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Abstract
The fast and precise positioning of lithium battery is crucial for effective manufacturing of mass production. In order to acquire
position information of lithium batteries rapidly and accurately, a novel dual-template matching algorithm is proposed to properly
locate and segment each battery for fast and precise mass production. Initially, an image down-sampling method is applied to
build up a multi-layer image pyramid for speeding up target search, and a novel mixed matching template is designed to increase
the matching precision. A row of lithium batteries is likely tilt during rolling, and the images of batteries captured by the CCD
camera are distorted, which may generate a negative effect on next procedure. Hence, a two-level correction algorithm for battery
angle and location is applied to obtain rough areas of the batteries and improve the accuracy of template matching. Lastly, the
comparison with other state-of-the-art algorithms is done to locate each battery in a row with high speed and precision. The
precision rates of the proposed algorithm, improved SAD algorithm, and YOLOv3 algorithm are 99.44%, 95.98%, and 93.64 for
normal battery images and 97.86%, 89.19%, and 85.10 for tilted battery images, respectively. Compared with improved SAD
matching algorithm and YOLOv3 algorithm, the positioning accuracy of the proposed method is significantly increased, and the
matching robustness is improved in spite of large battery inclination angle.
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1 Introduction

The problems of single energy structure, fossil fuel reserves,
and greenhouse gas overshoot are increasingly serious that
leads to look for alternative energy sources in academia. In
certain cases, the best solution for above challenges is choos-
ing other power supplies. Lithium battery, which has advan-
tages of high energy density, long service life, and less harm to

environment, is one of the best substitutes and has been gen-
erally used in day to day life [1]. In lithium battery industries,
the mass production of qualified products is related to the
success of the enterprise, and the need to detect lithium batte-
ries and defects on the battery surface automatically is urgent.
Unfortunately, the inspection of lithium battery is monoto-
nous and time-consuming for humans. In order to acquire
available battery picture for subsequent processing, locating
lithium batteries accurately and obtaining the segmented im-
age of each battery from original image are the essential and
key steps for follow-up works. Thus, there is a need of fast and
precise algorithm to locating and recognizing lithium batteries
automatically. A great interest in the development of machine
vision-based automatic positioning and detecting method has
been aroused.

With the rapid development of machine vision [2, 3], ob-
ject detection and bar code recognition of lithium battery
based on image captured by CCDor CMOS camera have been
rapidly developed. The accuracy and speed of positioning
directly affect the efficiency of battery detection and barcode
positioning [4–6] that can be realized by carefully designed
detection algorithm. The main approaches of object
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positioning are classified as template matching-based
methods, image content-based object positioning, and deep
learning-based object detection methods. For image content-
based object positioning and detection methods, the image
content must be analyzed first. Based on the subjective anal-
ysis results, the specific algorithm can be designed that leads
to inefficient or complexity. In last decades, deep learning
provided many best solutions in image processing, natural
language recognition, and autopilot. However, the disadvan-
tages of large training samples and computational resources
limited its development in some particular field. The common
steps for template matching-based-methods are as follows:
generating template(s), computing similarity, post-processing,
and getting results. Although it is one of the simplest ap-
proaches, the precision rate and speed are depended on the
quality of the selected template.

To meet the requirements of fast detection, the lithium bat-
teries are designed to roll down from the slope. To the best of
our knowledge, there is no certain algorithm designed for
lithium battery positioning while batteries rolling down.
However, the rolling battery is tending to tilt, and the gray-
scale of the rolling battery image with barcode changes dra-
matically during the process of rolling down. Considering
above factors, the traditional template matching method can-
not have good performance, and the positioning accuracy of
existing template matching methods is significantly deterio-
rated. In order to bridge this research gap, a novel template
matching-based lithium battery positioning method is pro-
posed in this paper. Based on this method, the tilt lithium
batteries are corrected and positioned during the rolling down
process by dual-template matching algorithm. The unique
matching template applied in following steps was carefully
designed that showed outstanding improvement compared to
other contrast algorithms.

The remainder of this paper is structured as follows. In
Section 2, some related works are discussed based on litera-
tures. Section 3 describes the summary of our algorithm and
the design theory of the matching template used in our algo-
rithm. The improved template matching algorithm is pro-
posed, and the detailed implementation is presented in
Section 4. The experimental process and results are discussed
in Section 5. Section 6 concludes the paper and describes the
future works.

2 Literature review

Recent literatures relevant to this paper are mainly concerned
with two research streams: object detection methods and tem-
plate matching approaches. Thus, the relevant literature has
been tried to summarize in this paper.

2.1 Object detection methods

Object detection is the foundation of object categorization,
inspection, and measurement that plays an essential role for
industrial automation. Many researches have been performed
to improve object detection precision and efficiency. Some
typical issues were discussed in [7], and an image segmenta-
tion method based on systematic algorithm workflow and
global threshold was proposed, which resulted in high seg-
mentation performance for all sectioning images. Do et al.
[8] designed an embedding method which mapped image de-
scribing features to a higher dimension and tried to solve im-
age retrieval problem. A novel contextual multivariate infor-
mation bottleneck (CMIB) method was proposed in [9], and
two Bayesian networks are built to make a compromise be-
tween data compression and information preservation, which
was enlightening in some ways. A new model pipeline based
on joint inference and context fusion was proposed to alleviate
two challenges of dense visual concept annotations and the
large amount of visual concepts in [10].

Also there are many outstanding deep learning-based
object detection algorithms. A deep learning-based defect
detection approach of lithium battery electrode in [11] was
proposed, and the pretrained networks for microstructure
classification were applied. The method showed high clas-
sification accuracies in datasets. Lin et al. [12] proposed a
semantic image segmentation approach using patch-patch
context and patch-background context in deep CNNs. The
results showed high performance on amount of semantic
segmentation datasets. There are mainly two categories in
the field of object detection, e.g., RCNN series method
and the YOLO series method, which is based on the
region proposal and the regression, respectively. Girshick
et al. [13] acquire a bunch of potential regions by the
method of selective search, and the features are extracted
based CNNs in these selected regions for judgment. The
YOLO [14] series method predicted multiple bounding
box and categories simultaneously, which can achieve fast
speed. And the improvement version, e.g., YOLOv3, can
set focus on speed or accuracy by modifying the size of
the model structure. A novel residual learning framework
was proposed by He et al. [15] to reduce training diffi-
culty, and evidence showed the residual networks being
better performance on many datasets. By predicting the
rotated bounding boxes by leveraging a segmentation task,
Wang et al. [16] developed a new training and inference
mechanism to improve the detection accuracy for high
resolution images. Seongdeok et al. [17] developed a nov-
el image augmentation method with generative adversarial
network (GAN) to improve construction resource detec-
tion, and the results were optimal for images captured
by unmanned aerial vehicle (UVA).

2532 Int J Adv Manuf Technol (2021) 116:2531–2551



2.2 Template matching approaches

Talmi et al. [18] proposed a template matching algorithm,
named Deformable Diversity Similarity, to improve the
matching robustness to some certain situations, and the eval-
uation showed that the proposed algorithm performed better
than other methods in complexity image processing. A com-
bined method in [19] based on deep learning- and template-
based algorithm is applied in battery production, which shows
a significant improvement in both speed and accuracy. Liang
et al. [20] proposed a novel image matching method based on
gradient space in which image pyramid and Hessian matrix is
used to detect the interest points with invariable scale. The
experiments showed robustness to variation of image param-
eters. In order to realize object tracking, object grasping, and
other tasks based on vision for humanoid robot, Lopezfranco
et al. [21] proposed an image template matchingmethod based
on differential evolution algorithm. Korman et al [22] applied
a branch-and-bound-like scheme to accelerate the matching
process, and the result is a good compromise between perfor-
mance and quality. Bao et al. [23] proposed a multi-template
matching method with limited template matching library cu-
cumber image, which still has potential improvement for rec-
ognition accuracy. Bekkers et al. [24] proposed a two-
dimensional image target template matching method based
on directional graph features, which used a generalized linear
regression framework to construct appropriate templates with
smooth splines. Dekel et al. [25] also improved the BBS and
acquired a novel template matching method which showed
consistent success on real-world datasets. For the high resolu-
tion images, Chen et al. [26] introduced a line-based matching
method to overcome the computational consuming which was
robust and efficient in some certain conditions. Amulti-source
image matching method [27] with the implementation of best-
buddies direction pairs was proposed to decrease the influence
caused by intensity changes or image noise, which demon-
strated great computational efficiency and matching perfor-
mance. Xia et al. [28] proposed a rapid template matching
method adopting the shape-shifting Best-Buddies Similarity
(BBS) measure which can match patches of different sizes, so
it had higher accuracy than the original method based on BBS.
To address the problems of long computation time of target
matching algorithm and incorrect positioning of rotating scale
target, Yu and Fei [29] proposed a spiral target matching al-
gorithm on the basis of pyramid image structure and Hu mo-
ments. Pedrosa et al. [30] improved pre-process for template
matching method by morphological image processing (MIP)
and fast Fourier transform (FFT) and successfully detected
impact craters in a set of images from Thermal Emission
Imaging System onboard the 2001 Mars Odyssey Space
probe. Lee et al. [31] proposed an improved template
matching method called deformable template matching
(DTM) based on deformable part model (DPM) to acquire

deformation by predefined rules, and the experimental results
showed an increased number of matching features. A hash-
based template matching algorithm was introduced in [32].
With less complexity and speeding-up processing, the exper-
imental results showed improved coding efficiency. Adrian
et al. [33] proposed an effective method to predict the
matching of templates before actual execution, which can sig-
nificantly reduce computational cost and avoid unnecessary
resource wastes. Due to the color similarity of cucumber and
its branches and leaves, it is difficult to identify the cucumber
with high precision by simply adopting color features and
shape features.

The proposed algorithm in this paper provides the advan-
tages of accuracy, stability, and efficiency. The above algo-
rithms can be divided into two strategies. One is the template
matching method based on the contour features of images,
which improves the accuracy of target positioning and can
also locate fuzzy, even distorted target images. The other
method improves the searching speed and searching strategy
by constructing image pyramid structure or improving the
deformation template algorithm, but does not improve the
self-adaptability and the robustness, especially for multi-
target image matching, is poor.

2.3 Discussion

Although many approaches to detect and segment particular
object applied in industrial domain have been proposed in
above literatures, they have some common disadvantages
summarized as follows. Firstly, approaches in above litera-
tures attempt to detect objects that were suitable for specific
situation and cannot be used in lithium battery detection with
simple modification. Secondly, because of the specificity of
the application scenario, the compromise between perfor-
mance and quality was not ideal. Finally, since the target im-
ages with barcode on battery surface have large gray-level
variations and the batteries may be tilted while rolling down
from the slope, template match approach with single template
was not suitable and cannot achieve optimal accuracy and
efficiency. The image processing algorithm based on deep
learning is one of the potential approaches. Due to practical
conditions, there are only hundreds of lithium batteries includ-
ing some defective ones, which is far from enough for training
CNN models. Besides the industrial PC applied in lithium
battery positioning does not have graphic process unit
(GPU), the validation on trained models would be inefficient.

In this paper, a dual-template matchingmethod for multiple
lithium batteries is introduced, in which the pyramid-level
search strategy with reducing sampling was applied to estab-
lish the image structure and improve the search speed. A sim-
ulation example and comparison with other algorithms are
carried out. Based on the comparison results, the proposed
method is proved accurate and efficient.
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3 The improved dual-template matching
method

3.1 Framework of the proposed method

The improved dual-template matching method consists of im-
age pre-process, matching template design, algorithm imple-
mentation, and experimental verification, which is shown in
Figure 1. The preprocessing step consists of down-sampling,
image graying, and filtering processes, binarization, and mor-
phological operation. The pyramid down-sampling is neces-
sary since the original pixel of frame captured from industrial
camera is 1920×1200, e.g., 2,304,000, and the template pixel
without preprocessed is around 160×573, e.g., 91680. Hence
sliding through each down-sampled frame by the improved
matching template decreased time-consuming significantly.
After the preprocessing, the output standard image is obtained
which has little noise and can be applied in template matching
process. Since the propose template matching method with
diverse dual templates is unique from others, the matching
template needs to be designed elaborately. Considering the
situation of rolling lithium battery and the discrete appearance
of barcode on battery surface, the template design was divided
into two steps, e.g., top template design and bottom template
design. The core step of the proposed algorithm is using care-
fully designed dual template to recognize each battery in
down-sampled image and mapping the identical battery coor-
dinates to original image, which consists of approximate
matching and elaborate matching.

3.2 Preparation

Template matching is to slide the template along the target
image pixel by pixel to find the best matching value.
Template design has a great influence on image matching.
Tiny difference value of pixel and template tilt angle will
cause great matching precision decrease for target image, es-
pecially the template matching of multi-target image, for
which if the morphological position and geometric structure
of the target image are significantly different from the features
of the template, all the targets in the figure cannot be located.
So initial template design has highest priority.

When a lithium battery rolls, the barcode along its side may
be captured entirely, partially, or none. Therefore, under the
same acquisition environment, the surface information value
of the same lithium battery may be significantly different.
Lithium battery rolling on the slope and tilt is nearly inevita-
ble, which has a huge effect on positioning accuracy of lithium
battery.

This paper uses a template designed by single lithium bat-
tery. The bar code on the rolling lithium battery may appear in
different states including no bar code, half bar code, and entire
bar code on exposed surface, which is shown in Figure 2 with
each lithium battery numbered.

Rolling lithium battery will present above several states, so
we need to determine whether all these states are suitable for
making the matching template. By analyzing the influence
between the presence and absence of barcode on the matching
accuracy, the lithium battery with barcode on the exposed

Fig. 1. Framework of the proposed dual-template matching method.
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surface was taken to design the template, and the processing
result is shown in Figure 3. The steps are as follows:

Step 1: Image pre-processing after image pyramid down-
sampling, including image graying, image filtering, and
morphological expansion operation after adaptive
binarization.
Step 2: The tilt angle calculation and correction by rotat-
ing battery.
Step 3: Battery boundary discovery for the first time.
Adjust parameters for image binarization andmorpholog-
ical processing until lithium battery located.

Template matching is used to analyze the similarity be-
tween the image and the template slid from top to bottom, left
to right of the target image. Higher matching degree means
higher similarity with the sub-image specified in the target.
Since the pyramid down-sampling is applied in preprocessing
stage, the scales of image and template have changed. To
improve the matching accuracy and eliminate the potential
influence from changing scales, the correlation coefficient
template matching algorithm is applied, which is to match
the mean relative value of the template with the sub-image.
The matching result 1, -1, and 0 represents a perfect, worst,
and undesired match, respectively. The expression is as fol-
lows: (1). Since the barcode area contained in the battery

template is sometimes larger than the whole template, the
pixel value of the barcode area differs greatly from the pixel
value of the non-barcode area. The matching degree is calcu-
lated after average value calculation; thus, the matching de-
gree is barely satisfactory:
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where T represents the average value of the template which is
only computed once and I represents the average value of
template overlapped region in the target image; w and h rep-
resent the width and height of the template respectively.

From the analysis of the above equations, it can be seen that
the extra barcode pattern will increase the difference of pixel
value leading to increase output value from Equation (2). The
similarity between template and target image would decrease
because denominator value increases faster than numerator in
Equation (1).

3.3 Lithium battery template design

The separated lithium batteries with or without barcode are
analyzed in Figure 4, with a green vertical line crossing
through the lithium battery center. The grayscale curves cor-
responding to above two lines with identical color are shown
in the histogram. It is obvious that the curve in Figure 4c has

Fig. 2. Nos. 1, 2, 5, and 8 have no barcode. Nos. 4 and 6 have partial
barcode. Nos. 3 and 7 have a complete barcode.

Fig. 3. a Original image, b
processed rotated image, and c
finally located image.

2535Int J Adv Manuf Technol (2021) 116:2531–2551



dramatic changes compared to the one in Figure 4d, which is
corresponding to the barcode absence. The lithium batteries
are rolling from the slope, and the barcode on the lithium
battery occurs repeatedly. Hence, the whole lithium battery
chosen as the matching template is not ideal since the signif-
icant variation of grayscale. However, compared with each
other, the grayscale curves in the red circle and blue square
regions, which are corresponding to the top and bottom side of
the lithium battery, are stable and similar. Furthermore, the
rolling batteries are placed randomly, e.g., the “+” side of
lithium battery may appear in the top or bottom of image
randomly. So, two sets of dual template are chosen to locate
lithium batteries in a row, which are shown in Figure 4 e and f.

3.3.1 Top template design

In order to reach maximum speed of lithium battery template
matching, the size of the target and template image should be
down-sampled. The smaller image size could significantly
increase matching speed with the cost of slightly reducing
the matching accuracy of the original image.

A lithium battery image can be divided into three parts,
which are barcode region and above and below barcode re-
gions. For the matching of top-level pyramid image, the tem-
plate is only used for rough positioning. The top part pixel
differences between images with or without code on the ex-
posed surface are slight, so the battery without code on the

exposed surface can be chosen as the template, as shown in
Figure 5.

3.3.2 Bottom template design

The bottom template is used tomatch the lithium battery in the
original image, and the plate has the same design idea as the

Fig. 4. Comparisons of lithium batteries with or without barcode. a The
lithium battery with barcode. b The lithium battery without barcode. c
The grayscale curve corresponding to the lithium battery with barcode. d

The grayscale curve corresponding to the lithium batterywithout barcode.
e The dual template with “+” side at the top. f The dual template with “+”
side at the bottom.

Fig. 5. a Battery surface feature distribution. b Final battery template.
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top layer module. It not only contains the typical characteris-
tics of lithium battery, but also makes the template size not too
large, which means optimum balance between performance
and accuracy.

Initially, the image containing lithium battery has
been preprocessed, then perform morphological opera-
tion. Referring to Section 2.1 for the detailed process,
the battery tilt angle calculated from previous procedure
is being used to correct the battery position. The wheel
width detection algorithm is adopted to divide the bat-
tery. Combined with the size of the top layer template,
the bottom layer template size is preliminarily set and
determined by histogram, which is shown in Figure 6.

The separated li thium battery is analyzed in
Figure 6a, with a red vertical line crossing through the
bar code and a blue vertical line along the lithium bat-
tery center. The pixel value curves corresponding to
above two lines with identical color are shown in the
histogram. The green circle above in Figure 6a corre-
sponding to point 1 in the histogram (Fig. 6b) is the
dividing point between the battery and background, and
the value is 51; the green circle below in Figure 6a
corresponding to point 2 in the histogram (Fig. 6b) is
the starting point of the bar code, and the value is 218.
It can be seen from the histogram that the pixel value in
middle area of the battery is higher than that in the side
area. So we were able to obtain the required template
from the segmentation lithium battery image by specific
area, which was determined to be 140 pixels high (with
a black background of 1/7) and 255 pixels wide.

4 Positioning method

4.1 Positioning statement

In order to locate the barcode of lithium battery accurately, it is
necessary to segment lithium battery precisely. The position-
ing system of machine vision realizes the positioning of lith-
ium battery through image recognition technology. Figure 7
shows the schematic of image acquisition device for lithium
battery. Ten lithium batteries from the upper of inclined path-
way (with Θ degree inclined angle) rolled into the image ac-
quisition area. A specific template matching algorithm was
used to locate the collected image and calibrate the lithium
battery sequence; therefore, it is necessary to locate each lith-
ium battery in the picture. The battery tilts and blurs at the
edges during rolling. By adjusting the angle of the matching
template to vertical direction, the positioning image with high
precision can be obtained.

4.2 Improved algorithm

In order to realize fast and high precision positioning of lithium
battery, an improved template matching algorithm was proposed
based on the original template matching algorithm. The
Section 2gives the matching template corresponding to the target
image of the top layer and the bottom layer of the pyramid, which
has a positive effect on the template matching speed of the im-
proved algorithm. The algorithm flow chart is shown in Figure 8,
as follows:

Fig. 6. a Separated lithium
batteries. b Correspond to the
pixel values of the two lines in a. c
The underlying template.
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Step 1: The original image is processed with mean filter
of small template and down-sampled twice to acquire
image pyramid.

Step 2: Preprocess the down-sampled images by gray-
scale, adaptive binarization, and image morphology.
Step 3: Calculate the coordinate and approximate inclina-

Fig. 7. Schematic diagram of
image acquisition platform for
lithium battery.

Fig. 8. Flow chart of improved template matching algorithm.
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tion angle for each lithium battery and rotate the image

according to the average inclination angle θ
°
of all batte-

ries. Then divide the image by each battery’s coordinate
and match each segmented image with the specified tem-
plate to get the coordinate of the maximum matching
Gmax.
Step 4: Obtain the source image by rotating the original

image with θ
°
and then map the best coordinate of

matching degree in step 3 to the source image. After the
initial template matching, determine whether the
matching degree is bigger than Gmax.
Step 5: The images containing several matching features
of lithium battery have been extracted from the source by
referring to the best mapping matching coordinate, and
roughly match them with the image template in inclina-
tion range of [-α, +α]. Calculate the best matching value
and its coordinate and then select the angle range within
[-α/10, +α/10] around the best matching degree obtained
from previous step for accurate template matching.
Step 6: The specific matching coordinate is mapped into
the source image; then each lithium battery is located and
segmented according to the size of the battery template.

4.3 Battery tilt angle calculation

Lithium batteries tilt when they roll on a tilted track without
guard bar on either side, so each battery in a row captured by
industrial camera is tilted at a small, slightly different angle.
Thus the tilt angle of the battery will lead to decrease of posi-
tioning accuracy, or even being unable to locate, which results
to the confusion of the whole lithium battery sequence. In
order to effectively improve the positioning accuracy of lith-
ium battery, the tilt angle should be calculated firstly. The
calculation process of tilt angle is shown in Figure 9a.

First of all, preprocess the image and select rectangular
structural elements to corrode the image for several times.
Then use the same structural elements to expand the previous
image. The result is the binary image of 0 or 255 with all the
noise points removed, entire basic features of the battery, and
gaps between adjacent batteries, as shown in Figure 9b.

Secondly, according to the distribution characteristics of
lithium batteries in the picture, a horizontal line passing
through the center of the picture must pass through all lithium
batteries. At the center lineM, the expression is as follows (4):
the approximate coordinate of each battery boundary was ob-
tained by using the difference of pixel values on the battery
boundary, and the number of batteries in the figure was deter-
mined. Then, the approximate coordinate and the number of
batteries were calculated at the distance T up and down from
the horizontal centerline, namely Mup and Mdown; the

expression is as follows (5) and (6). The coordinates, cell
number, and M contrast with each other. If somewhere coor-
dinates differ with the set value or the battery number range,
search new Mup and Mdown by reducing T with ΔT and com-
pare coordinate differences and cell number again, until meet
the requirements or reach the limit.

Finally, calculate the approximate inclination angle θi° of
each lithium battery and the average inclination angle θ of all
batteries by using the corresponding coordinate differences.

M ¼ int H=2ð Þ ð4Þ
Mup ¼ M−T þ δ*ΔT ð5Þ
Mdown ¼ M þ T−δ*ΔT ð6Þ

Η andM in Equation (4) indicate the height of the graphics
and centerline, respectively. In Equations (5) and (6),Mup is a
horizontal line at the above of M, the delta is scale factor of
Mup, and set a stop cycle the scale factor of Ln. In the same
wayMdown is a horizontal line at the below ofM. Their direc-
tion are shown in Figure 9b by blue arrow, moving distance is
oneΔΤ at a time, and when the search battery in the horizontal
coordinates and M coordinates ΔX is not greater than the
difference between the P, the horizontal line stop searching.
P is determined by the limit of the height of the battery and its
tilt angle θmax.

4.4 Improved template matching

4.4.1 Approximate template matching for original image

Template matching algorithm selects a specified place similar
to the template when sliding chosen template across the target
image, but the battery barcode position in the picture is uncer-
tain, which will result in the target picture with a big difference
from the template tending to the failure of matching and un-
able to meet the precise positioning of the battery. Therefore,
instead of multi-target template matching, the concept of tem-
plate matching for multiple single targets is proposed. In this

method, the image is counterclockwise rotated θ
°
with

(W/2,H/2) as the center, and the batteries in a row are divided
into n parts according to the coordinate difference between
adjacent batteries on the horizontal line Hr/2 of the rotated
image so as to avoid missing lithium battery during matching.
Next, we use the designed template to match each segmented
image and calculate the best matching coordinates and
matching degree of each battery image. With all matching
degree values compared, the maximum valueGmax is selected.

The relationship between the coordinates of the image be-
fore and after rotation is determined by Equations (7~10), in
which (7) and (8) are image rotation to the left and similarly to
the right are calculated by (9) and (10). Through coordinate
transformation, the segmentation problem of batteries in a row
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is solved, and the accuracy of the battery image is significantly
improved.

yl ¼ ycosθþ w−xð Þsinθ ð7Þ
yl ¼ ycosθþ w−xð Þsinθ ð8Þ
xr ¼ xcosθþ h−yð Þsinθ ð9Þ
yr ¼ ycosθþ xsinθ ð10Þ

In these equations, xl and xr and yl and yr are the horizontal
and vertical coordinates of the rotated image, respectively; x

and y are the original horizontal and vertical coordinates of the
image; h is the height of the image before rotation, andw is the
width of the image after rotation.

4.4.2 Elaborate template matching for the underlying image

Traditional template matching can search similar target ob-
jects in larger images. Although it has good stability and sim-
ple operation, it is time-consuming and less accurate which
cannot meet the needs of precision and speed of lithium bat-
tery positioning. We choose to find its rough location first and

(a) flow chart for calculating inclination angle of  lithium battery

(b) The battery search path of  coordinate values
Fig. 9. Battery tilt angle calculation process. a Flow chart for calculating inclination angle of lithium battery. b The battery search path of coordinate
values
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then narrow down the template search area to determine the
exact location of the battery.

The rough positioning process requires that the search area
is narrowed down as quickly as possible, which can be
achieved by the following processes for coarse positioning:
Firstly, the battery tilt angle is determined by the coordinate
difference method. Secondly, the rotation angle of the picture
is determined by the average of the inclination angle of all the
batteries in the picture, which is usually different from the
inclination angle of some certain batteries in the picture.
Finally, after the initial matching of the top layer image of
the pyramid image, the upper left coordinates of the position
of each battery are obtained and map to the real positioning
coordinate of the bottom image of pyramid image. We get
closer to the optimal locating point through the above three
steps. In order to determine the lithium battery position pre-
cisely, we need to find the coordinates which can accurately
locate on the bottom image.

The improved template matching algorithm is a correlation
coefficient algorithm based on the normalized product corre-
lation algorithm. It is a classic template matching algorithm in
OpenCV visual library, which can meet the normal image
positioning requirements. The precise positioning of lithium
battery is template matching on the bottom level of image
pyramid, and the result of template matching is approached
to the best by narrowing down the search area of the target
image and adjusting the template tilt angle constantly. The
specific matching process is shown in Figure 10.

Step 1: Rotate θ counterclockwise after the bottom image
is grayed.
Step 2: Get the coordinates of the best matching position
from the template matching at the top level of image
pyramid and map to the coordinates of (x1, y1), (x2, y2)
... (xn, yn) on the bottom level of image pyramid.
According to the size of the template, the original image
is divided into n search areas.

Fig. 10. Precise matching flow chart for lithium battery.
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Step 3: Complete template matching was performed for
each lithium battery, and the optimal coordinates (xi _ max,
yi _ max) and Gi _ d were recorded, and the optimal value
was compared with Gmax. If Gi _ d ≥Gmax, the optimal
coordinate point was found; otherwise, the next step
was carried out.
Step 4: First, the inclination angle of the template has
been adjusted in a large range and selected 20 inclination
values from [-α, +α]. Template matching was carried out
with the segmented image respectively to find the maxi-
mum matching degree in this interval. If the maximum
position appears at both ends, continue to expand the
search range along the direction where the maximum
appears until the maximum is found and the correspond-
ing inclination angle θi _ max 1 is calculated.
Step 5: Reduce the angle range of the image to [-α/10,
+α/10] and search for the optimal matching point near the
angle θi _ max 1, with the matching value G(θ) as the ordi-
nate and the inclination θ as the horizontal coordinates,
the parabolic model was established by G(θ) = aθ2 + bθ +
c, and the maximum point of the parabola, namely the
maximum point of the matching degree, was calculated.
The corresponding inclination angle θi _ max 2 was taken
as the tilt angles of the battery.

The rough matching process which selected the template
inclination variation range [−a, +a] for template matching ob-
tained the matching value Gi _ max 1 corresponding to each in-
clination angle. Then the best match has been found andmight
appear as shown in Figure 11. If the maximum appears in the
interval, the inclination corresponding to the maximum value
would be selected as the exact matching initial template incli-
nation angle. If it appears on the edges of the interval, the
search interval should be enlarged. For example, if the maxi-
mum value appears at −a, it should be necessary to search for
the maximum value in the left scope [−3a, −a]. In the

meanwhile, if the maximum value appears at +a, the range
[+a, +3a] would be searched next. Comparing the maximum
of the new search range with the matching value in [−a, +a], if
the maximum is still not found, search range [(2k − 1)a, (2k +
1)a] for next step, where k = ± 2, ± 3, ± 4…, until the optimal
matching degree is found and the corresponding inclination
angle is determined.

5 Experiments and analysis

5.1 Experimental setup

The effectiveness of the improved algorithm was verified by
the image matching experiment of lithium battery on the de-
signed experimental platform (Figure 12). The framework is
made of aluminum alloy plate, and the bottom plate is made of
5 aluminum profiles with the size of 20mm×80mm×800mm,
and the camera bracket is made of SBR16 cylindrical linear
slide track. The battery is the LR 18650SZ power packed
lithium battery produced by LISHEN, which is placed on
the working table and rolls down by gravity. The configura-
tion of the laptop is Intel i5-8250U, 8GRAM, and 256G SSD.
The camera is A5201M/CU150 USB3.0 with CMOS sensor
whose frame rate is 150fps and resolution is 1920×1200. The
camera is black and white whose lens is MH1220S with
12mm focal length manufactured by HUARUI technology.
The light source is PGB-350-12 with two bar LED light
sources combined.

The lithium battery is cylindrical, 65mm long, and 18mm
in diameter. Ten batteries rolled down the ramp at a time, and
the average speed was 60mm/s, with a camera capturing im-
ages at a rate of 20 frames per second and an exposure gain of
2000. Considering the distance from lens to ramp, the maxi-
mum battery quantity that could be captured in one single
view was 10, which can make sure the barcode on the lithium
battery’s surface capturable. In each experiment, about 30

Fig. 11. The maximum value appears in the position diagram. aMaximum is within the interval. bMaximum is at the right endpoint. cMaximum is at
the left endpoint
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images can be collected, and an improved template matching
algorithm was adopted to process each image and locate the
position of each battery.

The upper machine program is coded by Python3 with
PyQt5, OpenCV3, and several other third-party packages

and shown in Figure 13. The main window contains two sec-
tions, real-time image acquisition in the left part and post-
processing in the right part. For the image acquisition part,
the preview window is used to preview the acquisition process
which displays each frame captured by industrial camera in

Fig. 12. Experiment platform and
introduction to each parts.

Fig. 13. The main windows of upper machine program, which displays almost vertical batteries by coincidence in preview window and leads to 100%
precision.
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real time. When the program is running, the upper machine
program is initialed and invokes industrial camera to capture
frame which would be displayed in preview window. In less
than half second delay, the information would be printed in
bottom part which includes battery positioning status, time
consumed, number of batteries, and recognition rate. Since
this paper is focused on positioning, the barcode recognition
will not be discussed in details.

5.2 Visual positioning by improved template
matching

5.2.1 Positioning stability

During image collection, the lithium battery gradually entered
and left the collection area, which made the number of lithium
batteries inconstant. According to the number and distribution
of batteries in the picture, the picture was divided into three
categories: battery distribution on the left side, right side, and
in the middle. Before the introduction of localization experi-
ment, the comparison results of with and without image pyr-
amid down-sampling is shown in Table 1. Each set contained
100 frames and repeated 10 times. The set 1 was the original
frame captured from industrial PC and template of the whole
separated battery. The sets 2 to 4 were down-sampled images
once, twice, and three times, respectively. The time consum-
ing was almost decreasing at 4 times in sequence since the
pixel processed was reducing dramatically. In the meanwhile,
the accuracy rate kept 100%. The lithium battery localization
experiment was carried out on the images of three battery
distribution types to verify the stability of the matching algo-
rithm. Ten pictures for each have been selected, and the num-
ber of batteries in the pictures may be different.

Figure 14 shows the battery matching results for three typ-
ical distributions. There are lithium batteries near the right,
near the left, and on both sides. Batteries close to the right
mean that there is no battery in the left area of the battery.
Similarly, the right area is the same. Both left and right areas
were non-empty when the lithium battery filled the entire im-
age, left and right borders, and the middle of the image. The
improved template matching algorithm can accurately locate

the lithium battery and complete the positioning for the battery
in the boundary and incomplete shape.

Table 2 shows the matching rate of boundary and non-
boundary batteries. The matching rate of non-boundary lithi-
um battery is 100%, which is much higher than the matching
rate of left and right boundary. First, the main reason for the
low matching rate of lithium battery near the boundary is that
the improved template cannot match lithium battery due to the
incomplete battery characteristics near the boundary. Second,
compared with the intermediate lithium battery, the light in-
tensity for lithium battery near the boundary is relatively
weak. So there was deviation in the image correction, which
will cause the displacement of the matching optimal point and
lead to the positioning deviation. However, it does not affect
the sequence of the entire batch of batteries. The batteries on
the edge can be abandoned, because they would definitely
appear in the middle of certain image.

5.2.2 Practicability

The battery tilt angle is determined by the following steps.
First rotate the original image and the single lithium battery
image in sequence. Then rotate the template to match the
lithium battery. An image with multiple lithium batteries has
been selected randomly to verify the practicability of the
algorithm.

Image binarization and morphological operation are per-
formed as preprocessing. Then the approximate inclination
angle of each battery is calculated by using multi-line detec-
tion, and the battery in the figure is segmented and rotated.
After the image is sampled, the specified template is matched
with the initial lithium battery contour, and the image is seg-
mented again. Finally, template matching is performed twice
on the full-size lithium battery. For the first time of matching,
large interval rotation angle is selected, and for the second
time, small interval rotation angle matching is selected near
the optimal rotation angle.

Figure 15a and b show the curve between rotation angle
and matching value of the matching template of no. 5 battery.
In Figure 15a, the rotation range of the template is within
[−2.0°, +2.0°], with an interval of 0.40°. The matching value
of the template reaches maximum with rotation angle of 0°,
and the best matching value can be determined within the
interval [−0.40°, +0.40°]. In Figure 15b, target is rotated
spaced at 0.04° between the determined sub-interval
[−0.40°, +0.40°]. The quadratic polynomial is used to fit the
discrete points shown by the red dotted line, and the rotation
angle corresponding to the maximum is calculated to be
0.246°.

Pinpoint each lithium battery in this image. Figure 15c
shows the relationship between the battery pack’s rough or
precise position and the rotation angle. Based on the rough
rotation angle, the rotation template is precisely determined.

Table 1. Matching rate under different battery distribution.

Sets Resolution (the original image and
template)

Time
consuming (s)

Accuracy

1 1920x1200, 160x573 7.641 100%

2 960x600, 80x144 2.016 100%

3 480x300, 80x60 0.491 100%

4 240x150, 40x30 0.096 100%
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Figure 15d shows the improved matching accuracy of each
lithium battery after adjusting the template angle, where the
blue line represents the template matching result after sam-
pling. The matching values of nos. 3, 4, and 5 lithium batteries
are quite different from the matching rate of the last two times.
The reasons can be concluded as follows: This specified
matching template selected the whole lithium battery; or the
template was a lithium battery without bar code, while the
target image had a bar code.

The best matching rates of no. 1 and no. 7 lithium batteries
are 0.916 and 0.891, respectively, which are relatively low
compared with others, because they are at the edge of the
image and influenced by camera distortion. The best matching
rates of other lithium batteries are all above 0.95.

For massive production in lithium battery industry, each
battery is needed for quality inspection. If it is detected by
human worker, overall efficiency cannot be guaranteed. So
the semi-finished batteries are inspected preliminarily during
transfer to next station. Since the advantage of the cylindrical

shape, taking picture while rolling is the most efficient way to
conduct positioning and detecting. But a problem remains.
Because batteries are rolling down from the slope with no
interference, the battery inclination angle can be any possible
value in range of −10° and 10° roughly. If the absolute value
of inclination angle is larger than 10°, the batteries would roll
out of the edge from the slope. To validate the stability of
the proposed algorithm in large inclination angle, 10 sets of
randomized repeat experiments are carried out. In consider of
recognition rate varying with the battery inclination angle,
each set of the experiments is with the same parameters.
Because of the randomness, the inclination angle in each ex-
periment which being named as set 1, set 2, …, and set 10,
respectively, is set to different range, such as [−10, −8], [−8,
−6], …, [8, 10].

As is shown in Table 3 and Figure 16, the average recog-
nition rate of sets 3 to 8 is 97.83%, and the average time
consumption is 1.044 s in which 100 batteries are recognized,
so the recognition speed is 95.79 per second. The best recog-
nition rate is 98.67% in set 4, and the corresponding inclina-
tion angle is between −4° and −2°, which means that there are
3.99 batteries missed in 300 batteries. The inclination angle of
rolling batteries, −6° to 6°, is relatively large and barely
reached in industrial production, combined with the fact that
the time consumption curve is flat and smooth, all the evi-
dences proves that the proposed algorithm is efficient and
stable.

Fig. 14. Stability of the multi-objective matching algorithm battery distribution: close to the right side (1~3), both the left and right sides (4~6), and the
left side (7~9).

Table 2. Matching rate under different battery distribution.

Distribution Number of tests Correct Accuracy

To right 60 55 92%

To left 60 57 95%

Others 80 80 100%
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5.2.3 Positioning results

The barcode of lithium battery in batch has been tested and
located each battery while sorting each lithium battery in the
group. Numbering each battery is based on the position of the
lithium battery in the image. The localization rate of non-edge
lithium battery can be reached to 100% by the improved tem-
plate matching algorithm, in the meanwhile the localization
rate of edge lithium battery image to 93.5%.

The improved template matching algorithm was used
to locate lithium batteries and obtain the coordinates
and inclination angles of the upper left corner for every
battery. A group of images from multiple experimental
data were selected for algorithm verification. Figure 17a
shows the positioning results of lithium batteries, in
which all the lithium batteries in the middle of the im-
age were located and some batteries in the edge of the
image are failed to be located. Since the battery rolled
in the horizontal direction (x direction), the pixel

changes in the y direction are relatively small and the
battery inclination angle is almost similar. Therefore, the
position coordinates in the x direction are selected to
analyze the movement of the battery.

Figure 17 (b) shows the coordinate changes of lithium bat-
teries in x direction for several images. The dotted yellow line
in Figure 17b indicated that all ten lithium batteries can be
seen and corresponding coordinates can be found in
Figure 17. For the point near the line battery no. 1, it can be
seen that battery no. 1 is about to leave the field of camera
view. The distribution curve of each lithium battery in
Figure 17b is relatively smooth, and the slope of the battery
curve increases successively from no. 1 to no. 10 batteries. It
can be seen that the number of batteries in image field de-
creases after dotted yellow line, which is consistent with the
process of the batteries accelerating rolling out. Each x-
coordinate when the corresponding battery left the view field
is less than the width of the matching template, which indi-
cates that the batteries were sorted correctly.

Fig. 15. Rotary battery template matching analysis: (a) large angle rotation; (b) small angle rotation; (c) relationship between the battery position and the
rotation angle; (d) improved matching accuracy

Table 3. Matching rate and time
consumption under different
battery inclination angle.

Set 1 2 3 4 5 6 7 8 9 10

Recognition rate
(%)

92.33 94.00 97.33 98.67 97.67 98.33 97.33 97.67 96.33 94.00

time consumption
(s)

1.046 1.042 1.045 1.044 1.045 1.047 1.047 1.043 1.043 1.042
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5.2.4 Positioning precision and speed

To validate the performance of the proposed algorithm in this
paper, two typical template matching algorithms, the im-
proved SAD and NCC template matching algorithm, are stud-
ied. The improved sum of absolute differences (SAD)
matching algorithm is designed to measure the similarity be-
tween images in pixel-level. The principle is computing abso-
lute difference between each pixel in the original and template
images and the differences are summed as a simple metric.
The matching is ideal if the summed value is zero. The NCC
matching template is implemented in OpenCV which is sim-
ilar with the proposed algorithm, but the different matching
template, a whole battery without barcode, is applied. The
inclination angle of lithium batteries is controlled from −10°
to 10°, and the experiment with 250 batteries is conducted
every two degree, repeated for four times, which means
1000 lithium batteries are detected in every inclination angle
interval.

As shown in Figure 18a, the proposed algorithm and im-
proved SAD algorithm can detect lithium batteries at arbitrary
angle in [−10°, 10°], but the traditional algorithm with rela-
tively simple matching template shows very poor perfor-
mance. In combination with Table 4, the positioning speed
is decreasing slightly as the precision rate is increasing. The
reason for this is that the high computational load for large
inclination angle correcting and more images processing need
more time. The traditional algorithm can detect lithium battery
at small inclination angle and recognition rate is poor and
unstable, which cannot meet the requirements of practical
application.

Specifically, the comparison of the four different algo-
rithms shows that the YOLOv3 algorithm achieved the
highest speed but not enough precision. In Figure 19a, the
performance of YOLOv3 was great, but was not ideal in
Figure 19b and c. The YOLOv3 method did not have the

ability to correct the inclined batteries; hence, it cannot meet
the requirements of subsequent defect detection.

In consideration of the similar performance between the
proposed algorithm and the improved SAD algorithm, the
gray histogram analysis method was used to analyze lithium
battery images and verify a certain lithium battery for many
times until the error of the battery size was within 1 pixel.
With 60 lithium batteries measured for three times and mean
value of all data acquired was calculated, the battery size was
224 pixels in width and 816 pixels in height, which were taken
as the standard battery size. The experimental results in
Figure 19b and c and Table 5 were averaged by 20 sets and
each set with 10 batteries for five times repeated.

Figure 19b and c show the comparison between the pro-
posed algorithm and the improved SAD algorithm in the cen-
ter position error of lithium batteries, namely radial error and
axial error. The points acquired by the proposed template
matching algorithm and the SAD algorithm were all distribut-
ed near the center line 0. The error in most positions of the
former is within 1 pixel and distributed evenly, in the mean
while the latter was scattered. The points with large errors
were mainly distributed in the image edge, because of the
limitation of camera view and the information loss of lithium
battery image near the edge.

Table 5 compares the matching results of the proposed and
the improved SAD algorithm. The variance of the proposed
algorithm in the width and length direction of lithium battery
is relatively smaller than that of the SAD algorithm. The max-
imum error of the proposed algorithm for image edge is also
better than that of the SAD algorithm with the maximum error
of 2.643 pixels in the width direction and 2.297 pixels in the
length direction, which accounted for 1.532% and 0.281% of
the battery size. The result of proposed method meets the
requirements of subsequent defect detection.

6 Conclusions and future works

Amulti-template matching algorithm for lithium battery visu-
al localization based on morphological operation and linear
inclination detection is proposed. The experimental results
show that the proposed algorithm can match almost all targets
in the image, and the recognition rate of matching non-edge
targets is 100%. Compared with the other state-of-the-art ob-
ject detection algorithms, the modified battery matching algo-
rithm was high-performance and robust. The tilt angle of the
battery can be calculated to one thousandth accuracy, and the
precise positioning of lithium battery was realized. A group of
pictures were selected for the experiment, and the lithium
battery in the figure could be detected in initial order of lith-
ium batteries.

Since each lithium battery is positioned precisely, we be-
lieve that detecting and recognizing the barcode printed on the

Fig. 16. The curve of recognition rate and time consumption; the green
dot curve has obvious peak; the blue square curve is relatively smooth.
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surface and lithium battery defect detection should be chal-
lenging but successful in the future work. The proposed algo-
rithm is suitable for local image invariant objects. With the
several local images of target object, the proposed dual-
template or multi-template matching algorithm and tilt correc-
tion method can be applied. Hence, for the similar products,
such as rectangular or square products, the proposed algorithm
with a few specific changes would still work. So, the future
works should focus on the improvement of robust and precise
proposed algorithm to expand the application fields.
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Fig. 17. Distribution of each lithium battery. a The positioning result of a set of images. b The battery distribution is located.
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Table 4. The comparison of different algorithms in positioning precision and speed

Sets for different
angle

The proposed one The improved SAD The YOLOv3 The traditional one

Precision
(%)

Count per
second

Precision
(%)

Count per
second

Precision
(%)

Count per
second

Precision
(%)

Count
per
second

1: [−10°, −8°] 97.86 8.57 89.19 7.57 85.10 24.86 0 NA

2: [ −8°, −6°] 98.25 9.65 91.82 8.65 88.12 25.75 0 NA

3: [ −6°, −4°] 99.04 8.75 93.3 8.72 90.43 25.81 0 NA

4: [ −4°, −2°] 99.24 8.62 95.47 8.45 93.30 25.79 0 NA

5: [ −2°, 0°] 99.35 8.87 95.78 8.97 92.59 25.64 50.19 NA

6: [ 0°, 2°] 99.44 8.86 95.98 8.91 93.64 25.88 46.4 NA

7: [ 2°, 4°] 97.55 9.03 95.38 8.84 93.97 25.93 0.28 NA

8: [ 4°, 6°] 98.28 8.81 93.23 8.95 90.66 25.82 0 NA

9: [ 6°, 8°] 97.87 8.79 92.17 8.74 87.34 25.78 0 NA

10: [ 8°, 10°] 99.03 8.71 89.48 7.98 86.76 25.81 0 NA

Fig. 18. a The recognition rate curves of the proposed and two other
algorithms; red dot line represents the recognition rate of the proposed
algorithm; purple triangle line, green square line, and blue triangle line

represent the YOLOv3, the improved SAD, and traditional template
matching algorithm, respectively. b and c The error comparison
between the proposed and the improved SAD algorithm

2549Int J Adv Manuf Technol (2021) 116:2531–2551



Data availability All data and materials used to produce the results in this
article can be obtained upon request from the corresponding authors.

Declarations

Ethics approval The authors declare that there is no ethical issue applied
to this article.

Consent to participate The authors declare that all authors have read
and approved to submit this manuscript to IJAMT.

Consent for publication The authors declare that all authors agree to
sign the Transfer of Copyright for the Publisher to publish this article
upon on acceptance.

Competing interests The authors declare no competing interests.

References

1. Kwade A, Haselrieder W, Leithoff R, Modlinger A, Dietrich F,
Droeder K (2018) Current status and challenges for automotive
battery production technologies[J]. Nat Energy 3:290–300

2. Li J, Yang F (2018) Research on multi-robot scheduling algorithms
based on machine vision. EURASIP J Image Video Process
2018(1):1–11

3. Mittal S, KhanMA, Romero D,Wuest T (2018)A critical review of
smart manufacturing & Industry 4.0 maturity models: Implications
for small and medium-sized enterprises (SMEs). J Manuf Syst 49:
194–214

4. Li K, Dan T (2013) Research and design of inspection of LR6
battery negative surface scratches online defects based on computer

vision[C]. 2013 International Conference on Communications,
Circuits and Systems (ICCCAS), IEEE, NY, USA. vol. 2, pp
120–123

5. Katona M, Nyúl LG (2013) Efficient 1D and 2D barcode detection
using mathematical morphology. International Symposium on
Mathematical Morphology and Its Applications to Signal and
Image Processing. Springer, Berlin Heidelberg, pp 464–475

6. Wang Z, Chen A, Li J et al (2016) 1D barcode region detection
based on the Hough transform and support vector machine.
International Conference on Multimedia Modeling. Springer,
Berlin, Heidelberg, pp 79–90

7. KimD, Lee S, HongW, Lee H, Jeon S, Han S, Nam J (2019) Image
segmentation for FIB-sem serial sectioning of a Si/C–graphite com-
posite anode microstructure based on preprocessing and global
thresholding. Microsc Microanal 25:1139–1154

8. Do T, Cheung N (2018) Embedding based on function approxima-
tion for large scale image search. IEEE Trans Pattern Anal Mach
Intell 40:626–638

9. Yan X, Ye Y, Qiu X, Manic M, Yu H (2020) CMIB: Unsupervised
image object categorization in multiple visual contexts[J]. IEEE
Trans Ind Inf 16:3974–3986

10. Yang L, Tang K, Yang J, Li L (2017) Dense captioning with joint
inference and visual context[C]. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
pp 1978–1987

11. Badmos O, Kopp A, Bernthaler T, Schneider G (2020) Image-
based defect detection in lithium-ion battery electrode using
convolutional neural networks. J Intell Manuf 31:885–897

12. Lin G, Shen C, van den Hengel A, Reid I (2018) Exploring context
with deep structured models for semantic segmentation. IEEE
Trans Pattern Anal Mach Intell 40:1352–1366

13. Girshick R (2015) Fast R-CNN[C]. 2015 IEEE International
Conference on Computer Vision (ICCV), Santiago, IEEE, NY,
USA. pp 1440–1448, IEEE, NY, USA

14. Redmon J, Divvala S, Girshick R et al (2016) You only look once:
unified, real-time object detection[C]. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, pp 779–788, IEEE, NY, USA

15. K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp 770–778, IEEE, NY, USA

16. Wang Y, Wang L, Lu H, He Y (2020) Segmentation based rotated
bounding boxes prediction and image synthesizing for object de-
tection of high resolution aerial images[J]. Neurocomputing 388:
202–211

17. Bang S, Baek F, Park S, Kim W, Kim H (2020) Image augmenta-
tion to improve construction resource detection using generative
adversarial networks, cut-and-paste, and image transformation
techniques[J]. Autom Constr 115:103198

18. Talmi I, Mechrez R, Zelnik-Manor L (2017) Template matching
with deformable diversity similarity[C]. In: 2017 IEEE Conference

Fig. 19. The recognition results of YOLOv3 algorithm. a The inclination angle of batteries is zero. b The inclination angle is negative. c The inclination
angle is positive.

Table 5. Positioning comparison in different directions (in pixel level).

Entry Proposed algorithm
(width, height)

Improved SAD algorithm
(width, height)

Variance 1.578, 1.025 3.549, 1.992

Standard
deviation

1.256, 1.012 1.884, 1.412

Maximum
error

2.643, 2.297 5.252, 3.061

Maximum
error ratio

1.532%, 0.281% 2.329%, 0.379%

2550 Int J Adv Manuf Technol (2021) 116:2531–2551



on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, pp 1311–1319, IEEE, NY, USA

19. Zhang H, Di X, Zhang Y (Dec. 2020) Real-time CU-net-based
welding quality inspection algorithm in battery production[J].
IEEE Trans Ind Electron 2020:10942–10950

20. Liang J, Liao Z, Yang S, Wang Y (2012) Image matching based on
orientation-magnitude histograms and global consistency[J].
Pattern Recogn 45:3825–3833

21. Lopezfranco C, Hernandezbarragan J, Lopezfranco M et al (2017)
Real-time image template matching algorithm based on differential
evolution[C]. In: IEEE-RAS International Conference on
Humanoid Robots. IEEE, pp 573–578

22. Korman S, Reichman D, Tsur G et al (2013) Fast-match: fast affine
template matching[C]. In: 2013 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp 2331–2338, IEEE,
NY, USA

23. Bao G, Cai S, Qi L, Xun Y, Zhang L, Yang Q (2016) Multi-
template matching algorithm for cucumber recognition in natural
environment[J]. Comput Electron Agric 127:754–762

24. Bekkers EJ, Loog M, ter Haar Romeny BM, Duits R (2017)
Template matching via densities on the roto-translation group.
IEEE Trans Pattern Anal Mach Intell 40(2):452–466

25. Dekel T, Oron S, Rubinstein M et al (2015) Best-buddies similarity
for robust template matching[C]. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston, MA,
pp 2021–2029, IEEE, NY, USA

26. ChenM, Shao ZF, Liu C et al (2013) Scale and rotation robust line-
based matching for high resolution images[J]. Optik 124(22):5318–
5322

27. WuQ, XuG, ChengY,Wang Z, DongW,MaL (2019) Robust and
efficient multi-source image matching method based on best-
buddies similarity measure[J]. Infrared Phys Technol 101:88–95

28. Xia H, Zhao W, Jiang F, Li H, Xin J, Zhou Z (2019) Fast template
matching based on deformable best-buddies similarity measure.
Multimed Tools Appl 78(9):11905–11925

29. Yu X, Fei X (2017) Target image matching algorithm based on
pyramid model and higher moments[J]. J Comput Sci 21:189–194

30. Pedrosa MM, de Azevedo SC, da Silva EA, Dias MA (2017)
Improved automatic impact crater detection onMars based on mor-
phological image processing and template matching. Geomat Nat
Haz Risk 8(2):1306–1319

31. Lee H, Kwon H, Robinson RM et al (2016) DTM: deformable
template matching. In: 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Shanghai, pp
1966–1970, IEEE, NY, USA

32. Peng X, Xu J (2016) Hash-based line-by-line template matching for
lossless screen image coding[C]. IEEE Trans Image Process
25(12):5601–5609

33. Penate-Sanchez A, Porzi L, Moreno-Noguer F (2015) Matchability
prediction for full-search template matching algorithms[C]. In:
International Conference on 3D Vision. IEEE Computer Society,
pp 353–361

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2551Int J Adv Manuf Technol (2021) 116:2531–2551


	Machine...
	Abstract
	Introduction
	Literature review
	Object detection methods
	Template matching approaches
	Discussion

	The improved dual-template matching method
	Framework of the proposed method
	Preparation
	Lithium battery template design
	Top template design
	Bottom template design


	Positioning method
	Positioning statement
	Improved algorithm
	Battery tilt angle calculation
	Improved template matching
	Approximate template matching for original image
	Elaborate template matching for the underlying image


	Experiments and analysis
	Experimental setup
	Visual positioning by improved template matching
	Positioning stability
	Practicability
	Positioning results
	Positioning precision and speed


	Conclusions and future works
	References


