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Abstract
The response surface methodology (RSM), which uses a quadratic empirical function as an approximation to the original
function and allows the identification of relationships between independent variables xi and dependent variables ys

associated with multiple responses, stands out. The main contribution of the present study is to propose an innovative
procedure for the optimization of experimental problems with multiple responses, which considers the insertion of
uncertainties in the coefficients of the obtained empirical functions in order to adequately represent real situations. This
new procedure, which combines RSM with the finite element (FE) method and the Monte Carlo simulation optimization
(OvMCS), was applied to a real stamping process of a Brazilian multinational automotive company. For RSM with multiple
responses, were compared the results obtained using the agglutination methods: compromise programming, desirability
function (DF), and the modified desirability function (MDF). The functions were optimized by applying the generalized
reduced gradient (GRG) algorithm, which is a classic procedure widely adopted in this type of experimental problem, without
the uncertainty in the coefficients of independent factors. The advantages offered by this innovative procedure are presented
and discussed, as well as the statistical validation of its results. It can be highlighted, for example, that the proposed procedure
reduces, and sometimes eliminates, the need for additional confirmation experiments, as well as a better adjustment of
factor values and response variable values when comparing to the results of RSM with classic multiple responses. The new
proposed procedure added relevant and useful information to the managers responsible for the studied stamping process.
Moreover, the proposed procedure facilitates the improvement of the process, with lower associated costs.

Keywords Stamping process · Multi-objective optimization · Uncertainty · Response surface methodology ·
Finite element method · Optimization via Monte Carlo simulation

1 Introduction

1.1 Research background

In today’s intricate industrial environment, it is essential
that organisations continuously improve their business
processes, to sustain their competitive advantage [1].The
field of industrial statistics and optimization has introduced
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a range of statistical and optimization methods for managing
and improving processes in diverse industries [2–4].

In response surface methodology—RSM, an important
DOE technique, linear or quadratic polynomial functions
are employed to describe the problem studied, and to
explore experimental conditions to obtain its optimization
[5, 6].

In the field of operations research, Optimization via
Monte Carlo Simulation (OvSMC) is suitable for problem
solving with many local optimal solutions, including
objective functions, complex restrictions, and continuous or
discrete variables, as pointed out by Conway and [7] .

Monte Carlo simulation (MCS) provides decision-
makers with a scenario analysis, with a range of possible
outcomes and related probability distributions, besides
also offering graphical results and sensitivity analysis [8].
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MCS is based on the use of random numbers (sampling)
and probability statistics to investigate problems in many
areas, such as material science, economics, chemical and
biophysics, statistical physics, nuclear physics and traffic
flow [9]. Furthermore, MCS can be used to solve complex
engineering problems because it can deal with a large
number of random variables, various distribution types, and
highly nonlinear engineering models [10].

The development of this study was primarily motivated
by demands presented by companies in Brazil, in different
sectors, which use DOE, mainly RSM, to improve
their manufacturing processes and services. The problem
observed by managers, in practice, was that, although
the adopted RSM models could be statistically significant
with respect to the modeled real situation, the adjustment
of the optimized factors (or decision variables, xi), as
recommended by RSM, sometimes had generated very
different response variables values (ys) if compared to
those observed in the real process. These situations have
ended up creating difficulties to the managers regarding
the adjustments that needed to be made in the company’s
processes to improve performance, because they lost
the confidence that the optimized values of the factors
suggested by the RSM were, in fact, appropriate for
implementation, since the investments in these changes can
be high, as commented by [2].

In this context, a particular and important problem
was presented by managers of a Brazilian multinational
automotive industry and it is related to how to reduce
the weight of stamping parts that, in recent years, has
consumed great efforts of the engineers to get an adequate
solution [11, 12]. It should be noted that it is not a
simple problem, involving many relevant aspects for vehicle
manufacturing, because that most of the energy absorbing
members in vehicle body are fabricated by stamping process
which can result in non-uniform thickness, substantial
residual strains/stresses especially for high strength steel or
advanced high strength steels, etc. [13, 14].

Besides these previous concerns, maybe it is not a
good option to chose independent factors values, related
to stamping process, by using a deterministic optimization
procedure, because this could result in unreliable or unstable
designs with respect to crashworthiness [15]. In fact,
the occurrence of uncertainties about material properties,
stamping process and geometry usually propagate from
manufacturing phase to operational phase, and these can
generate problems to the vehicle, for example, associated to
crashworthiness [13].

There are two types of sheet metal forming methods: one
is the incremental method based on flow theory, and the
other is the total deformation theory of plasticity [16]. The
former provides high precision, but it is time-consuming,
and the latter is somewhat less accurate, but the simulation

is rapid; i.e. it is suitable for the simulation of sheet
metalstamping in the early design stages [16].

In order to mitigate the effects of uncertainty in stamping
processes, since the early 1990s, there has been a significant
increase in the use of simulations by finite element (FE)
methods to sheet conformation in industry [17–19]. For
example, FE simulations are useful for reducing lead time
in the design and tool development stage, as pointed out by
[20].

Pimental et al. [17] stated that problems involving new
materials and new technologies constantly require the need
to develop more robust, efficient, reliable and accurate
FE analysis and simulation tools. These authors analyzed
three FE software, AUTOFORMTM, PAM-STAMP TM and
DD3IMPTM, and found that their accuracy was roughly the
same. Thus, beyond the fundamentals differences in their
FE formulation, AutoformTM and Pam-StampTM showed
very similar numerical results, which was in good adherence
with the real results. Similarly, [21] used simulations by
finite element (FE) methods associated with RSM and
ANOVA [4] to perform the optimization of multi-point
forming process parameters.

In this study, an innovative procedure that include
the application of optimization via Monte Carlo
simulation—OvMCS [2] combined with response surface
methodology—RSM [22] and finite element methods—
FE [22] is proposed to analyze the impact of uncertainty
occurrences in two objective functions (compression and
traction) associated with stamping process parameters.

The main difference of this research when compared
with the study developed by [2] is that, besides being a
multi-objective problem involving multiple responses, the
compression and traction functions are optimized through
three agglutination methods: compromise programming—
CP [23], desirability function [24] and modified desirability
function [25]. Thus, the best option for a stamping
process of a Brazilian multinational automotive company is
proposed.

1.2 Contributions of this study

To verify the importance and to identify research opportu-
nities in the area of experiment planning, a literature search
was conducted, and the results are presented in Fig. 1.
By using combinations of the keywords “Response Surface
Methodology”, “Uncertainty” and “Monte Carlo Simula-
tion” in the Scopus database, filtering results from 1989 to
2019, a total of 47 documents were identified, being 38 doc-
uments published between 2010 and 2021, which evidences
the contemporaneity of the field.

Silva et al. [2] chronologically discussed the scope of
these articles. Thus, it is possible to identify the innovative
character of the new procedure described here, which
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Fig. 1 Number of publications
(article) with keywords
“Response Surface
Methodology”, “Uncertainty”
and “Monte Carlo Simulation”.
Source: Scopus

propose an experimental design method incorporating
uncertainty influences to the parameters.

Herein, the results of the literature survey are further
explored by combining the following keywords: “Response
Surface Methodology”, “Uncertainty” and “Monte Carlo
Simulation”. Figure 2 shows a cluster map constructed using
VOSViewer [26], in which the keywords that occurred with

a frequency greater than or equal to five in these articles are
highlighted.

An analysis of Fig. 2 reveals the formation of several
clusters associated with representative keywords, and it can
be inferred that there are researchers who combined RSM,
FE, uncertainty and MCS, or RSM, as well as uncertainty
and optimization. These results show the scientific and

Fig. 2 Clusters Map for keywords “Response Surface Methodology”, “Uncertainty” and “Monte Carlo Simulation”. Source: VOSViewer software
and Scopus data base
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practical interest in combining these techniques. However,
revealing the originality of our approach, none of the 51
articles published related to the cited keywords has adopted
the same procedure proposed herein, i.e. the combination
of the RMS, FE, MCS, and optimization for a multiple
response problem related to a stamping process, considering
uncertainty occurrence on the factors.

Finally, Table 1 presents the results of a search carried
out in the Scopus database up to 2019, with the keywords
“Design of Experiments”, “Response Surface Methodol-
ogy”, “Polynomial Function”, “Uncertainty”, “Optimiza-
tion”, “Monte Carlo Simulation” and “Optimization via
Monte Carlo Simulation”. The filters used in this search
were “Articles” and “Proceedings Papers”, in which key-
words were cited in titles or abstracts.

It should be observed that only 74 publications included
the keywords “DOE”, “Uncertainty” and “RSM” together,
which indicates that there is still a good opportunity for

research involving these subjects. Besides that, it should
be pointed out that, when it was included the keyword
“Optimization via Monte Carlo Simulation”, along with the
three previous keywords, with the filters used, no papers
were found in the consulted database.

Therefore, it should be highlighted that the present study
provides an interesting academic and practical contribution
to the field, since there is a need for new knowledge
about experimental problems considering uncertainty. In
this context, a proposal of an innovative approach for
DOE, involving RSM, OvMCS and uncertainty is included,
which was statistically validated by a real stamping process
application.

1.3 Research questions and objectives

After the presented contextualization, this paper looked for
answer the following research questions:

Table 1 Number of publications and citations with keywords—“Design of Experiments”, “Response Surface Methodology”, “Polynomial
Function”, “Optimization” and “Monte Carlo Simulation”. Source: Scopus

Reference Keywords Publications

#1 “Design of Experiments” and “Optimization” 12,853

#2 “Design of Experiments” and “Response Surface Methodology” 3281

#3 “Design of Experiments” and “Response Surface Methodology” and “Multiple Response” 49

#4 “Design of Experiments” and “Uncertainty” 1440

#5 “Response Surface Methodology” and “Uncertainty” and “Monte Carlo Simulation” 118

#6 “Design of Experiments” and “Polynomial Function” 39

#7 “Response Surface Methodology” and “Polynomial Function” 70

#8 “Monte Carlo Simulation” and “Polynomial Function” 64

#9 “Design of Experiments” and “Monte Carlo Simulation” 357

#10 “Response Surface Methodology” and “Monte Carlo Simulation” 197

#11 “Design of Experiments” and “Uncertainty” and “Response Surface Methodology” 88

#12 “Response Surface Methodology” and “Optimization” and “Monte Carlo Simulation” 76

#13 “Response Surface Methodology” and “Uncertainty” and “Optimization” and “Monte Carlo Simulation” 22

#14 “Deterministic Model” and “Monte Carlo Simulation” 376

#15 “Deterministic Model” and “Monte Carlo Simulation” and “Optimization” 53

#16 “Stamping Process” and “Finite Element” 607

#17 “Stamping Process” and “Design of Experiments” 31

#18 “Response Surface Methodology” and “Uncertainty” and “Desirability Function” 10

#19 “Stamping Process” and “Finite Element” and “Uncertainty” 6

#20 “Response Surface Methodology” and “Uncertainty” and “Desirability Function” and “Monte Carlo Simulation” 1

#21 “Response Surface Methodology” and “Uncertainty” and “Compromise Programming” and “Monte Carlo Simulation 0

#22 “Design of Experiments” and “Uncertainty” and “Optimization via Monte Carlo Simulation” 0

#23 “Response Surface Methodology” and “Uncertainty” and “Optimization via Monte Carlo Simulation” 1

#24 “Deterministic Model” and “Monte Carlo Simulation” and “Optimization” and “Design of Experiments” 0

#25 “Stamping Process” and “Finite Element” and “Uncertainty” and “Monte Carlo Simulation” 2

#26 “Stamping Process” and “Design of Experiments” and “Monte Carlo Simulation” 0

#27 “Stamping Process” and “Design of Experiments” and “Optimization via Monte Carlo Simulation” 0

#28 “Stamping Process” and “Design of Experiments” and “Multiple Response” 0
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1. What is a suitable procedure to incorporate uncertain-
ties in the parameters of RSM problems with multiple
responses?

2. For a stamping process, for each agglutination method,
how to choose weights values (ws) in the optimizations
of the response variables?

3. For a stamping process, what is the best agglutination
method, with respect to traction and compression, that
would provide a feasible solution to be implemented?

To answer these questions, the general objective of this
study was to develop a new procedure, considering the
uncertainty occurrences in the coefficients of the objec-
tive functions of experimental multi responses problems
modeled by RSM. As previously mentioned, the method
selected to insert uncertainty in the coefficients of the objec-
tive functions was Optimization via Monte Carlo Simulation
(OvMCS). The specific objectives included applying the
proposed procedure to a stamping process in a Brazilian
multinational automotive company, aiming:

• To identify the advantages of the proposed procedure
compared to the traditional multiple response RSM,
which adopts deterministic optimization.

• To statistically validate the proposed procedure.

This paper is organized as follows. Section 2 presents
definitions and concepts related to RMS and OvMCS.
Section 3 describes agglutination methods for processes
with multiple responses. Section 4 describes the method and
materials and outlines the steps for the application of the
proposed procedure. The results of the proposed procedure
when applied to a real stamping process, and a comparison
among different agglutination methods are in Section 5.
Finally, Section 6 presents the conclusions and suggestions
for further research.

2 Background of response surface
methodology and optimization via Monte
Carlo simulation

In this section, it is shown the features of two techniques that
were used in the proposed procedure to deal with problems
with multiple responses by the response surface method-
ology (RMS), considering the occurrence of uncertainties
in the factors of the studied process. As highlighted by
[27]), in process optimization problems, it is of fundamental
importance to develop adequate models that mathematically
describe the relationship between independent variables xi

and response variables ys . The models can be classified
in two broad classes [28]: phenomenological models and
empirical models. Phenomenological models are based on a
prior knowledge of the physical and chemical processes that

are in some way associated to the studied systems [27]. On
the other hand, empirical models are built from a statistical
analysis of experimental observations, using regression [29]
and design of experiments (DOE) techniques.

DOE is adopted to identify the important variables (or
factors) in a process, and what their values (or conditions)
should be to optimize the performance of the studied
process. For each factor, based on the results of the
experiments, limit values are selected, and, in general, two
levels are tested for each factor. Therefore, the total number
of experiments for a complete factorial design is given by
2n, with n being the number of studied factors. In this
complete factorial experimental scheme, when the number
of factors increases, the number of experiments increases
exponentially, and it can become infeasible to use it when
there are many factors to be considered [4].

An important and very useful DOE technique is RSM,
which substitutes a complex optimization problem with
a sequence of simpler problems, with objective functions
approximated by response surfaces (usually a second degree
polynomial), and enabling a faster resolution of large
real problems [2, 5, 30]. As explained by [2], there are
two traditional ways to model problems in RSM: central
composite designs—CCD [4] and Box-Behnken designs—
BBD [31]. In general, a response variable of interest y is
related to the factors (variables) xi of a process and can be
expressed by Eq. (1):

y = f (x1, x2, ..., xn) + ε (1)

where ε is a random error, which includes the variations of
the response variable y that are not explained by the factors
x1, x2, . . . , xn.

Since, in the majority of practical problems, addressed
by RSM, the function (1) is not known, it is adopted an
approximation of the real function in the form of a second-
order polynomial function [4] and [32], as given by Eq. (2):

y = β0 +
n∑

i=1

βixi +
n∑

i=1

βiix
2
i +

n∑

i=1

n∑

j=i+1

βij xixj + ε (2)

where y is the (dependent) response variable, xi is the ith
independent variable, xj is the j th independent variable, β0

is the offset term, βi is the linear effect and βii is the squared
effect, βij is the interaction effect, and ε is a random error.

Due to the use of experimental data to estimate the
parameters of the empirical function (2), it is necessary to
construct Confidence Intervals (CI) for them using (3) [33]:

CI (β, 1 − α) = [β̂ ± z1− α
2

× SD(β̂)] (3)

where β̂ is an estimated value for parameter β, SD is the
associated standard deviation, and z1− α

2
is obtained on a

normal distribution table associated with the value of a
significance level α.

309Int J Adv Manuf Technol (2021) 117:305–327



An operations research (OR) technique utilized in the
procedure proposed herein is Monte Carlo simulation—
MCS, which is the common name for a wide variety
of probability techniques, and it is a powerful statistical
analysis tool. It is based on the use of random numbers
(sampling) and probability statistics to investigate problems
in fields as diverse as material science, economics,
chemistry and biophysics, statistical physics, nuclear
physics, flow of traffic flow and many others [9].

MCS is commonly used for solving complex engineering
problems, since it can deal with a large number of random
variables, various distribution types, and highly nonlinear
engineering models [10, 34, 35]. Besides that, MCS is
useful to help the manager in industrial-related problems,
because of the need to optimize systems or processes that
are frequently influenced by uncertainties, for example,
in the coefficients of the objective function and in the
coefficients in the restrictions [36]. As pointed out by
[37], the MCS is an adequate way to evaluate the possible
consequences of uncertainties in the optimization problems
[38].

Sahinidis [39] pointed out that stochastic optimization is
applied in several areas of knowledge, such as in production
planning, natural resource management, and finance. One of
its advantages is the possibility of extracting a set of relevant
information related to the problem in question, and thus,
enabling the analysis of different scenarios. In this sense,
Optimization via Monte Carlo Simulation (OvMCS), which
aims to find the best values for simulation model input
parameters in the search of one or more desired outputs,
has been shown to be relevant to deal with stochastic
optimization problems [40].

According to [41], an OvMCS problem can be formu-
lated as being:

maxg(x) = EP [G(x, ω)], x ∈ X (4)

where G: Rn × � → R and the expectation is taken with
respect to probability P , defined in a sample space (�, F )
and X ⊂ R

n.
It should be noted that, in practical problems, the search

of an adequate solution does not necessarily imply the
determination of optimal operating conditions, since it is
practically impossible to establish the optimum point, due to
the unlimited number of variables that impact an industrial
process [27]. In this way, local optimum solution within
a feasible search subspace [42] and using Heuristics or
Metaheuristics Methods [43] can be performed for process
improvement.

For [44], simultaneous optimization of multiple
responses has been a priority in many industries, and
much of the effort has been directed to researching alter-
native methods for the efficient determination of process
adjustments that achieve predetermined goals. Moreover,

multiple-response optimization problems often involve
conflicting objectives [45], such as in manufacturing pro-
cesses related to the minimization of production time versus
equipment cost.

According to [46], there is still a gap between theory
and practice in the optimization using multiple responses,
and it is common to use agglutinated functions of multiple
responses to obtain a single objective function to be
optimized. Since there are a wide variety of agglutination
methods, a comparative study of these methods is necessary
to determine their individual efficiency [27]. The most used
process optimization method in scientific studies is the joint
use of the desirability function with the generalized reduced
gradient (GRG) method [25]. In the next section, three
agglutination methods are presented, which were tested in
the procedure proposed in the present study for optimization
with RSM, in the occurrence of uncertainties.

3 Agglutinationmethods for processes
withmultiple response

3.1 Compromise programming

Compromise programming (CP) was firstly presented by
[47]. This method is characterized by the attempt to identify
solutions that might be closer to an “ideal” solution,
considering the distance between a given solution and the
ideal solution [23]. This ideal (or target) solution is only
a point of reference for the decision maker (DM). Thus,
CP assumes that any DM seeks a solution as close as
possible to an ideal point, and to achieve this closeness, a
distance function is introduced into the analysis. It should
be noted that the concept of distance is not used in
its geometric sense, but as a proxy measure for human
preferences [48].

When seeking the minimization of a given function
fs(x), CP can be obtained from Eq. (5) and (6):

MinCP =
(

p∑

s=1

ws[fs(x) − Ts]t
) 1

t

(5)

p∑

s=1

ws = 1 (6)

where, for fs(x), Ts is the ideal value and ws is its weight,
usually it is adopted t = 2.

Since the units used to measure various objectives are
different, they must be normalized in order to avoid a
meaningless summation [49].
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3.2 Desirability function

One of the most commonly used techniques to simulta-
neously optimize multiple responses is to transform the
equations that model each of these (answers) responses into
individual utility functions [27]. The next step is optimize
a global utility function known as total desirability function
(DF), given in terms of the individual utility functions [4].
[24] present individual utility functions (d) for nominal-the-
best (NTB), larger-the-better s and maller-the-better (STB)
answers, as described below:

- When the target value (T ) of an answer (ŷ) is between a
maximum value (U ) and a minimum value (L), the response
is said to be of the NTB type. The utility function (d) is
defined in Eq. (7):

d =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
ŷ − L

T − L

]S

L ≤ ŷ ≤ T

[
ŷ − U

T − U

]R

T ≤ ŷ ≤ U

0 ŷ ≤ Lorŷ ≥ U

(7)

where R and S are weighting factors, which may assume
values greater than 1 when it is desired to prioritize the
maximization, or the minimization, of the response [27, 50].

- When the target value (T ) of an answer (ŷ) must reach
the minimum value of the function, the response is said of
STB type. The utility function (d) is defined in Eq. (8):

d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ŷ > U
[

ŷ − U

L − U

]R

L ≤ ŷ ≤ U

1 ŷ < L

(8)

- When the target value (T ) of an answer (ŷ) must reach
the maximum value of the function, the response is said to

be of LTB type. The utility function (d) is defined in Eq. (9):

d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ŷ < L
[

ŷ − L

U − L

]R

L ≤ ŷ ≤ U

1 ŷ > U

(9)

According to [4], the agglutination of the multiple
responses involved in a problem can be performed by
maximizing a global utility function given by Eq. (10):

MaxD = (d1 × d2 × d3 × · · · × ds)
1
s (10)

where s is the number of responses to be optimized.
Moreover, it is possible to use Eq. (11) instead of Eq. (10)

to determine the value of the global utility function, which
allows assigning weights (ws) to each utility function (ds),
as presented by [27]:

MaxD = (
d

w1
1 × d

w2
2 × d

w3
3 × · · · × dws

s

)1/
∑

ws (11)

3.3 Themodified desirability function

Chng et al. [25] propose that the global utility function
calculated by Eq. (11) could be modified as an arithmetic
mean to avoid obtaining false optimal values. The proposed
modifications can be seen in Fig. 3, where ŷs is the studied
response s, ds(ŷs) is the utility function value for the
response s, U is an upper limit for response ŷs , L is a lower
limit for response ŷs .

As presented and discussed by [25], the utility function
ds can be calculated by Eq. (12), and there are three cases
to be considered for the (ideal) target value (Ts) and the
associated utility function ds value, expressed by Eq. (13),
(14) and (15):

ds(ŷs) = 2ŷs − (U + L)

U − L
+ 1 (12)

IfL < T < (L + U)/2, then0 < ds(Ts) < 1, (13)

Fig. 3 Modified desirability
function. Source: [25]
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IfT = (L + U)/2, thends(Ts) = 1, (14)

If(L + U)/2 < T < U, then1 < ds(Ts) < 2. (15)

Therefore, according to [25], a new global utility
function, named by modified desirability function—MDF,
can be calculated by Eq. (16):

MinMDF =

p∑
s=1

ws |ds(ŷs) − ds(Ts)|
p

(16)

where ds(ŷs) and ds(Ts) are, respectively, function and
target values associated to the estimated response ŷs , s is
the total number of responses that were agglutinated by the

function D and ws is the weight assigned to ds(ŷs), with
p∑

s=1
ws = 1.

The following section presents the classification of this
study and materials and methods. Moreover, it is described
the proposed procedure for optimizing experimental prob-
lems under uncertainty, using RSM and OvMCS..

4Materials andmethods

The research described in this study can be classified as
being applied in its nature, presenting normative empirical
objectives based on a quantitative approach. The technical
procedures included the realization of experiments and the
use of modeling and simulation [29]. Figure 4 presents
a flowchart with the steps for applying the new proposal

Fig. 4 Proposed procedure flowchart. Source: Adapted from [2]
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to optimize an experiment with multiple responses, with
uncertainty occurrences, including the combination of
RSM, finite element method and OvMCS.

The techniques used to apply of the proposed procedure
(see Fig. 4) were:

– Step 2 - Generation of the empirical functions represent-
ing the objective functions of RSM was performed with
the ordinary least squares (OLS) algorithm [4].

– Step 3 - The traditional (deterministic) optimization was
performed with the generalized reduced gradient—GRG
algorithm, available in Solver from Ms-ExcelTM.

– Step 5 - OptQuest optimizer from the Crystal-BallTM

Trial Version software [51] towas used to complete
the optimizations in three stages (Fig. 5). OptQuest
incorporates metaheuristics to guide its search algorithm
towards better solutions [52].

The eight steps of the general procedure proposed, as
shown in Fig. 5, are described as follows:

Step 1 - To identify the experimental problem to be
addressed by RSM, finite element method and OvMCS.
This involves understanding the context in which the
manufacturing process or services will be studied and
the identification of the response variables of interest
and the independent variables that influence this pro-
cess. Data are collected to obtain the experimental matrix
with the values of the response variables and the asso-
ciated independent variables considered in the process.
The experimental matrix was coded according to the
RSM technique by adopting: central composite designs
(considering two levels for each factor) or Box-Behnken
designs (considering more than two levels for each
factor).

Step 2 –To generate empirical functions associated
with the objective functions of RSM, which represent
the response variables (ys) as a consequence of the
independent variables considered in the process to be
studied.

Fig. 5 OptQuest Flow. Source:
[52]
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The encoded experimental matrix associated with the
process studied, obtained in step 1, it is used to generate
the empirical functions and the confidence intervals
(CI), of 95% and 99%, for all the coefficients of the
independent variables. Based on the results from the
F and t-Student statistical tests [4], in Eq. (2), the
terms that are not significant with α = 5% are
disregarded. Observe that, in Eq. (2), if the terms of the
interaction effects, β11x1x2, . . . , βnxn−1xn are significant,
it is recommended to keep the terms from the linear effects,
β1x1, β2x2, . . . , βnxn, even if they are not significant.

The justification for the choice of these confidence values
for the CI that 95% is the standard used in experimental
problems addressed by RSM and 99% represents the
greatest range of variation of the coefficients of the
empirical function in relation to the value estimated by the
regression analysis.

Step 3 -To optimize the empirical functions ys , obtained
in step 2, by agglutination methods, without considering
the occurrence of uncertainties. The GRG algorithm can be
used to solve the two optimization problems, it is available
in the Solver of MS-ExcelTM [53].

Step 4 - To enter the occurrence of uncertainties in
the coefficients (β) of the empirical function, obtained
in step 2. For this purpose, based on [4], continuous
uniform distribution in the [a, b] interval was chosen, which
represents the situation in which any value, among the limits
considered, has the same probability of occurring. The
values of the lower (a) and upper (b) limits should be tested,
associated with the CI of 95% and 99%, for each coefficient
of the empirical function, considerando a probability density
function (PDF) as shown in Fig. 6:

PDF(β) =
{

1
b−a

if a ≤ β ≤ b

0 Otherwise
(17)

In this context, [54] pointed out that based on the quan-
titative approach, the evaluation measures are calculated as

Fig. 6 Continuous uniform distribution. Source: [4]

the probabilities of occurrence of the main events and the
reliability or insecurity of the main events.

Step 5 - To optimize the empirical functions with the
occurrence of uncertainties, obtained in step 4, where
the decision variables are the factors xi and the response
variables are ys . OvMCS is applied with support from the
Crystal Ball TM software and the OptQuestTM optimizer.

Step 6 - To analyze the results from the traditional
approach (step 3 - deterministic optimization) with the
results of the optimization under uncertainty (step 5 -
with OvMCS - CI - 95% and OvMCS - CI - 99%
This will be done by comparing the optimized values
of the factors (xi) and the final value of the opti-
mized objectives functions (ys), observing similarities and
differences.

Step 7 - To analyze the behavior of the response variable
from the experimental problem optimized by OvMCS
and statistical validation. The statistical validation will be
done through a confirmation experiment, relating it to
the behavior of the objective functions and to the factors
optimized by OvMCS.

Step 8- Recommendations.
After statistical validation, it will be possible to use

different configurations in the experiment and to accurately
predict the confidence interval of the investigated response
variables, carrying out more realistic experiments for
different experimental configurations, without the need to
carry out the confirmation experiment, which is often time-
consuming and costly.

For the purposes of illustration and validation of the
proposed general procedure, including the occurrence of
uncertainties in the coefficients of the objective functions
of experimental problems modeled by RSM, a real case
involving a stamping process in a Brazilian multinational
automotive company was used. The studied instance has
five factors, and the response variables were y1 (traction)
and y2 (compression), RSM with Box-Behnken design was
used to illustrate how to statistically validate the proposed
procedure.

To solve the example, we used an Intel Core i7-9750H
coffee lake refresh, 12MB cache, GHZ processor 2.6 to 4.5
turbo Boost, with 32 GB RAM, and Windows operational
system, with Video car NVIDIATM GeForceTM RTX 2070
GPU (8GB GDDR6) MAX-Q design. The computational
time for performing optimization by GRG algorithm was
about two seconds, and the simulation stop rule was used
to perform OvMCS by optimizer Optquest of the Crystal
BallTM software. There were a total of 1000 simulations
runs with 1000 replications each, and the computational
time was about twenty minutes. In the next Section, the
proposed procedure application for this studied real problem
is presented in details.
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Fig. 7 Stamping tool. Source: RhinocerosTM software

5 A stamping problem solved
by the proposed procedure

In the sequence, considering a real stamping problem, the
results obtained in each step (see Fig. 8) of the proposed
procedure are presented.

Step 1 - To identify the experimental problem
The object of study was a Brazilian multinational

automotive company, with 31 units in 14 countries and
about 15 thousand employees. It is a manufacturer of steel
wheels and stamped automotive components, including
chassis of small and heavy vehicles. The studied product
was a transmission cross member, with thickness of 6.8 mm,
using LNE 380 steel. The products of stamping supports
are manufactured using raw material supplied by steel mills
in coils or flat sheets. The products obtained with this
manufacturing process are made of structural steels with
mechanical strengths from 260 to 600 (MPa), thicknesses
ranging from 2 to 10 (mm) and lengths from 100 to 2200
(mm), with weights between 0.1 and 20 (kg). The stamping
tool is the device by which the most varied stamping
components are obtained. The upper part of the device is
fixed in the movable part of the press, which is called
“hammer”, and in the lower part is called “lower table”, as
shown in Fig. 7.

The actuation of the press causes the displacement of
the hammer and the upper part of the tool, which provides
the mechanical action of the upper part of the tool against
the lower part that is fixed in the lower base of the
press. With this action, the tool geometry is transferred to
the plate, obtaining the product in the desired shape by
plastic deformation of the material. The product obtained in
the stamping operation might or might not undergo other
press operations, such as drilling, cutting, and calibration,
among others. Then, it is ready for the final painting
operation. Thickness reduction in the critical region of the
embossed crosspiece, subjected to tensile stresses during the
embossing process, and increased compression thickness in
the critical region of the embossed crosspiece might cause
cracks to occur during the stamping operation, increasing
the risk of product breakage when running into field in the
same stretching and compression region. Figure 8 shows the
bottom of the tool, currently used by the company, with no
compensation in the lower stamp.

The major problem identified by stamping professionals
is the lack of parameters to define the compensations in the
tool design phase, which undermines the decisions made
by the company’s engineers and specialists regarding the
geometry to be adopted for the tools.

At this stage, it is common to use specific finite
element method simulation software (such as AutoformTM

Software). Nevertheless, even with all the experience that
engineers have acquired over time, this is a slow process and
should be repeated several times. Inadequate decisions are
often made, leading to additional costs as well as additional
stamping operations.

As an example of this procedure, para o produto
estudado, Fig. 9 was constructed with the AutoformTM

Software, which plots the stress-strain curve, which is an
important tool to evaluate the fracture strength of a material.
In fact, in the stamping industry, finite element simulation
is a critical step to optimize of the sheet metal forming
processes [55], and an indispensable input to the finite
element model is the flow stress curve of the sheet material,
also known as the true stress-strain curve [55].

Therefore, the studied company has to solve a complex
problem associated with the occurrence of cracks in
stamped parts, as highlighted in red in Fig. 9, which shows

Fig. 8 The stamping tool under
study. Source: A internal file of
the studied company
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Fig. 9 Critical region in the analysis. Source: AutoformTM Software

the reduction of the thickness of the crossbeam, from 6.8
mm to 4.857 mm, obtained with the current configuration
of the mold during the stamping process. In summary, the
problems detected by the engineers were:

– Reduction of thickness in the critical region (traction)
of the stamped components during the forming process.

– Increase of thickness in the critical (compression)
region of the stamped components during the forming
process.

– Incidence of cracks during the forming operation and
possibility of cracks during use of the product.

– Lack of parameters to define compensations, in the tool
project planning phase.

The following text describes the application of the
proposed procedure when dealing with this practical
situation.

Step 1 - Identification of the experimental problem to
be solved by RMS and FE and OvMCS

The practical situation involves choosing the number
of inserts and their position in the mold in the stamping
process to mitigate the effects of Traction (response variable
y1) and Compression (response variable y2) on the studied
product. As presented in [2], the company’s engineers
suggested to placing inserts of different heights along
the mold to decrease the appearance of cracks. As an
experiment in planning strategy, before using the Box-
Behnken design, a Plackett-Burman design [4] was used,
since initially there were many (in a total of 23) xi factors

(positioning the inserts in the mold) to be investigated
(see Fig. 10).

Therefore, in a similar way like it was made and
described in details in [2] for one response variable, from the
practical experience of the company’s engineers, and based
on the Pareto chart built by the MinitabTM software [4], it
was possible to reduce the number of xi factors from 23
to 15, and a Plackett-Burman design N16 experiment was
performed for an one-response variable, now considering
two response variables y1 and y2.

After using the Plackett-Burman design N16, the number
of factors was reduced to five, which was the number used
in the application of the RSM with Box-Behnken design, as
shown in Table 2.

Figure 11 shows the adjustments of the inserts made
in the mold for the execution of the RSM with Box -
Behnken design experiment. Appendix A presents all the
243 = 35 possible combinations used in this experiment.
As an illustration, a small part of it is reproduced
in Table 3.

Step 2 - Generate empirical functions for the two
responses variables by RSM

By applying the OLS algorithm, with the data from
Table 3, the empirical quadratic function (18)–(19) and the
constraints (20)–(22), for y1 (traction) were obtained:

ŷ1 = β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x
2
2

+ β7x
2
4 + β8x

2
5 + β9x1x4 + β10x2x4 (18)
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Fig. 10 Geometry of the mold
of the stamped product without
and with the inserts. Source: [2]

Table 2 Experimental matrix of the stamping process example. Source: [2]

Factors Description Levels

−1 0 -1

A Positioning of the insert at the entry of the traction region x1 −20 0 20

B Positioning of the insert in the end of the traction region x2 −20 0 20

C Positioning of the insert in the end of the compression region x3 −20 0 20

D Heights of the compensating inserts x4 30 40 50

E Radius of entry of compensating inserts x5 10 15 20

Fig. 11 Positioning the inserts
for the RSM and Box-Behnken
design. Source: Adapted from
[2]
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Table 3 Natural factor values for each experiment and the associated values for the two responses variables, obtained by finite element simulation
(In Appendix A is the whole database)

Trial x1 x2 x3 x4 x5 ŷ1 − traction ŷ2 − compression

1 −20 −20 −20 30 10 5.465 8.313

2 −20 −20 −20 30 15 5.271 8.289

....

....

....

243 20 20 20 50 20 5.039 8.771

ŷ1 = − 0.01049784x1 + −0.012858642x2

− 0.002599383x3 + 0.192685194

+ 0.174519113x5 + 0.000268939x2
2

− 0.002288908x2
4 − 0.006298995x2

5

+ 0.000170417x1x4 + 0.000253935x2x4 (19)

subject to:

−20 ≤ xi ≤ 20, i ∈= {1, 2, 3} . (20)

30 ≤ x4 ≤ 50 (21)

10 ≤ x5 ≤ 20 (22)

By applying the OLS algorithm, with the data from
Table 3, the empirical quadratic function (23)–(24) and the
constraints (25)–(27), for y2 (compression) were obtained:

ŷ2 = β1x2 + β2x2 + β3x3 + β4x4 + β5x5 + β5x
2
3

+β6x
2
4 + β7x

2
5 + β8x3x4 +

+β9x3x5 + β10x2x2 + β11x4x5 (23)

ŷ2 = − 0.00306419x2 − 0.00918935x3 + 0.28553739x4

+ 0.323947771x5 +
+ 0.174519113x5 + 0.00138346x2

3 − 0.0029276x2
4 − 0.0065740x2

5

+ 0.00092564x3x4 − 0.00086694x3x5 + 0.00019976x2x3

− 0.0032292x4x5 (24)

subject to:

−20 ≤ xi ≤ 20, i ∈= {1, 2, 3} . (25)

30 ≤ x4 ≤ 50 (26)

10 ≤ x5 ≤ 20 (27)

Step 3 - Optimizing the empirical functions without
uncertainty

In this step, without considering the occurrence of
uncertainty in the coefficients of the empirical functions,
three agglutination methods were tested for both response
variables: compromise programming (CP), desirability
function (DF) and modified desirability function (MDF).
The generalized reduced gradient (GRG) method was
applied to optimize (19)–(22) and (24)–(27).

Tables 4, 5 and 6 present the results obtained by the GRG
algorithm for each agglutination method, highlighting the
best-fit values. Appendix B presents the FE simulations for
these best fits.

The weight values for each optimization scenario were
calculated using a mixture design [4]. Additionally, for the
application of the Desirability function, with the support of
the company engineers, the values of the parameters U and
L, were established, respectively, for ŷ1 and ŷ2: U= 6.8
and L= 4.857, L= 6.8 and U= 9.193. Finally, to apply the
modified desirability function, also with the support of the
company’s engineers, the values of the parameters U and L,
were established, respectively, for ŷ1 and ŷ2: U= 6.8 and L=
4.857, L= 6.8 and U= 9.193. In addition, as a suggestion of
the consulted engineers, it was adopted T = (L+U)/2 and
by using Eq. (14) resulted in ds(Ts) = 1.

Table 4 Optimization by GRG, without occurrence of uncertainty, using compromise programming—CP

Weights Factors Response variables Agglutination method

w1 w2 x1 x2 x3 x4 x5 ŷ1 ŷ2 CP
0.500 0.500 −20. −20 −10.008 50 17.561 5.515 7.805 1.153
0.010 0.990 −20 20 −4.998 30 10 4.782 7.448 0.676
0.990 0.010 −20 −20 −20 41.427 13.815 5.850 8.528 0.961
0.250 0.750 −20 −20 −3.822 30 10 5.338 7.603 1.009
0.750 0.250 −20 −20 −11.798 43.724 13.093 5.770 8.219 1.140

Note: the row with numbers in bold represents the best-fit values
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Table 5 Optimization by GRG, without occurrence of uncertainty, using desirability function—DF

Weights Factors Response variables Agglutination method

w1 w2 x1 x2 x3 x4 x5 ŷ1 ŷ2 DF
0.5 0.5 −20 −20 −11.9096 50 15.0219 5.6079 7.9334 0.45101
0.01 0.99 −20 2.44 −7.56 50.00 20.00 4.91 7.51 0.68
0.99 0.01 −20 −20 −20 41.41 13.82 5.85 8.53 0.51
0.25 0.75 −20 −20 −8.65 50.00 20.00 5.35 7.61 0.52
0.75 0.25 −20 −20 −13.60 42.91 13.22 5.79 8.28 0.45

Note: the row with numbers in bold represents the best-fit values

Step 4 - Insert the occurrence of uncertainty in the
coefficients of empirical functions

Equation (28) presents the new coefficients of the
empirical function ŷ1 (associated to response variable
Traction), with the insertion of uncertainty, as is in Table 7,
for CI - 95% and CI - 99%:

ŷ1 = β̃1x1 + β̃2x2 + β̃3x3 + β̃4x4 + β̃5x5

+β̃6x
2
2 + β̃7x

2
4 + β̃8x

2
5 + β̃9x1x4 + β̃10x2x4 (28)

Table 7 shows for ŷ1 the CI - 95% and the CI - 99%, as
is in [2].

Equation (29) presents the new coefficients of the
empirical function ŷ2 (associated to response variable
Compression), with the insertion of uncertainty, as is in
Table 8, for CI - 95% and CI - 99%:
ŷ2 = β̃1x2 + β̃2x3 + β̃3x4 + β̃4x5 + β̃5x

2
3 + β̃6x

2
4

+β̃7x
2
5 + β̃8x3x4+β̃9x3x5+β̃10x2x3 + ˜β11x4x5 (29)

Step 5 - Optimize empirical functions with uncer-
tainty

For both studied response variables, Tables 9 and 10,
show, respectively, the results of OvMCS - CI - 95%
and OvMCS - CI - 99%, using Crystal BallTM software
with its OptQuestTM optimizer, with the compromise
programming—CP function.

For both studied response variables, Tables 11 and 12
show, respectively, the results of OvMCS - CI - 95% and
OvMCS - CI - 99%, using Crystal BallTM software with its
OptQuestTM optimizer, with the desirability function—DF
function.

For both studied response variables, Tables 13 and 14
show, respectively, the results of OvMCS - CI - 95% and
OvMCS - CI -99%, using Crystal BallTM software with
its OptQuestTM optimizer using the modified desirability
function—MDF.

Step 6 - Analyzing the results of traditional multiple-
response optimization with RSM (obtained in step 3),
and with RSM and FE and OvMCS (obtained in step 5)

The engineers of the studied company considered that
a 20% thickness increase or decrease is acceptable for the
studied stamping process, and the best fit should meet the
following criteria

- ŷ1min = 5.440 (mm).
- ŷ2max = 8,160 (mm).

- keeping the lowest value for the ratio:
ŷ2

ŷ1
.

From the 45 scenarios generated by optimization (See
Tables 4, 5, 6, 9, 10, 11, 12, 13 and 14), only 5 scenarios
met the established criteria:

– Solution by OvMCS - CI - 95%, with weights w1= 0.75
and w2 = 0.25, using CP - Found at the last line of
Table 9 .

– Solution by OvMCS - CI - 95%, with weights w1= 0.75
and w2 = 0.25, using DF - Found at the last line of
Table 11.

– Solution by OvMCS - CI - 99%, with weights w1= 0.75
and w2 = 0.25, using DF - Found at the last line of
Table 12 .

Table 6 Optimization by GRG, without occurrence of uncertainty, using modified desirability function—MDF

Weights Factors Response variables Agglutination method

w1 w2 x1 x2 x3 x4 x5 ŷ1 ŷ2 MDF
0.5 0.5 −20 −20 −11.17 49.09 14.70 5.65 8.00 0.0041765
0.01 0.99 −19.27 −20 −10.37 48.80 14.75 5.64 8.00 0.00095
0.99 0.01 −20 −20 −17.43 42.23 13.81 5.83 8.41 0.0017
0.25 0.75 −20 −20 −11.80 49.11 14.65 5.65 8.00 0.0235
0.75 0.25 −20 −20 −15.57 42.61 13.82 5.81 8.33 0.0422

Note: the row with numbers in bold represents the best-fit values
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Table 7 Coefficients in the empirical function ŷ1 with occurrence of uncertainty. Source: [2]

Coefficients Continuous uniform distribution (CI – 95%) Continuous uniform distribution (CI – 99%)

β1 = -0.01049784 β̃1 ∼ U[−0.01735401, −0.003641669] β̃1 ∼ U[ −0.019535573, −0.001460106]

β2 = -0.012858642 β̃2 ∼ U[−0.019714813, −0.006002471] β̃2 ∼ U[−0.021896375, −0.003820909]

β3 = -0.002599383 β̃3 ∼ U[−0.003970617, −0.001228149] β̃3 ∼ U[−0.004406929, −0.000791836]

β4 = 0.192685194 β̃4 ∼ U[0.174107666, 0.211262723] β̃4 ∼ U[0.168196489, 0.2171739]

β5 = 0.174519113 β̃5 ∼ U[0.124214602, 0.224823625] β̃5 ∼ U[0.108208227, 0.24083]

β6 = 0.000268939 β̃6 ∼ U[0.000150271, 0.000387608] β̃6 ∼ U[0.000112512, 0.000425367]

β7 = -0.002288908 β̃7 ∼ U[−0.002526497, −0.002051319] β̃7 ∼ U[−0.002602095, −0.001975721]

β8 = -0.006298995 β̃8 ∼ U[−0.007975476, −0.004622513] β̃8 ∼ U[−0.0085089155, −0.004089074]

β9 = 0.000170417 β̃9 ∼ U[2.47547E−06 , 0.000338358] β̃9 ∼ U[−5.09617E−055, 0.000391795]

β10 = 0.000253935 β̃10 ∼ U[8.5994E−05 , 0.000421876] β̃10 ∼ U[3.25568E−05, 0.000475314]

Table 8 Coefficients in the empirical function with occurrence of uncertainty

Coefficients Continuous uniform distribution (CI – 95%) Continuous uniform Ddstribution (CI – 99%)

β1 = -0.0030641 β̃1 ∼ U[−0.005137937, −0.000990458 ] β̃1 ∼ U[ −0.005797816, −0.000330579 ]

β2 = -0.0091893 β̃2 ∼ U[−0.022056569, 0.003677866 ] β̃2 ∼ U[−0.026151006, 0.007772303 ]

β3 = 0.285537398 β̃3 ∼ U[ 0.256326559, 0.314748238 ] β̃3 ∼ U[ 0.247031470, 0.324043328 ]

β4 = 0.323947778 β̃4 ∼ U[ 0.245591364, 0.402304193 ] β̃4 ∼ U[ 0.220657815, 0.427237741 ]

β5 = 0.00138346 β̃5 ∼ U[ 0.001203977 0.001562953 ] β̃5 ∼ U[ 0.001146863, 0.001620067 ]

β6 = -0.0029276 β̃6 ∼ U[−0.003376395, −0.002478926 ] β̃6 ∼ U[−0.003519186, −0.002336136 ]

β7 = -0.00657409 β̃7 ∼ U[−0.009175938, −0.003972249 ] β̃7 ∼ U[−0.010003862, −0.003144324 ]

β8 = 0.0009256 β̃8 ∼ U[ 0.000671668, 0.001179628 ] β̃8 ∼ U[ 0.000590850, 0.001260447 ]

β9 = -0.000866 β̃9 ∼ U[−0.001374905, −0.000358984 ] β̃9 ∼ U[−0.001536541, −0.000197347 ]

β10 = 0.0001997 β̃10 ∼ U[ 0.000072778, 0.000326759 ] β̃10 ∼ U[ 0.000032369, 0.000367168 ]

β11 = -0.0032292 β̃11 ∼ U[−0.004145453, −0.002313123 ] β̃11 ∼ U[−0.004436983, −0.002021593 ]

Table 9 Results with the occurrence of uncertainty using CP and OvMCS - CI- 95%

Weights Factors Response variables Agglutination method

w1 w2 x1 x2 x3 x4 x5 ŷ1 ŷ2 CP
0.5 0.5 −20 −20 −7.03 30 10 5.3700 7.6800 1.2900
0.01 0.99 -20 20 −4.8485 30 10 4.7819 7.4483 0.6759
0.99 0.01 −20 −20 −20 40.53 12.92 5.8200 8.4800 1.0400
0.25 0.75 −20 −20 −4.1524 30 10 5.3402 7.6051 1.0094
0.75 0.25 −20 −20 −11.1166 38.1096 10.4517 5.6850 8.0986 1.1636

Note: the row with numbers in bold represents the best-fit values

Table 10 Results with the occurrence of uncertainty using CP and OvMCS - CI - 99%

Weights Factors Response variables Agglutination method

w1 w2 x1 x2 x3 x4 x5 ŷ1 ŷ2 CP
0.5 0.5 −20 −20 −6.9874 30 10 5.3619 7.6320 1.1747
0.01 0.99 −20 20 −4.4421 30 10 4.7829 7.4487 0.6762
0.99 0.01 −20 −20 −20 39.4863 12.0321 5.8212 8.4778 0.9882
0.25 0.75 −20 −20 −4.2077 30 10 5.3405 7.6053 1.0094
0.75 0.25 −20 −20 −11.4053 36.2263 10 5.6305 8.0221 1.1828

Note: the row with numbers in bold represents the best-fit values
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Table 11 Results with the occurrence of uncertainty using DF and OvMCS - CI - 95%

Weights Factors Response variables Agglutination method

w1 w2 x1 x2 x3 x4 x5 ŷ1 ŷ2 DF

0.5 0.5 −20 −20 −9.1441 35.1232 10 5.5845 7.9446 0.4419

0.01 0.99 −20 −20 −2.7003 30 10 5.3290 7.5999 0.6590

0.99 0.01 −20 −20 −10.2049 39.5537 11.8232 5.7415 8.1855 0.4548

0.25 0.75 −20 −20 −6.7983 30.8747 10 5.4041 7.6896 0.5140

0.75 0.25 −20 −20 −10.9747 38.0779 10.7033 5.6938 8.1134 0.4357

Note: the row with numbers in bold represents the best-fit values

Table 12 Results with the occurrence of uncertainty using DF and OvMCS - CI - 99%

Weights Factors Response Variables Agglutination Method

w1 w2 x1 x2 x3 x4 x5 ŷ1 ŷ2 DF

0.5 0.5 −20 −20 −8.5632 34.4948 10 5.5612 7.9105 0.4407

0.01 0.99 −20 −20 −6.1420 30 10 5.3554 7.6216 0.6505

0.99 0.01 −19.6992 −19.9785 −18.5303 42.4873 14.8462 5.8279 8.4604 0.4972

0.25 0.75 −20 −20 −11.0131 31.0602 10 5.4453 7.7766 0.5005

0.75 0.25 −20 −20 −11.3629 41.3098 11.8732 5.7590 8.2072 0.4505

Note: the row with numbers in bold represents the best-fit values

Table 13 Results with the occurrence of uncertainty using MDF and OvMCS - CI - 95%

Weights Factors Response variables Agglutination method

w1 w2 x1 x2 x3 x4 x5 ŷ1 ŷ2 MDF

0.5 0.5 −20 −20 −20 31.78 10 5.5471 8.1367 0.04312

0.01 0.99 −20 −20 −20 30 10 5.4618 8.0409 0.0164706

0.99 0.01 −20 −20 −20 34.222 10 5.6403 8.2381 0.0948

0.25 0.75 −20 −20 −20 30 10 5.4618 8.0409 0.0332688

0.75 0.25 −18.08 −19.98 −19.58 32.491 10.806 5.5988 8.2304 0.0642167

Note: the row with numbers in bold represents the best-fit values

Table 14 Results of the uncertainty using MDF and OvMCS - CI - 99%

Weights Factors Response variables Agglutination method

w1 w2 x1 x2 x3 x4 x5 ŷ1 ŷ2 MDF

0.5 0.5 −20 −20 −20 30.5140 10 5.4879 8.0704 0.0721

0.01 0.99 −20 −20 −17.8965 30 10 5.4456 7.9430 0.0240

0.99 0.01 −20 −20 −20 33.8411 10 5.6275 8.2245 0.1014

0.25 0.75 −20 −20 −20 30 10 5.4618 8.0408 0.0332

0.75 0.25 −20 −20 −20 32.5859 10 5.5808 8.1740 0.0770

Note: the row with numbers in bold represents the best-fit values
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Fig. 12 FE simulation of best fit without uncertainty for Compromise Programming: weights w1 = 0.75 and w2 = 0.25

– Solution by GRG algorithm, with weights w1= 0.75
and w2 = 0.25, using CP - Found at the last line
of Table 4.

– Solution by GRG algorithm, with weights w1= 0.75 and
w2 = 0.25, using DF - Found at the last line of Table 5.

Using the information in Appendix B for illustration,
Figs. 12 and 13, show the EF simulation of the best
optimization settings for the CP function without the

uncertainties (Table 4 in step 3) with the uncertainties
(Table 9 in step 5), respectively.

With these results, the engineers of the company under
study were asked which solution (without uncertainty - step
3 or with uncertainty - step 5) would provide the best
practical effect on the studied stamping process. The answer
was that the best performance setting would be that obtained
for CP, with weights w1 = 0.75 and w2 = 0.25, using
OvMCS - CI - 95% (Fig. 13). This adjustment better met

Fig. 13 EF simulation of best fit without uncertainty for Compromise Programming with OvMCS - CI - 95%: w1 = 0.75 and w2 = 0.25
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Fig. 14 Frequency chart for ŷ1 for OvMCS - CI - 95% applied to compromise programming function, with w1 = 0.75 and w2 = 0.25. Source:
Crystal BallTM

all three criteria already discussed, and thus would provide
the best practical tool configuration, resulting in increased
quality and reliability of the stamping process.

Step 7 - Analyze the behavior of the response
variables from RSM and FE and OvMCS. Validate the
results

Fig. 15 Frequency chart for ŷ2 for OvMCS - CI - 95% applied to Compromise Programming function, with w1 = 0.75 and w2 = 0.25. Source:
Crystal BallTM
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Fig. 16 Performance chart for solutions obtained by OvMCS - CI - 95% applied to compromise programming function, with w1 = 0.75 and
w2 = 0.25. Source: Crystal BallTM

Model validation of uncertain structures is a challenging
research focus because of uncertainties involved in mod-
eling, manufacturing processes, and measurement systems
[56].

In order to validate the proposed procedure, graphical
analysis was used, as shown in Figs. 14 and 15, respectively,
to evaluate the behaviors of both response variables ŷ1 and
ŷ2, associated with the adjustment chosen as being the most
appropriate in step 6, which was the solution by OvMCS -
CI - 95%, with weights w1 = 0.75 and w2 = 0.25, using CP.

Considering this solution, Figs. 14 and 15 were obtained
by performing 106 simulation runs in Crystal-BallTM

Trial Version software, using the OptQuest optimizer,
according to the flowchart in Fig. 5, for the response
variables y1 and y2, respectively. In this simulation, random
values were generated for the coefficients of the empirical
functions (19) and (24), according to continuous uniform
distributions for the factor coefficients, which are shown in
the second column of Table 7, associated with the CI - 95%
interval.

Figure 16, also considering the CP agglutination method,
with w1 = 0.75 and w2 = 0.25 shows the behavior of the
solutions obtained by OvMCS - CI - 95% for each of the
106 simulation runs for the CP function. All the solutions
were viable, with the Best Solutions arranged parallel to the
abscissa axis (number of simulations), drawn at the bottom
of Fig. 16. There was only one last best solution, which is
highlighted with a green rhombus symbol.

As verified by the simulation with the finite ele-
ment method, the obtained solution presented good qual-
ity in the understanding of the company engineers.
Thus, the proposed procedure can be considered vali-
dated. Finally, it should be noted that the procedure was
very promising, presenting advantages when compared

with the traditional methods of optimization of exper-
imental multi-response problems, commonly adopted in
companies.

Step 8 - Recommendations
Therefore, at the end of the application of the proposed

procedure, it was recommended to the engineers of the
company the use the solution obtained for CP, with weights
w1 = 0.75 and w2 = 0.25, using OvMCS - CI - 95%
(Fig. 13) for the studied stamping process.

6 Conclusions and suggestions for future
research

Therefore, with the conduction of the present study, all
research questions were answered and the established
objectives were achieved. Based on the tests performed for
a stamping problem at a Brazilian multinational automotive
company, an innovative procedure that combines RSM and
FE with OvMCS was described. This procedure proved to
be adequate to introduce the occurrence of uncertainties
in the objective function coefficients of experimental
multi-response problems, adopting the continuous uniform
distribution. Furthermore, it was statistically validated by
the studied stamping problem.

For the studied real problem, regarding the tested
multiple response methods, it was possible to identify the
best choices for the weight values for the optimizations,
calculated by a mixture design methodology, which would
be w1 = 0.75 and w2 = 0.25, met the criteria set by the
company’s engineers. Finally, it was evidenced that the
best option would be to use OvMCS - CI - 95% with the
compromise programming function and the weight values
mentioned above.
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RSM and FE combined with OvMCS surpasses the use
of the procedures that are usually adopted in companies,
which is the (deterministic) optimization for experimental
problems with multiple responses, using the GRG algorithm
and the desirability function. The use of different agglutina-
tion methods with different weights was interesting because
it allowed the generation of 15 scenarios without consider-
ing uncertainties (see Tables 4, 5 and 6) and 30 scenarios for
optimization considering uncertainties (see Tables 9, 10, 11,
12, 13 and 14). Thus, it allowed the development of a sen-
sitivity analysis that generated more knowledge about the
studied stamping process.

This system provided engineers with useful information
that will facilitate their work when seeking improvements
to the process. In fact, the application of OvMCS - CI -
95%, with the continuous uniform distribution used to insert
the occurrence of uncertainties in the objective function
coefficients presented interesting options to the managers.
Moreover, it also proposed a higher quality solution than the
one generated by the GRG algorithm and the Desirability
function.

For future study, it is intended to test the new procedure
proposed here in other types of application, such as service
companies, inserting the occurrence of uncertainties, which
is an important research gap for both the academic as well
as the practical point of view.
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