequence +X +Y +X -X -X +Z +X +Y

Insertion point= 3

(random in [a, b]) 

Fig. 4 Schematic diagram of NSO
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I ij ¼

0; if component i isn0t interfered by component j
1; if component i is interfered by component j in the directionþ z
2; if component i is interfered by component j in the directionþ y
3; if component i is interfered by component j in the directionsþ y; þ z
4; if component i is interfered by component j in the directionþ x
5; if component i is interfered by component j in the directionsþ x; þ z
6; if component i is interfered by component j in the directionsþ x; þ y
7; if component i is interfered by component j in the directionþ x; þ y; þ z

8>>>>>>>>>><
>>>>>>>>>>:

ð3Þ

GSO

Input: the disassembly sequences of α, β, δ, and X wolves

Output: a new disassembly sequence

Xnew to Ø;

Set the new disassembly direction sequence Dnew to Ø;

For i = 1 to the length of disassembly component sequence X do

Randomly generate probability p [0, 1];

If p < ps then

Push the leftmost component of X back to Xnew;

Push the leftmost direction of D back to Dnew;

Else if p < ps + pα then

Push the leftmost component of α back to Xnew;

Push the leftmost direction of Dα back to Dnew;

Else if p < ps + pα + pβ then

Push the leftmost component of β back to Xnew;

Push the leftmost direction of Dβ back to Dnew;

Else

Push the leftmost component of δ back to Xnew;

Push the leftmost direction of Dδ back to Dnew;

End if

Remove the chosen component from Xi, α, β, δ;

Remove the direction of the chosen component from Di, Dα, Dβ, Dδ;

End for

Update X with Xnew;

Update D with Dnew.

1 Set the new disassembly component sequence

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Fig. 5 The pseudo-code of GSO

Table 1 An example of executing GSO to obtain a new disassembly sequence

Step p X, D α, Dα β, Dβ δ, Dδ Xnew, Dnew

1 0.2 (2, 3, 1, 4, 5)
(+x, +x, +y, +y, −z)

(4, 3, 5, 1, 2)
(+z, +x, +z, +y, −z)

(4, 3, 5, 2, 1)
(+x, +x, +z, +y, −y)

(2, 3, 5, 1, 4)
(+y, +x, +z, +y, +z)

(4)
(+z)

2 0.3 (2, 3, 1, 5)
(+x, +x, +y, −z)

(3, 5, 1, 2)
(+x, +z, +y, −z)

(3, 5, 2, 1)
(+x, +z, +y, −y)

(2, 3, 5, 1)
(+y, +x, +z, +y)

(4, 3)
(+z, +x)

3 0.9 (2, 1, 5)
(+x, +y, −z)

(5, 1, 2)
(+z, +y, −z)

(5, 2, 1)
(+z, +y, −y)

(2, 5, 1)
(+y, +z, +y)

(4, 3, 2)
(+z, +x, +y)

4 0.7 (1, 5)
(+y, −z)

(5, 1)
(+z, +y)

(5, 1)
(+z, −y)

(5, 1)
(+z, +y)

(4, 3, 2, 5)
(+z, +x, +y, +z)

5 0.4 (1)
(+y)

(1)
(+y)

(1)
(−y)

(1)
(+y)

(4, 3, 2, 5, 1)
(+z, +x, +y, +z, +y)

Remarks: the underline presents the chosen component in each step
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2.2 Changes of disassembly directions and tools

In disassembling EOL products, we found that changes in
disassembly directions and tools increase extra expenses of
time and cost and reduce the disassembly efficiency and flex-
ibility. Hence, few changes of disassembly directions and
tools benefit disassembly.

This paper defines fd(x) to denote the fitness evalua-
tion for changes of disassembly directions and ft(x) to
represent the fitness evaluation for changes of disassem-
bly tools.

f d Xð Þ ¼ ∑
n−1

i¼1
d xið Þ ð4Þ

f t Xð Þ ¼ ∑
n−1

i¼1
t xið Þ ð5Þ

where X = {x1, x2,…, xn}denotes the disassembly component
sequence, d(xi) and t(xi) can be calculated as follows:

d xið Þ ¼
0; if the directions between xi and xiþ1 are not changed
1; if the directions between xi and xiþ1 are changed by 90

o

2; if the directions between xi and xiþ1 are changed by 180
o

8<
: ð6Þ

t xið Þ ¼ 0; if the tools between xi and xiþ1 are not changed
1; if the tools between xi and xiþ1 are changed

�

ð7Þ

2.3 Changes of component materials

To facilitate the subsequent recycling of EOL products, we
want to disassemble the components with the same materials
in priority. Therefore, it is necessary to minimize the material
changes of components during a disassembly process.

In this paper, fm(x) represents the fitness evaluation for
material changes of the disassembly sequence.

f m Xð Þ ¼ ∑
n−1

i¼1
m xið Þ ð8Þ

where m(xi) can be calculated as follows:

m xið Þ ¼ 0; if the materials between xi and xiþ1 are not changed
1; if the materials between xi and xiþ1 are changed

�

ð9Þ

2.4 Stability of the disassembly process

The stability of disassembly sequences is used to evaluate the
stability between connected components during the disassem-
bly process. An unstable situation may cause damage to recy-
clable components, reduce disassembly efficiency, and in-
crease costs. For this reason, a stability matrix S = (sij)n×n is
defined to represent the stability between components. If com-
ponent i supports component j, sij = 1; otherwise, sij = 0.

In this paper, fs(x) is defined to represent the fitness evalu-
ation for component stability of the disassembly process.

f s Xð Þ ¼ ∑
n

i¼1
∑
n

j¼iþ1
sxi

x jwhere sxix j is computed as follows:

sxix j ¼
1; xi supports x j
0; xi does not support x j

�
ð11Þ

2.5 Fitness function

A disassembly sequence firstly needs to satisfy geometric
constraints. Then, according to the literature [18], a linear
weighted expression considering the above four indicators is
designed to measure the disassembly quality for the feasible
sequence.

f Xð Þ ¼ wd f d Xð Þ þ wt f t Xð Þ þ wm f m Xð Þ þ ws f s Xð Þ ð12Þ
where wd, wt, wm, and ws are the weight factors of fd(X), ft(X),
fm(X), fs(X), respectively. In subsequent experiments, all
weight factors are set to 0.25.Table 2 Comparison results of the vise with different strategies

Algorithms MGWO MGWO-
1

MGWO-
2

MGWO-
3

MGWO-
4

Best fitness 3.7500 3.7500 4.0000 3.7500 4.2500

Minimum 3.7500 3.7500 4.0000 3.7500 4.2500

Maximum 4.2500 4.2500 4.5000 4.5000 5.0000

Median 3.7500 4.0000 4.2500 4.0000 4.6250

Mean 3.8667 4.0167 4.2167 4.0583 4.6250

Average
computation
time (s)

7.05 7.73 8.85 9.13 6.48

The optimal value is indicated in bold

·

7 6 5 4 3 2 1

8 9 10 11

+x

+y

+z

 

Fig. 6 Assembly drawing of the vise
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3 Proposed MGWO for DSP

This section introduces the MGWO for the DSP problem in
detail. The original GWO is described briefly, firstly.
Afterward, the framework of MGWO is proposed. Finally,
three critical operators are designed in MGWO for solving
the combinatorial optimization problem.

3.1 Brief introduction of GWO

GWO is a new meta-heuristic algorithm characterized by pre-
senting the social hierarchy and hunting mechanism of the
wolf group. All wolves are divided into four hierarchies based
on their fitness values. The best wolf is represented as α, the
second wolf is denoted as β, and the third-best wolf is

expressed as δ. The remaining wolves are described as ω.
During the search process,α, β, and δwolves guide ωwolves.

The prey is firstly encircled by grey wolves when hunting.
Equation 13 is expressed to the model of the encircling behav-
ior.

D ¼ C � X p tð Þ−X tð Þ�� �� ð13Þ
X t þ 1ð Þ ¼ X p tð Þ−A � D ð14Þ

where D denotes the distance between the prey and a wolf, X
and Xp indicate the position vector of the wolf and the prey,
respectively, and t represents the current iteration. Finally, the
vector A and C are formulated using Eqs. (15) and (16).

A ¼ 2a⋅r1−a ð15Þ
C ¼ 2r2 ð16Þ
where r1 and r2 are random vectors between 0 and 1, and a
decreases linearly from 2 to 0 throughout the iterations. α, β,
and δ wolves guide the wolf group to hunt for the prey.
Nevertheless, the optimum (prey) position cannot be deter-
mined in an unknown and abstract solution space. Aiming at
mathematically describing the hunting practices of wolves, the

0 5 5 5 5 5 5 1 1 1 1

7 0 0 0 0 0 0 0 0 0 0

7 2 0 6 0 0 0 1 1 1 1

7 2 7 0 0 0 0 7 7 3 2

7 2 2 2 0 0 0 0 0 0 0

7 0 2 2 2 0 0 0 0 0 0

7 0 2 2 2 2 0 0 0 0 0

0 0 2 6 0 0 0 0 7 3 2

0 0 2 6 0 0 0 6 0 2 2

0 0 2 0 0 0 0 0 0 0 2

0 0 2 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

(a) (b)

Component 1 2 3 4 5 6 7 8 9 10 11

Material A B C B B D D D E A A

(c)

(d)

Component 1 2 3 4 5 6 7 8 9 10 11

Tool A B C C B D D C E C C

Fig. 7 Matrices, material, and
tool sets of the vise. a Interference
matrix. b Support matrix. c
Material set. d Tool set

Fig. 8 Box plot of best fitness of vise under different strategies

Table 3 Wilcoxon rank-sum test of the vise with different strategies

Strategies Significance p-value

MGWO-1 1 4.4058E−03
MGWO-2 1 2.0515E−08
MGWO-3 1 1.6708E−03
MGWO-4 1 1.1214E−11
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algorithm assumes that α, β, and δ wolves are closer to the
prey than ω wolves. Hence, the three best wolves are saved
and oblige the other wolves to update their position toward the
prey. Equations (17–23) calculate the hunting practices of the
wolf group [29].

Dα ¼ C1 � X α−Xj j ð17Þ
Dβ ¼ C2 � X β−X

�� �� ð18Þ
Dγ ¼ C3 � X γ−X

�� �� ð19Þ
X 1 ¼ X α−A1 � Dα ð20Þ
X 2 ¼ X β−A2 � Dβ ð21Þ
X 3 ¼ X γ−A3 � Dγ ð22Þ

X t þ 1ð Þ ¼ X 1 þ X 2 þ X 3

3
ð23Þ

In summary, wolves are first divided into four kinds of
hierarchies in GWO. The first three wolves lead the remaining
wolves to search for the prey. According to Eq. (14), when |A|
< 1, wolves will move between themselves and the prey.
Otherwise, they attack the prey. Since the actual prey position
is unknown, Eqs. (20–22) assumes the position of the prey is

the same as that of α, β, and δ wolves. Finally, the optimal
solution is obtained when the stop criterion is satisfied.

3.2 Framework of the proposed MGWO

The proposed MGWO inherits the main idea of the social
hierarchy and hunting mechanism from the original GWO.
Feasible solution generator (FSG), neighborhood search oper-
ator (NSO), and guided search operator (GSO) are designed in
the algorithm. In the original GWO, the δwolf is the third-best
wolf. However, in the proposed MGWO, the δ wolf is a new
wolf generated by FSG. In addition, in the original GWO, the
first three wolves are preserved to the next generation without
being guided by other wolves, but in the MGWO, α, β, and δ
wolves would be guided by each other. The reason for the
modification is explained in Section 4.1. The computation
results verify that the modified algorithm outperforms the
original algorithm in solving the DSP problem. The pseudo-
code of MGWO is shown in Fig. 1.

Fig. 9 Convergence curves of vise under different strategies

Table 4 Comparison results of
the ball valve Algorithms MGWO MGWO-

1
MGWO-
2

MGWO-
3

MGWO-
4

Best fitness 3.7500 3.7500 3.7500 3.7500 3.7500

Minimum 3.7500 3.7500 3.7500 3.7500 3.7500

Maximum 3.7500 4.5000 4.2500 4.5000 5.0000

Median 3.7500 3.7500 4.0000 4.0000 4.0000

Mean 3.7500 3.8583 4.0417 3.9917 4.1417

Average computation time (s) 7.21 6.94 8.73 10.57 6.26

The optimal value is indicated in bold

12345687
9

11

10

12 13 14 15

16

17

Fig. 10 Assembly drawing of ball valve
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In the NS phase, α and β wolves with the best fitness
values are identified first in the population, and the δ wolf
is generated by FSG. Then, a neighborhood search is per-
formed on each of the three wolves (disassembly se-
quences). First, a component in the disassembly sequence
is randomly selected, and then its earliest insertion point a
and latest insertion point b in the original disassembly
sequence are determined. Finally, the component is
inserted into a random position between [a, b] of the

original disassembly sequence, and then the new disas-
sembly sequence is generated.

In the GS phase, α, β, and δ wolves guide each wolf in the
population to search the prey. The self-updating factor and the
guided factors are calculated according to the fitness values of
the chosen wolf and these three wolves. These self-adaptive
factors determine the probability that the chosen wolf will be
guided by the other three wolves.

A detailed description of FSG, NSO, and GSO will be
introduced in the following sections.

3.3 Feasible solution generator

The constraint of disassembly precedence should be satisfied
in the disassembly process. In our research, the constraint of
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Fig. 11 Matrices, material, and
tool sets of ball valve. a
Interference matrix. b Support
matrix. c Material set. d Tool set

Fig. 12 Box plot of ball valve

Table 5 Wilcoxon rank-sum test of the ball valve

Algorithms Significance p-value

MGWO-1 1 1.3506E−03
MGWO-2 1 9.7929E−11
MGWO-3 1 2.0576E−06
MGWO-4 1 1.7293E−09
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disassembly precedence is represented by the decimal inter-
ference matrix IM10+, introduced in Section 2.1. A feasible
disassembly sequence is generated by FSG. The pseudo-
code of FSG is shown in Fig. 2.

3.4 Neighborhood search operator

NSO is used for neighborhood search on α, β, and δ
wolves, making them update themselves. For each of
these three disassembly sequences, a component is ran-
domly selected to change its position or disassembly di-
rection, making the sequence variation. If the fitness value
of the disassembly sequence is improved after using NSO,
the original sequence will be replaced by the new se-
quence. In the NS phase, the most critical thing is to find
the earliest insertion point a and the latest insertion point
b of the selected component. In this paper, the decimal
interference matrix IM10+ is used to find a and b. The
pseudo-code of NSO is shown in Fig. 3.

Figure 4 provides a schematic diagram of NSO. Firstly,
selecting component 1 to change its position and disas-
sembly direction in the original component sequence
Xoriginal (3, 5, 4, 2, 1, 6, 8, 7). Secondly, obtaining the
earliest insertion point a and the latest insertion point b

through the interference matrix IM10+. Thirdly, randomly
selecting an insertion point in [a, b] and inserting compo-
nent 1 into the position. Finally, a new component se-
quence Xnew (3, 5, 1, 4, 2, 6, 8, 7) and its corresponding
direction sequence Dnew (+x, +y, +x, −x, −x, +z, +x, +y)
are generated.

3.5 Guided search operator

α, β, and δ wolves execute GWO to guide the wolf group to
hunt prey. X represents a guided wolf in the population. The
three wolves try to improve the fitness value of X wolf by
sharing their positions to lead it to move toward them.

The new solution can be generated according to α, β, and δ
wolves, and Xwolves using GSO. Firstly, the lowest bound of
the fitness value flb is given according to the best disassembly
sequence in the population. Then, four self-adaptive parame-
ters, named self-updating factor ps, α-guiding factor pα, β-
guiding factor pβ, and δ-guiding factor pδ, are used for mod-
ifying X solution. Each parameter can be calculated according
to the fitness value of X wolf fX, the fitness value of α wolf fα,
the fitness value of β wolf fβ, the fitness value of δ wolf fδ and
the lowest bound of the fitness value flb. If the fitness value of
a solution is lower, its guiding factor is higher. According to

Fig. 13 Convergence curves of ball valve

Table 6 Comparison results of
the vise Algorithms MGWO GA ACO IHS STLBO SSO

Best fitness 3.7500 3.7500 3.7500 4.0000 4.0000 4.0000

Minimum 3.7500 3.7500 3.7500 4.0000 4.0000 4.0000

Maximum 4.2500 4.7500 4.5000 5.0000 5.0000 5.0000

Median 3.7500 4.2500 4.2500 4.2500 4.2500 4.2500

Mean 3.8667 4.2167 4.1167 4.5500 4.5500 4.4417

Average computation time (s) 7.05 7.15 7.69 7.77 9.55 8.86

The optimal value is indicated in bold

Fig. 14 Box plot of the vise
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the pseudo-code of GSO shown in Fig. 5, we can see the
composition of the new X wolf is more from the wolves with
the higher value of guiding factor.

g Xð Þ ¼ f X
f X− f lb

ð24Þ

ps ¼
g f sð Þ

g f sð Þ þ g f αð Þ þ g f β
� �þ g f δð Þ ð25Þ

pα ¼ g f αð Þ
g f sð Þ þ g f αð Þ þ g f β

� �þ g f δð Þ ð26Þ

pβ ¼ g f β
� �

g f sð Þ þ g f αð Þ þ g f β
� �þ g f δð Þ ð27Þ

pδ ¼
g f δð Þ

g f sð Þ þ g f αð Þ þ g f β
� �þ g f δð Þ ð28Þ

Finally, the precedence preservative crossover (PPX)
methodology [18] is used to ensure the precedence re-
lationship between components. The PPX operator
passes on the precedence relationship based on two dis-
assembly sequences to a new sequence while ensuring
no new precedence relationships are introduced. The
pseudo-code of GSO is shown in Fig. 5.

In the GSO procedure, the new disassembly compo-
nent sequence Xnew and its corresponding disassembly
direction sequence Dnew are generated by choosing and
setting the components one by one from X, α, β, and δ.
Firstly, the probability p is randomly generated in the
range of [0, 1], compared with ps, pα, pβ, pδ. If p is
less than ps, the leftmost component in X is pushed
back to Xnew; if p is less than ps + pα, the leftmost
component in α is pushed back to Xnew; if p is less
than ps + pα + pβ, the leftmost component in β is
pushed back to Xnew; otherwise, the leftmost component
in δ is pushed back to Xnew. Then, the chosen compo-
nent is removed from the four wolves. Meanwhile, the
disassembly direction of the selected component is
added to Dnew. Finally, a new solution is generated by
adding components one by one, as above. The prece-
dence relationship between components can be pre-
served by this method.

An example of executing GSO to obtain a new dis-
assembly sequence is shown in Table 1. A disassembly
component sequence Xnew (4, 3, 2, 5, 1) with its disas-
sembly direction sequence Dnew (+z, +x, +y, +z, +y) is
generated by X (2 3 1 4 5) with D (+x, +x, +y, +y, −z),
α (4, 3, 5, 1, 2) with Dα (+z, +x, +z, +y, −z), β (4, 3,
5, 2, 1) with Dβ (+x, +x, +z, +y, −y), and δ (2, 3, 5, 1,
4) with Dδ (+y, +x, +z, +y, +z). We can observe that
component 3 is disassembled before component 5 in all
solutions. In addition, we suppose ps = 0.1, pα = 0.4,
pβ= 0.3, pδ = 0.2. It can be seen the precedence rela-
tionship between component 3 and component 5 is pre-
served in the new disassembly sequence.

4 Case studies and industrial application

This section aims to demonstrate the effectiveness of
MGWO.

Firstly, in Section 4.1, a vise [36] with 11 components and
a ball valve [37] with 17 components are used to verify the
effectiveness of the modified strategies in MGWO.

Secondly, in Section 4.2, two case studies are implemented
to present the superiority of MGWO compared with five al-
gorithms: GA [12], SSO [14], STLBO [25], IHS [36], and
ACO [23]. All of these methods have been proven to be ef-
fective and efficient in solving the sequence planning prob-
lem. To ensure the fairness of comparison, we set the popula-
tion size of all algorithms to 20 and the maximum number of
termination iterations to 1000. Other parameter settings can be
referred to in the corresponding literatures.

Finally, a real-world engineering case is used to verify the
practicality of the MGWO in Section 4.3.

All algorithms are coded in Matlab 2017a and carried out
on an Intel Core 3.3-GHz PC with 4-GB memory.

Table 7 Wilcoxon rank-sum test of the vise

Algorithms Significance p-value

GA 1 3.0421E−06
ACO 1 3.5517E−05
HS 1 6.4773E−11
STLBO 1 1.0286E−10
SSO 1 2.1573E−11

Fig. 15 Convergence curves of the vise
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4.1 Effectiveness of proposed strategies in MGWO

4.1.1 Case 1: vise

In the subsection, a vise is used to test the effectiveness of the
proposed strategies. The assembly view of the vise is shown in
Fig. 6, and its corresponding interference and support matri-
ces, material, and tool sets are offered in Fig. 7. MGWO is
compared with its variations, including not using NSO
(MGWO-1), not using GSO (MGWO-2), α, β, and δ wolves
do not participate in the GS phase (MGWO-3), and δ wolf is
the third-best wolf, not a newly generated one (MGWO-4).
We set the population size to 20 and the maximum number of
termination iterations to 1000. After 30 independent runs, the
comparison results of different strategies are shown in
Table 2. The average computation time is the average time
taken by various strategies to obtain the optimal solution. The
box plot of best fitness values obtained by different strategies
in 30 runs is shown in Fig. 8.

It can be observed that MGWO, MGWO-1, and
MGWO-3 can obtain the optimal solution, but the mean
of fitness values (3.8667) of MGWO is better (lower) than
that of other strategies. Figure 8 presents the box plot of
fitness values of the vise in 30 independent runs, showing
that the solutions obtained by MGWO are more concen-
trated than its variants. MGWO can obtain the optimal
value (3.7500) with the probability of 63.33%. MGWO-
1 and MGWO-3 can obtain the optimal value with the
probability of 30.00%. Additionally, MGWO-2 and
MGWO-4 cannot obtain the optimal value. Compared

with MGWO-1, MGWO makes α, β, and δ wolves have
more opportunities to get the optimal solution through
self-updating using NSO. Compared with MGWO-2,
MGWO allows each wolf to be guided by the best wolves
instead of inefficiently searching for the prey by itself.
Compared with MGWO-3, in MGWO, α, β, and δ wolves
would exchange their prey information, enabling them to
move together toward the prey. Compared with MGWO-
4, δ wolf is a new one in MGWO, increasing the diversity
of the population and avoids the algorithm from falling
into the local optimum. Figure 9 presents the convergence
curves of MGWO compared with four other strategies
with the optimal solution in 30 independent runs. It re-
veals that MGWO has the highest probability of obtaining
the optimal solution and converges faster to the optimal
solution than other strategies. In Table 3, the Wilcoxon
rank-sum test with a significant level of 0.05 is used to
measure the significance between MGWO with other
strategies. Significance value = 1 indicates the result ob-
tained by MGWO is significantly different from the other
strategies used in comparison; significance value = 0 rep-
resents the result obtained by MGWO and is not substan-
tially different from the other strategies used in the com-
parison. Obviously, our proposed modified strategies are

Table 8 Comparison results of
the ball valve Algorithms MGWO GA ACO IHS STLBO SSO

Best fitness 3.7500 3.7500 3.7500 3.7500 3.7500 4.0000

Minimum 3.7500 3.7500 3.7500 3.7500 3.7500 4.0000

Maximum 3.7500 5.0000 4.2500 5.0000 5.0000 5.0000

Median 3.7500 4.2500 4.0000 4.2500 4.2500 4.2500

Mean 3.7500 4.1667 4.0500 4.2000 4.2750 4.3833

Average computation time (s) 7.21 7.57 7.84 8.35 11.84 8.43

The optimal value is indicated in bold

Table 9 Wilcoxon rank-sum test of the ball valve

Algorithms Significance p-value

GA 1 5.1021E−10
ACO 1 1.3274E−09
HS 1 2.7086E−12
STLBO 1 1.5967E−10
SSO 1 8.7051E−13

Fig. 16 Box plot of ball valve
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effective, and the performance of MGWO is significantly
better than its variants.

4.1.2 Case 2: ball valve

In this case, to further measure the significance of our pro-
posed strategies, we compare MGWO with MGWO-1,
MGWO-2, MGWO-3, and MGWO-4 for another case, the
ball valve [37] with 17 components. The assembly view of
the ball valve is shown in Fig. 10, and its corresponding inter-
ference and support matrices, material, and tool sets are of-
fered in Fig. 11. We set the population size to 20 and the
maximum number of termination iterations to 1000. After
30 independent runs, the comparison results of different strat-
egies are shown in Table 4. The average computation time is
the average time taken by various strategies to obtain the

optimal solution. The box plot of best fitness values obtained
by different strategies in 30 runs is shown in Fig. 12.

Table 4 shows that all strategies can obtain the optimal
solution, but the mean of fitness values (3.7500) of MGWO
is better than that of other strategies. Figure 12 presents the
box plot of fitness values of the ball valve in 30 independent
runs, showing that the solutions obtained byMGWO are more
concentrated than those of other algorithms. MGWO,
MGWO-1, MGWO-2, MGWO-3, and MGWO-4 can reach
the optimal value (3.7500) with the probability of 100%, 70%,
13.33%, 43.33%, and 20%. Figure 13 shows the convergence
curves of MGWO compared with other strategies with the
optimal solution in 30 independent runs. It reveals that com-
pared with MGWO-1, MGWO-2, MGWO-3, and MGWO-4,
MGWO has a higher probability and faster convergence to
obtain the optimal solution. Table 5 uses the Wilcoxon rank-
sum test with a significant level of 0.05 to measure the signif-
icance between MGWO with other strategies. It shows that
MGWO outperforms other strategies in solving the disassem-
bly sequence of the ball valve.

4.2 Case studies and comparisons with other
algorithms

4.2.1 Case 1: vise

In this subsection, the vise introduced in Section 4.1.1 is used
to test the performance of MGWO. Five classic algorithms,
GA, ACO, SSO, STLBO, and IHS, are used to compare with
MGWO. Like Section 4.1, we set the population size to 20 and
the maximum number of termination iterations to 1000. After
30 independent runs, Table 6 presents the comparison results
of the six algorithms. The average computation time is the
average time taken by algorithms to get the optimal disassem-
bly sequence. The box plot of the distribution of best fitness in
30 runs is shown in Fig. 14.

We can observe from Table 6 that only MGWO, GA, and
ACO can obtain the optimal solution, and the mean of fitness
values (3.8667) of MGWO is better than that of other algo-
rithms. Figure 14 also presents that the solutions obtained by
MGWO are better than other algorithms. MGWO, GA, and
ACO can receive the optimal solution (3.7500) with the prob-
ability of 63.33%, 13.33%, and 16.67%. Additionally, other
algorithms cannot get the optimal solution. The optimal dis-
assembly component sequence is (7, 6, 9, 1, 11, 10, 8, 3, 4, 2,
5), and its corresponding disassembly direction sequence is
(−y, −y, +z, +y, +z, +z, +z, +z, +z, +z, +z). Figure 15 presents
the convergence curves of all algorithms with the optimal
solution in 30 independent runs. It reveals that MGWO has
the highest probability of obtaining the optimal solution and
converges to the optimal solution with the least number of
iterations in all algorithms. In Table 7, the Wilcoxon rank-
sum test with the significant level of 0.05 is used to test the

Fig. 17 Convergence curves of ball valve

X

Y

Z

Fig. 18 Exploded view of azimuth thruster propeller
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significance between MGWO and other algorithms. It indi-
cates that MGWO performs better than the other algorithms
in solving the disassembly sequence of the vise.

4.2.2 Case 2: ball valve

To further measure the effectiveness of MGWO, we compare
the algorithm with GA, ACO, SSO, STLBO, and IHS for the
ball valve introduced in Section 4.1.2. We set the population
size to 20 and the maximum number of termination iterations
to 1000. After 30 independent runs, the experimental results of
all algorithms are presented in Table 8. The average compu-
tation time is the average time taken by algorithms to obtain
the optimal solution.

Table 8 shows that all algorithms can obtain the optimal
solution except SSO, and the mean of fitness values (3.7500)

of MGWO is better than that of other algorithms. Figure 16
presents the box plot of fitness values of the ball valve in 30
independent runs, showing that the solutions obtained by
MGWO are more concentrated than other algorithms.
MGWO, GA, ACO, IHS, and STLBO can achieve the opti-
mal value (3.7500) with the probability of 100%, 16.67%,
20.00%, 3.33%, and 13.33%, respectively. In addition, SSO
cannot reach optimal value. The optimal disassembly compo-
nent sequence is (16, 17, 11, 10, 8, 9, 12, 6, 13, 7, 5, 3, 4, 15,
14, 2, 1), and its corresponding disassembly direction se-
quence is (+z, +z, −y, −y, −y, −y, −y, −y, −y, −y, −y, −y, −y,
−y, −y, −y, −y). Figure 17 shows the convergence curves of all
algorithms with the optimal solution in 30 independent runs. It
reveals that MGWO has the highest probability and the fastest
convergence speed to obtain the optimal solution in all algo-
rithms. Table 9 uses the Wilcoxon rank-sum test with a

Disassemblealong -Z and then along +Y Disassemble along +Y

Fig. 19 Simplification of
disassembling crank
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Fig. 20 Matrices, material, and
tool sets of azimuth thruster
propeller. a Interference matrix. b
Support matrix. c Material set. d
Tool set
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significant level of 0.05 to measure the significance between
MGWO with other algorithms. It indicates that MGWO sig-
nificantly outperforms the other algorithms in solving the dis-
assembly sequence of the ball valve.

4.3 Industrial application

4.3.1 Application 1: azimuth thruster propeller

Used to verify the practicality of MGWO, azimuth thruster
propeller [36], a vital product of a Chinese boat company, is
employed in this section. Azimuth thruster is the critical
equipment of the marine dynamic positioning system.
Propeller is used to generate thrust for the azimuth thruster.
Many components of the azimuth thruster propeller can be
recycled and reused at the end of life. A good disassembly
sequence can dramatically improve the recovery efficiency of
these components, so the DSP of the azimuth thruster propel-
ler has significant research value. The azimuth thruster pro-
peller has been modified for simplification to satisfy the re-
quirement of disassemblymodeling. The exploded view of the
azimuth thruster propeller is shown in Fig. 18. The simplifi-
cation of the disassembling crank is shown in Fig. 19, and the
matrices of the azimuth thruster propeller are presented in Fig.
20.

The proposed MGWO is applied to the actual case, and
GA, ACO, SSO, STLBO, and IHS are used to compare
with MGWO. We set the population size to 20 and the
maximum number of termination iterations to 1000. After
30 independent runs, the statistical results of all algorithms
are summarized in Table 10, and their corresponding box
plots are presented in Fig. 21. The mean of fitness values
(5.5669) of MGWO is better (lower) than that of other
algorithms. MGWO, GA, ACO, IHS, and STLBO can ob-
tain the optimal solution with the probability of 76.67%,
20.00%, 50.00%, 30.00%, and 73.33%, respectively. In
addition, SSO cannot obtain the optimal solution. It can
be observed that MGWO performs better than the com-
pared algorithms in terms of the probability of obtaining
the optimal solution and the concentration of solutions in
this case. The results show that MGWO is very suitable to
solve the DSP problem.

Figure 22 shows the convergence curves of all algo-
rithms with the optimal solution in 30 independent runs.
It demonstrates that MGWO has the highest probability
and the fastest convergence speed to obtain the optimal
solution in all algorithms. In Table 11, the Wilcoxon
rank-sum test with a significant level of 0.05 is used
to measure the significance between MGWO with other
algorithms. It shows that MGWO performs significantly
better than other algorithms except for STLBO. MGWO
can reach the optimal value of 5.5000 with the corre-
sponding disassembly component sequence (1, 2, 3, 8,
17, 14, 11, 5, 12, 9, 6, 15, 13, 16, 7, 10, 4) and the
disassembly direction sequence (−y, −y, −y, −x, −z, +x,
+z, +y, +y, +y, +y, +y, +y, +y, +y, +y, +y), which is

Table 10 Comparison results of
the azimuth thruster propeller Algorithms MGWO GA ACO IHS STLBO SSO

Best fitness 5.5000 5.5000 5.5000 5.5000 5.5000 5.7500

Minimum 5.5000 5.5000 5.5000 5.5000 5.5000 5.7500

Maximum 6.0000 6.5000 6.2500 6.5000 6.2500 6.2500

Median 5.5000 5.7500 5.7500 5.7500 5.5000 5.7500

Mean 5.5669 5.8667 5.7083 5.8333 5.6000 5.8083

Average computation time (s) 9.05 9.86 10.67 11.45 12.06 10.19

Fig. 21 Box plot of azimuth thruster propeller

Table 11 Wilcoxon rank-sum test of the azimuth thruster propeller

Algorithms Significance p-value

GA 1 6.2885E−06
ACO 1 1.4992E−02
HS 1 6.4012E−05
STLBO 0 6.7427E−01
SSO 1 9.9657E−09

3745Int J Adv Manuf Technol (2021) 116:3731–3750



accorded with the actual industrial disassembly se-
quence. Thus, the real-world application demonstrates
the validity and practicality of the proposed method.

4.3.2 Application 2: robot arm

In this section, we use a robot arm [38] to validate the practi-
cability of MGWO further. The robot arm consists of 30 func-
tional components. It is more complex than the azimuth
thruster propeller. The assembly of the robot arm is shown
in Fig. 23, and its corresponding interference and support
matrices, material, and tool sets are provided in Fig. 24.

We compare MGWO with GA, ACO, SSO, STLBO, and
HIS on the robot arm. The population size is set to 20,
and the maximum number of termination iterations is
set to 1000. Table 12 gives the statistical results of all
algorithms, and Fig. 25 provides their corresponding

box plots. The mean of fitness values (9.6250) of
MGWO is better than that of ACO, IHS, STLBO, and
SSO and is slightly worse than that of GA. The optimal
value (8.7500) can only be obtained by MGWO, and
cannot be found by the other algorithms. Besides, the
computation time of MGWO is shorter than that of all
other algorithms. The experimental results demonstrate
that MGWO outperforms the other algorithms in both
solution quality and computational efficiency.

Figure 26 shows the convergence curves of all algorithms
with the optimal solution in 30 independent runs. It presents
that only MGWO can converge to the optimal solution. In
Table 13, the Wilcoxon rank-sum test with a significant level
of 0.05 is used to measure the significance between MGWO
with other algorithms. It indicates that MGWO significantly
outperforms other algorithms except for GA. MGWO can
obtain the optimal disassembly component sequence (26, 30,
29, 28, 14, 3, 27, 5, 25, 19, 13, 12, 11, 9, 7, 4, 6, 20, 18, 10, 17,
16, 22, 21, 15, 2, 23, 1, 8, 24) and its corresponding disassem-
bly direction sequence (−z, −z, −z, −z, +y, +x, +x, +x, +x, +z,
+z, −x, −x, −x, −x, −x, −x, +z, +z, +z, +z, +z ,+y ,+y, +y, +y, +y,
+y, +y, +z). The two sequences are accorded with the actual
industrial disassembly sequence. Hence, the industrial appli-
cation of the robot arm verifies the practicality of our proposed
method.

5 Discussion

The above experimental results demonstrate that MGWO out-
performs the other compared algorithms. This is detailed be-
low. In general, MGWO outperforms the other algorithms in
both convergence speed and solution quality.

In Section 4.1, Tables 2 and 3 show that MGWO
obtains the optimal solution with the highest probability
in all strategies. For the vise, MGWO receives the op-
timal solution with the probability of 63.33%, but the
probability of other strategies obtaining the optimal so-
lution is less than 30%. MGWO obtains the optimal
solution with the probability of 100% for the ball valve,
but the probability of other strategies obtaining the op-
timal solution is less than 70%. Figures 9 and 13 illus-
trate that the convergence speed of MGWO is faster
than that of other strategies. These experimental results
suggest that the effectiveness of NSO and GSO
operators.

In Section 4.2, Tables 6 and 8 show that MGWO
obtains the optimal solution with the highest probability
in all algorithms. For the vise, MGWO obtains the op-
timal solution with the probability of 63.33%, but the
probability of other algorithms obtaining the optimal
solution is less than 16.67%. MGWO obtains the opti-
mal solution with the probability of 100% for the ball

Fig. 22 Convergence curves of azimuth thruster propeller

Fig. 23 Assembly drawing of the robot arm
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(a) (b)

Component 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Material A B B A C D A C E D B C C E B

F F D C D G G A H C D C E I C

(c)

(d)

Component 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Material B B E C A C A B A A A A A C A

C C A A A A A B B A D E C B E

0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 2 0 2 0 0

0 0 5 3 5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 6 1 6 0 0

0 2 0 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3 3 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 2 4 3 0 3 3 3 2 2 2 0 0 0 2 0 0 2 2 2 2 2 2 2 0 2 2 0 0 0

0 0 0 0 3 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 4 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 2 2 6 4 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 7 2 2 2 0 0 0 2 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 7 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4 0 0 0 0 4 4 4 0 0 0 4 4 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 7 7 2 2 2 3 3 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 6 0 4 2 0 0 6 4 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 6 0 0 0 0 2 0 6 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 6 4 3 2 0 0 6 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 6 0 0 3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4 1 0 1 0 1 1 1 0 0 0 1 1 0 4 1 0 0 0 0 0

0 0 0 0 0 0 0 5 0 5 1 1 1 1 1 1 1 0 0 0 1 1 5 0 1 6 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 0 0 6 2 6 2

0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 6 0 0 0 0

0 7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 4 6

1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 6 1 6 0 6

0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 6 4 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 24 Matrices, material, and
tool sets of the robot arm. a
Interference matrix. b Support
matrix. c Material set. d Tool set

Table 12 Comparison results of
the azimuth thruster propeller Algorithms MGWO GA ACO IHS STLBO SSO

Best fitness 8.7500 9.0000 9.0000 9.0000 9.2500 9.2500

Minimum 8.7500 9.0000 9.0000 9.0000 9.2500 9.2500

Maximum 11.2500 10.0000 11.5000 12.5000 12.7500 12.2500

Median 9.5000 9.5000 10.3750 10.7500 11.0000 11.0000

Mean 9.6250 9.5333 10.2667 10.7500 10.9750 11.0167

Average computation time (s) 14.72 16.29 17.07 17.62 19.26 15.67
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valve, but the probability of other strategies obtaining
the optimal solution is less than 20.00%. Figures 15 and
17 illustrate that MGWO converges faster than other
algorithms. The computation results verify that MGWO
is more appropriate for solving the DSP problem than
other compared algorithms.

In Section 4.3, two real-world industrial applications prove
that MGWO can obtain the disassembly sequence following
practical production. MGWO receives the optimal solution
with the probability of 76.67% for the azimuth thruster pro-
peller, but the probability of other algorithms obtaining the
optimal solution is less than 73.33%. OnlyMGWO can obtain
the optimal solution for the robot arm, and other comparison
algorithms cannot find it. Figure 22 illustrates that MGWO
converges faster than other algorithms. Figure 26 shows that
only MGWO can converge to the optimal solution.

The outstanding performance ofMGWO for the DSP prob-
lem mostly depends on NSO and GSO operators. The two
operators can well balance local search and global search.
Additionally, the hierarchy and hunting mechanism allows
the population to evolve in a good direction without falling
into the local optimum. Another important outcome is that
MGWO can be well applied to engineering cases, proving

our proposed algorithm can effectively guide the disassembly
practice.

6 Conclusions and future researches

In this paper, anMGWO algorithm is proposed for solving the
DSP problem. Three key operators, FSG, NSO, and GSO, are
designed for the problem. First, two engineering cases are
employed to test the effectiveness of these operators. Then,
they and two real-world applications are used to test the va-
lidity ofMGWO. The experimental results verify thatMGWO
can solve the DSP problem effectively. The advantages of
MGWO are as follows:

& Three key operators are designed in this paper: FSG, NSO,
and GSO. FSG generates the feasible disassembly se-
quence; NSO and GSO balance both the local search
and global search.

& The implementation of MGWO is simple. Moreover, all
parameters ofMGWOare self-adapted, so its performance
is stable.

& Due to the hierarchy and hunting mechanism of the wolf
group, the convergence speed of MGWO is very fast.

Although MGWO shows a good performance for solving
the DSP problem, the algorithm still has some limitations. One
is that only three leading wolves execute the neighborhood
search operator, and the remaining wolves obey the three
wolves and lack self-exploration. Another limitation is that
our mathematical model considers only one constraint of com-
ponent interferences, but other constraints also need to be
introduced into the model. Concerning future work, the first
research direction is to design a novel self-search mechanism
for remaining wolves to enhance their self-explore ability. The

Fig. 25 Box plot of the robot arm

Table 13 Wilcoxon rank-sum test of the robot arm

Algorithms Significance p-value

GA 0 9.2250E−01
ACO 1 4.0862E−04
HS 1 2.2653E−06
STLBO 1 1.2842E−07
SSO 1 3.1218E−08

Fig. 26 Convergence curves of the robot arm
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second promising research direction is to develop a new DSP
model considering disassembly process constraints.

Author contribution All the authors designed research, performed re-
search, analyzed data, and wrote the paper.

Funding This work was supported by the National Natural Science
Foundation of China under Grant 51825502 and Grant 51721092, by
the Natural Science Foundation of Hubei Province under Grant
2018CFA078, and by the Program for HUST Academic Frontier Youth
Team under Grant 2017QYTD04.

Data availability All data generated or analyzed during this study are
included in this paper.

Declarations

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

1. Zhou Z, Liu J, Pham DT, Xu W, Ramirez FJ, Ji C, Liu Q (2019)
Disassembly sequence planning: recent developments and future
trends. Proc Inst Mech Eng B J Eng Manuf 233(5):1450–1471

2. Lambert AJ (2003) Disassembly sequencing: a survey. Int J Prod
Res 41(16):3721–3759

3. Lambert AJ (2007) Optimizing disassembly processes subjected to
sequence-dependent cost. Comput Oper Res 34(2):536–551

4. Cappelli F, Delogu M, Pierini M, Schiavone F (2007) Design for
disassembly: a methodology for identifying the optimal disassem-
bly sequence. J Eng Des 18(6):563–575

5. Rai R, Rai V, Tiwari M, Allada V (2002) Disassembly sequence
generation: a Petri net based heuristic approach. Int J Prod Res
40(13):3183–3198

6. Kuo TC (2013) Waste electronics and electrical equipment disas-
sembly and recycling using Petri net analysis: considering the eco-
nomic value and environmental impacts. Comput Ind Eng 65(1):
54–64

7. Li HJ, Jiang J, Wang YF (2013) Disassembly sequence planning
based on extended interference matrix and genetic algorithm.
Comput Eng Des 34(3):1064–1068

8. Zhu B, Sarigecili MI, Roy U (2013) Disassembly informationmod-
el incorporating dynamic capabilities for disassembly sequence
generation. Robot Comput Integr Manuf 29(5):396–409

9. Ma YS, Jun HB, Kim HW, Lee DH (2011) Disassembly process
planning algorithms for end-of-life product recovery and environ-
mentally conscious disposal. Int J Prod Res 49(23):7007–7027

10. Behdad S, Berg LP, Thurston D, Vance J (2014) Leveraging virtual
reality experiences with mixed-integer nonlinear programming vi-
sualization of disassembly sequence planning under uncertainty. J
Mech Des 136(4):MD-12-1247

11. Kim HW, Lee DH (2017) An optimal algorithm for selective dis-
assembly sequencing with sequence-dependent set-ups in parallel
disassembly environment. Int J Prod Res 55(24):7317–7333

12. Hui W, Dong X, Duan G (2008) A genetic algorithm for product
disassembly sequence planning. Neurocomputing 71(13-15):2720–
2726

13. Go TF, Wahab DA, Rahman MA, Ramli R, Hussain A (2012)
Genetically optimised disassembly sequence for automotive com-
ponent reuse. Expert Syst Appl 39(5):5409–5417

14. Yeh WC (2011) Optimization of the disassembly sequencing prob-
lem on the basis of self-adaptive simplified swarm optimization.
IEEE Trans Syst Man Cybern Syst Hum 42(1):250–261

15. Yeh WC (2012) Simplified swarm optimization in disassembly
sequencing problems with learning effects. Comput Oper Res
39(9):2168–2177

16. Percoco G, Diella M (2013) Preliminary evaluation of artificial bee
colony algorithm when applied to multi objective partial disassem-
bly planning. Res J Appl Sci 6(17):3234–3243

17. Tian G, Zhou M, Li P (2017) Disassembly sequence planning con-
sidering fuzzy component quality and varying operational cost.
IEEE Trans Autom Sci Eng 15:748–760

18. Kongar E, Gupta SM (2006) Disassembly sequencing using genetic
algorithm. Int J Adv Manuf Technol 30(5-6):497–506

19. Tseng HE, Chang CC, Lee SC, Huang YM (2018) A block-based
genetic algorithm for disassembly sequence planning. Expert Syst
Appl 96:492–505

20. Li B, Li C, Cui X, Lai X, Ren J, He Q (2020) A disassembly
sequence planning method with team-based genetic algorithm for
equipment maintenance in hydropower station. IEEE Access 8:
47538–47555

21. Tseng YJ, Yu FY, Huang FY (2011) A green assembly sequence
planning model with a closed-loop assembly and disassembly se-
quence planning using a particle swarm optimization method. Int J
Adv Manuf Technol 57(9-12):1183–1197

22. Gulivindala AK, Bahubalendruni MR, Varupala SP, Ravi C (2021)
Exponential moving average modelled particle swarm optimization
algorithm for efficient disassembly sequence planning towards
practical feasibility. Int J Performability Eng 17(3):289

23. Tseng HE, Chang CC, Lee SC, Huang YM (2019) Hybrid bidirec-
tional ant colony optimization (hybrid BACO): an algorithm for
disassembly sequence planning. Eng Appl Artif Intell 83:45–56

24. Xing Y, Wu D, Qu L (2021) Parallel disassembly sequence plan-
ning using improved ant colony algorithm. Int J Adv Manuf
Technol 113(7):2327–2342

25. Xia K, Gao L, Li W, Chao KM (2014) Disassembly sequence
planning using a simplified teaching–learning-based optimization
algorithm. Adv Eng Inform 28(4):518–527

26. Gunji AB, Deepak B, Bahubalendruni CR, Biswal DBB (2018) An
optimal robotic assembly sequence planning by assembly subsets
detection method using teaching learning-based optimization algo-
rithm. IEEE Trans Autom Sci Eng 15(3):1369–1385

27. Liu J, Zhou Z, Pham DT, Xu W, Ji C, Liu Q (2020) Collaborative
optimization of robotic disassembly sequence planning and robotic
disassembly line balancing problem using improved discrete Bees
algorithm in remanufacturing. Robot Comput Integr Manuf 61:
101829

28. XuW, Tang Q, Liu J, Liu Z, Zhou Z, PhamDT (2020) Disassembly
sequence planning using discrete Bees algorithm for human-robot
collaboration in remanufacturing. Robot Comput Integr Manuf 62:
101860

29. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv
Eng Softw 69(3):46–61

30. Mohanty S, Subudhi B, Ray PK (2015) A newMPPT design using
grey wolf optimization technique for photovoltaic system under
partial shading conditions. IEEE Trans Sustain Energy 7(1):181–
188

31. Jayakumar N, Subramanian S, Ganesan S, Elanchezhian EB (2016)
Grey wolf optimization for combined heat and power dispatch with
cogeneration systems. Int J Electr Power Energy Syst 74:252–264

3749Int J Adv Manuf Technol (2021) 116:3731–3750



32. Lu C, Gao L, Li X, Xiao S (2017) A hybrid multi-objective grey
wolf optimizer for dynamic scheduling in a real-world welding
industry. Eng Appl Artif Intell 57:61–79

33. Gupta S, Deep K, Moayedi H, Foong LK, Assad A (2020) Sine
cosine grey wolf optimizer to solve engineering design problems.
Eng Comput. https://doi.org/10.1007/s00366-020-00996-y

34. Zhang S, Zhou Y, Li Z, Pan W (2016) Grey wolf optimizer for
unmanned combat aerial vehicle path planning. Adv Eng Softw
99:121–136

35. Makhadmeh SN, Khader AT, Al-Betar MA, Naim S, Abasi AK,
Alyasseri ZAA (2021) A novel hybrid grey wolf optimizer with
min-conflict algorithm for power scheduling problem in a smart
home. Swarm Evol Comput 60:100793

36. Li X, Qin K, Zeng B, Gao L, Su J (2016) Assembly sequence
planning based on an improved harmony search algorithm. Int J
Adv Manuf Technol 84(9-12):2367–2380

37. Li X, Qin K, Zeng B, Gao L, Wang L (2017) A dynamic parameter
controlled harmony search algorithm for assembly sequence plan-
ning. Int J Adv Manuf Technol 92(9-12):3399–3411

38. Li M, Zhang Y, Zeng B, Zhou H, Liu J (2016) The modified firefly
algorithm considering fireflies’ visual range and its application in
assembly sequences planning. Int J Adv Manuf Technol 82(5-8):
1381–1403

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

3750 Int J Adv Manuf Technol (2021) 116:3731–3750

https://doi.org/10.1007/s00366-020-00996-y

	Disassembly sequence planning based on a modified grey wolf optimizer
	Abstract
	Introduction
	Disassembly modeling
	Geometric constraints of the disassembly process
	Changes of disassembly directions and tools
	Changes of component materials
	Stability of the disassembly process
	Fitness function

	Proposed MGWO for DSP
	Brief introduction of GWO
	Framework of the proposed MGWO
	Feasible solution generator
	Neighborhood search operator
	Guided search operator

	Case studies and industrial application
	Effectiveness of proposed strategies in MGWO
	Case 1: vise
	Case 2: ball valve

	Case studies and comparisons with other algorithms
	Case 1: vise
	Case 2: ball valve

	Industrial application
	Application 1: azimuth thruster propeller
	Application 2: robot arm


	Discussion
	Conclusions and future researches
	References


