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Abstract
Model predictive control (MPC) is an advanced control algorithm that has been successfully implemented in the on-line path
optimization of computer-numerical-control (CNC) machines for performing single-pass incremental sheet forming (ISF) pro-
cesses, aiming at precision enhancements of products. Multi-pass ISF technique is usually employed to manufacture parts with
extremely large wall angles which cannot be achieved without failure using the single-pass ISF. However, existing studies show
that the geometric precision of the products of multi-pass ISF is usually very poor, which has significantly hampered the
widespread application of this technique in industry. In the present study, two control algorithms based on the MPC framework
were proposed, targeting at achieving a more precise geometry of multi-pass ISF products. MPC-1 was an extension of the
control algorithm for the single-pass ISF process reported in our previous work, andMPC-2 was developed for the first time. The
developedMPCs were comparatively validated by a group of physical benchmark test. Compared toMPC-1,MPC-2 reduced the
maximum geometric error in the wall, conjunction, and base zones on the same part by 26%, 51%, and 73%, respectively. The
test results show that MPC-2 had a better performance in multi-pass ISF processes.

Keywords Model predictive control . Path optimization .Multi-pass incremental forming

1 Introduction

In recent years, market demands of small-batch customized
production have been raised [1]. In sheet manufacturing in-
dustries, these demandsweremainly reflected in forming parts
with customized geometries. Conventional sheet manufactur-
ing approaches, such as stamping and deep-drawing, are per-
formed with geometry-specific dies. Customized production
with conventional approaches is not practicable, since making
the dies for each specific part requires high time and economic
cost. However, in single-point incremental sheet forming
(ISF) process, an infinite variety of parts can be manufactured
from flat sheets without using part-specific dies by a mobile
tool controlled by a robot [2–4] or a computer-numerical-

control (CNC) machine [5–7]. This great flexibility makes
single-point ISF a potential rapid and low-cost solution to
customized sheet forming [8, 9].

In the process of manufacturing a flat sheet to a part with a
specific geometry by ISF, the surface area of the sheet in-
creases, which leads to the thinning of thickness of the sheet,
according to the volume conservation theory [5]. The thick-
ness of the part decreases as the wall angle increases, which is
usually approximated by the sine law [10]. Therefore, when
manufacturing parts with large wall angles by single-point
ISF, cracks are likely to occur due to excessive thinning [6,
11]. This significantly limits the variety of the parts that can be
successfully formed by ISF. To breakthrough this formability
limitation, researchers have proposed various multi-pass ISF
approaches. Unlike a typical ISF process in which a part was
formed in one pass, in the multi-pass ISF process, several
intermediate shapes were pre-formed in the intermediate
passes before the final shape was formed. With the multi-
pass approaches, a variety of parts which were unable to be
formed by the typical one-pass ISF processes were achieved
without failure, including an “ellipsoidal cup”–shaped part
and a “clover cup”–shaped part by Kim and Young [12]; parts
with vertical walls by Duflou et al. [10], Skjoedt et al. [13],
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and Liu et al. [14]; and a car taillight bracket by Junchao et al.
[15].

Besides the formability limitation, poor geometric accuracy
of the product, i.e., large dimensional deviation between the
formed and the target parts, is another factor that has been
hampering the widespread use of ISF in manufacturing indus-
tries [1, 7, 16]. Using the parts formed by ISF that cannot meet
the geometric requirements may significantly lower the per-
formance and the service life of machines. In ISF processes,
parts are formed through accumulations of localized deforma-
tions around the end of the tool [11, 16]. Therefore, the tool
path is a key factor that determines the geometries of formed
parts and may be optimized to achieve higher geometric ac-
curacies. To this end, researchers have proposed various off-
line or on-line tool path optimization approaches. Off-line
optimization means the tool path was updated after forming
a part completely based on the measurement of geometric
error, including a proportional tool path adjustment method
proposed by Hirt et al. [17], a Fourier and wavelet transforms-
based tool path corrections method proposed by Fu et al. [18],
and artificial cognitive systems developed by Fiorentino et al.
[19, 20]. By the reported off-line optimization approaches,
tool paths were adjusted iteratively until the desired geometric
accuracies were reached, which meant forming the whole
parts physically or numerically for multiple times was
required.

To avoid the high time and economic costs of the iterative
forming processes, other researchers proposed on-line auton-
omous tool path optimization approaches, including model
predictive control (MPC). The MPC approach uses an opti-
mizer to solve the desired control decision, based on a predic-
tion model that characterizes the input and output of the sys-
tem under control [21]. In the ISF process, the MPC approach
was applied at each sampling instant to autonomously opti-
mize the subsequent tool path, using the measurement of the
geometry of the partially formed part. Hao and Duncan [22]
reported a linear MPC algorithm for single-point ISF for the
first time and significantly enhanced the geometric accuracies
of a cone-shaped part and a pyramid-shaped part. In their work
[22], the geometry responses were measured in open-loop
tests prior to the closed-loop processes. The measurement of
geometry responses had to be re-conducted if the target part
changed, which made the generalization of this control algo-
rithm difficult. To develop a more generalized MPC approach
for ISF, Lu et al. [7, 23, 24] proposed an analytical geometry
prediction model based on the geometric abstraction of the
target parts. This prediction model was firstly applied in an
MPC algorithm for optimizing the vertical increments of the
tool paths of single-point ISF processes and greatly reduced
the geometric errors on the bases of a cone-shaped part and a
pyramid-shaped part [7]. However, on the side walls,
the geometric errors remained relatively higher [7]. To
improve the geometric accuracies on the side walls, this

method was adapted to an MPC algorithm that separate-
ly optimized the vertical and radial tool path increments
of single-point and multi-point ISF processes [23, 24].
The algorithm developed by Lu et al. [23, 24] was
developed using a polar-based frame of reference, and
thus the horizontal movement of the tool was fixed in
the radial direction. This made the algorithm dysfunc-
tional when forming parts with horizontal contours far
away from circular, since the geometric errors were no
longer in the radial directions. To solve this problem,
He et al. [16] proposed an MPC algorithm with a contour-
based frame of reference, which was applicable in forming
parts with general horizontal contours. In their work [16], a
dog bone-shaped part with a non-convex horizontal contour
that was far from circular was successfully formed with
a desired geometric accuracy. Later, He et al. [25] fur-
ther generalized the MPC-based online tool path control
approach by developing a switched MPC algorithm
which was able to handle parts with varying wall
angles.

The multi-pass approach was proved effective in avoiding
sheet failure by improving strain distribution, and thus parts
with large wall angles could be formed [6, 14]. However, the
achieved geometric precisions of the products were usually
very poor or unreliable, the improvement of which was of
great necessity. To this end, an autonomous on-line tool path
optimization approach for multi-pass ISF processes was pro-
posed in this study for the first time. More specifically, two
MPC algorithms were formulated. MPC-1 was extended from
the MPC algorithm for single-pass ISF processes reported in
our previous work [25], which targeted at compensating the
geometric errors during all the passes of the multi-pass process
and treated each pass independently. MPC-1 was composed
of a horizontal control module and a vertical control module.
MPC-2 was newly proposed, targeting at compensating the
geometric errors raised in the entire process in the final pass,
based on the geometries formed in the intermediate passes.
MPC-2 consisted of a horizontal control module and a fine
control module. A benchmark test was conducted to compare
the applicability and the performances of the two MPCs. The
generality of the controller was further validated in two addi-
tional tests.

2 Methodology

In this section, the methodology of this study will be present-
ed. Parameterizations of the tool path and the geometry will be
discussed in sections 2.1 and 2.2. Two model predictive path
control algorithms will be presented in sections 2.3 and 2.4,
respectively. Experimental methodology will be explained in
section 2.5.
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2.1 Control variables

As in most cases, z-level tool path was used in this study.
Following our previous study [16, 25], the multi-pass ISF
was regarded as a discrete-time system, with the tool moving
along a closed path at a fixed depth as a sampling instance.
The multi-pass ISF process was then split into successive
forming steps. The tool path of step k in pass i was parame-

terized as a periodic spline c ið Þ
k in the horizontal plane and a

depth z ið Þ
k in the vertical direction. A set of (c ið Þ

k , z ið Þ
k ) repre-

sented a series of ordered points in the three-dimensional
space which formed the tool path, as shown in Fig. 1. To
determine the tool path of a step, since the previous step was
completed with the tool path known, the horizontal increment
Δc and the vertical increment Δz of the tool path were chosen
as the control variables. For the step k, the horizontal and the
vertical tool path increments corresponding to the previous
step k-1 were denoted as the step-over uh, k and the step-
down uv, k respectively. The geometric error of the part could
be decomposed into the horizontal error and the vertical error,
as shown in Fig. 1. The horizontal error and the vertical error
were determined by the step-over uh and step-down uv respec-
tively, and optimizing the step-over uh and step-down uv was
able to reduce the geometric error globally [16, 25].

2.2 Geometry representative points

The measurement of the geometry of the (partially) formed
part was a cloud of points. To reduce the computational cost,
vertical and horizontal geometry representative points on the
formed part were selected to represent the entire part, and their
positions in the three-dimensional space quantified the status
of the formed geometry. In this study, the method of choosing
vertical geometry representative points was the same as re-
ported in our previous study [25]; however, the method for
the horizontal geometry representative points was different.
Hence, in this section, the method of choosing horizontal ge-
ometry representative points was discussed, and the method
for the vertical geometry representative points can be referred
to [25].

Critical points were selected on the horizontal contour of
the edge of the target part, based on the geometric feature.
Accordingly, critical sections were made along the normal
of the critical points. The target parts in the validation tests
of this study had a circular and an elliptical contour, and the
critical sections of the parts are shown in Fig. 2. Following our
previous study [16, 25], the contour-based local reference
frame was used. Detailed explanations of the critical section
and the contour-based local reference frame can be found in
[16, 25]. In each critical section, as the deformation localized
to the area around the end of the tool, the global deformation
in the other area was ignored. Besides, since the tool with a
round end was used in this study, the formed geometry in the
critical section around the end of the tool was an arc.
However, this arc geometrically differed with the straight wall
of the target part in each intermediate step. Therefore, in order
to feed the appropriate geometric information in the horizontal
direction back to the controller, only the area where the defor-
mation localized was chosen as the measurement window, as
shown in Fig. 2. Horizontal geometry representative points of
each step were located in the measurement window of the
critical sections in the formed geometry. Tuning variables
ΛA andΛB were introduced to represent the ratio of the depths
of the upper and lower boundaries of the measurement win-
dow to the target depth. ΛA and ΛB determine the measure-
ment window. For the part with the straight wall, the tuning
variables ΛA and ΛB were set as

ΛA ¼ dNj j−r 1−cosαð Þ
dNj j ð1Þ

ΛB ¼
ea−ebtanα� �

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ebtanα−ea� �2

− 1þ tanαð Þ2
h i ea2 þ eb2−r2

� �s

1þ tanαð Þ2
h i

dNj j
ð2Þ

where

ea ¼ dNj j−r 1−cosαð Þ
tanα

þ rsinα− Δuh;max

�� �� ð3Þ

eb ¼ dN þ r ð4Þ

Fig. 1 Illustration of the tool path
and the decomposition of the
geometric error (representative
figure, not to scale).
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In the above equations, dN is the target depth of the part, α
is the target wall angle of the part, r is the radius of the end of
the tool, and Δuh, max is the upper boundary of the optimiza-
tion of step-overs. The current states of the geometry repre-
sentative points were the horizontal distances of each point to
the edge, while the reference states were the horizontal dis-
tances of the horizontal projection points on the target part to
the edge. Similarly, the deviation between the current and the
reference states was the horizontal error.

It should be noticed that the total number of the horizontal
geometry representative points are fixed for all the steps, while
that of the vertical geometry representative points varies for
different steps. In one step, the vertical geometry representa-
tive points are distributed on the entire area surrounded by a
closed path c, and the locations of the points are determined
based on the coordinates in the Cartesian coordinate system.
This area changes during the ISF process, and thus the number
of the vertical geometry representative points varies for each
step. However, the locations of the horizontal geometry rep-
resentative points are determined based on the ratios of the
depths of the points to the target depth, which means the
number of the points is independent on the target geometries
of each step.

2.3 Model predictive control algorithm 1

In our previous study [25], a MPC algorithm for single-pass
ISF processes was developed. In this work, algorithm 1 was
developed as an extension of the MPC for the single-pass ISF
processes, which was designed to be activated in all the passes
of the multi-pass ISF process and treated each pass indepen-
dently. This algorithm contained a horizontal control module
and a vertical control module, which made control decisions
of the step-over and the step-down, respectively, aiming at

reducing the horizontal and the vertical geometric error when
necessary.

For each forming step in each intermediate pass or the final
pass, the system can be linearized in both horizontal and the
vertical directions and can be expressed with the following
state-space model [25]:

x ið Þ
Ω;kþ1 ¼ A ið Þ

Ω;kþ1x
ið Þ
Ω;k þ B ið Þ

Ω;kþ1u
ið Þ
Ω;kþ1 ð5Þ

y ið Þ
Ω;k ¼ C ið Þ

Ω;kx
ið Þ
Ω;k ∀k ¼ 1; 2; 3⋯Ni;∀i ¼ 1; 2; 3⋯Υ ð6Þ

where x, y, and u are the vectors of the state, the system
output, and the system input. The superscript i in the bracket
represents that the variable is related to the ith pass of the
multi-pass ISF process. The subscript k represents that the
variable is related to the kth step in the ith pass. The subscript
Ω indicates which of the modules the model belongs to and
can beH or V in this algorithm which represents the horizon-
tal and the vertical modules, respectively. Υ represents the
total number of the passes, and Ni represents the total number
of steps in the ith pass. In both horizontal and vertical direc-
tions, the forming process is assumed to be additive, and thus
the coefficient vectorA is an identity matrix in both of the two
modules. In addition, in all the steps, the states of all the
geometry representation points can be directly measured,
and thus the coefficient vector C is also an identity matrix in
both of the two modules.

In Eqs. (5) and (6), the vectorB represents the linear system
response, i.e., the geometric change of the part relative to tool
perturbations. As the vectors A and C are determined and
fixed, the response vector B is the only variable that needs
to be solved for the system models. Before determining the
response vector B, it is presupposed that all types of the geo-
metric errors, including springback and pillow effect, were

Fig. 2 Vertical section showing
of the target geometry and
illustration of the measurement
window of the horizontal
geometric error (representative
figure, not to scale).
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handled through the feedback, following our previous study
[25]. The geometric response B can be approximated by the

nominal geometric response B which is the geometric re-
sponse of the target geometry relative to the nominal tool path.

The vertical module is the same as the vertical modules of
the algorithm presented in our previous study [25] and is in-
tegrated in thisMPC algorithm for multi-pass ISF. The system
input uV is the step-down of the tool path of each step in all the
passes. Since the bottom of the target geometry for each step is
always a horizontal flat surface, the movements of all the
vertical geometry representation points follow the tool path.
Therefore, the vertical geometric response B can be obtained:

B ið Þ
V;k ¼ B

ið Þ
V;k ¼ 1 1 1 ⋯ 1½ �T

1�ψ ið Þ
k

∀k ¼ 1; 2; 3⋯Ni;∀i ¼ 1; 2; 3⋯Υ

ð7Þ

where ψ ið Þ
k is the total number of the vertical geometry repre-

sentation point in step k of pass i. The detailed discussion
about the vertical module can be referred to [25].

To simplify the development of the state-space model for
the horizontal module, in each critical section, the contact area
between the target geometry and the end of the tool which is
an arc shown in Fig. 2 is approximated by line segments, as
shown in Fig. 3. The horizontal geometry representative
points are evenly distributed within the measurement window
determined by the parameters ΛA and ΛB. The τth point is
taken as an example in the following calculation. A pair of
the τth geometry representative points for two neighboring
steps k-1 and k is located at the depths of ϕτdk − 1 and
ϕτdk, respectively. ϕτ represents the ratio of the depth of the
point to the target depth of the corresponding step and ranges
from ΛA to ΛB. dk − 1, and dk represents the target depth of
steps k-1 and k, respectively. It can be seen from Fig. 3 that the

lengths of the line segmentsCB and BA are the absolute values

of the nominal step-over and the nominal step-down, and the

length of ED is ϕτ|uv, k|. Triangles FED and CBA are similar,
and thus

FE

CB
¼ ED

BA
ð8Þ

It can be derived that the length of the line segment FE is
ϕτuh, k. Therefore, the geometric response of the τth geometry
representative point in step k can be calculated by

b ið Þ
H;k;τ ¼ b

ið Þ
H;k;τ ¼

FE

uh;k
¼ ϕτ ∀τ ¼ 1; 2; 3⋯χ;∀k ¼ 1; 2; 3⋯Ni;∀i ¼ 1; 2; 3⋯Υ

ð9Þ
where χ denotes the total number of the points in one critical
section. The geometric responses of this point in different
steps are fixed. However, for different geometry representa-
tive points, the geometric responses are different. Eq. (9) can
be used to calculate the geometric responses of all the hori-
zontal geometry representative points within the measurement

window, and then the horizontal response vector B ið Þ
H;k can be

formulated.
The MPC controller optimizes the trajectories of the step-

over and the step-down in a finite prediction horizon. The
state-space models, as expressed by Eqs. (5) and (6) for each
step in the prediction horizon, are packed into a matrix func-
tion. The detailed matrix packing process can be referred to
[7]. Therefore, the formed geometries in the prediction hori-
zon can be predicted by

bY ið Þ
Ω;kþPjk ¼ Y ið Þ

Ω;k þ B ið Þ
Ω;kþPjk� bU ið Þ

Ω;kþPjk

∀k ¼ 1; 2; 3⋯Ni;∀i ¼ 1; 2; 3⋯Υ

ð10Þ

Fig. 3 Simplification of the target
geometry in a critical section.
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where bY and Y are matrices of the predicted and the currently
measured status of the geometry representative points, respec-

tively, and bU is the matrix of the predicted step-over or step-
down in the prediction horizon. Accordingly, the geometric

response matrix B ið Þ
Ω;kþPjk in the prediction horizon can be

formulated as

B ið Þ
Ω;kþPjk¼

B ið Þ
Ω;kþ1 0 0 0 ⋯ 0

B ið Þ
Ω;kþ1 B ið Þ

Ω;kþ2 0 0 ⋯ 0

B ið Þ
Ω;kþ1 B ið Þ

Ω;kþ2 B ið Þ
Ω;kþ3 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
B ið Þ
Ω;kþ1 B ið Þ

Ω;kþ2 B ið Þ
Ω;kþ3 B ið Þ

Ω;kþ4 ⋯ B ið Þ
Ω;kþP

2
6666664

3
7777775

∀k ¼ 1; 2; 3⋯Ni;∀i ¼ 1; 2; 3⋯Υ

ð11Þ

Since the controller aims at finding the optimum solutions
of the step-over and the step-down within a reasonable range
to reduce the geometric error, the cost function for both mod-
ules can be expressed as

J ið Þ
Ω;kþPjk ¼ bY ið Þ

Ω;kþPjk−W
ið Þ
Ω;kþPjk

����
����
2

2

þ λΩ U ið Þ
Ω;kþPjk−U

ið Þ
Ω;kþPjk

����
����
2

2

∀k ¼ 1; 2; 3⋯Ni;∀i ¼ 1; 2; 3⋯Υ

ð12Þ

whereW andU are the matrices of the reference states and the
nominal step-overs or step-downs in the prediction horizon.
λΩ is a weighting factor, and the values for the horizontal and
the vertical modules are set as 0.7 and 0.2, respectively, fol-
lowing our previous work [25]. The control decision, i.e., the
optimized trajectory of step-over or step-down, can be deter-
mined through minimizing the cost function. For the horizon-
tal module, the upper and the lower boundaries of the optimi-
zation are set as 0.3 and 0.0, respectively; for the vertical
module, the boundaries are set as −1.0 and +1.0, respectively.
The settings of the optimization boundaries were used in pre-
vious experiments with the same equipment and received sat-
isfactory results [25].

In the ISF process, the two modules can be enabled or
disabled at any time depending on the design of intermediate
shapes. A target part may be successfully formed with various
designs of intermediate shapes, and for different de-
signs, the scheduling of the two modules may be differ-
ent. The detailed implementation of the MPC-1 will be
presented in section 2.5.1.

2.4 Model predictive control algorithm 2

The algorithm 2 tries to compensate all the geometric errors
raised in the entire multi-pass process in the final pass, based
on the geometries formed in the intermediate passes. For the
intermediate passes, the nominal tool paths are used. This

algorithm is composed of two modules, i.e., a horizontal con-
trol module and a fine control module. The horizontal control
module is enabled in the nominal forming steps to optimize
the trajectory of step-over, so as to reduce the horizontal geo-
metric error. However, as there is no vertical control module
in algorithm 2, the nominal trajectory of step-down is used in
all the forming steps. Therefore, vertical geometric errors may
remain in the bottom of the formed part, which will be com-
pensated by the fine control module. As the horizontal control
module integrated in algorithm 2 is the same as that in algo-
rithm 1, in this section, only the fine control module will be
discussed.

The nominal tool path of the last step in the first pass can be

parameterized as a set of (c 1ð Þ
N 1ð Þ , z

1ð Þ
N 1ð Þ ). The horizontal element

c 1ð Þ
N 1ð Þ is a closed path, inside which is the bottom of the target

geometry. According to section 2.2, several vertical geometry
representative points are distributed in this area, and the ver-
tical geometric errors for all the points can be measured. If the
average of the measured geometric errors is larger than a pre-
set threshold, the fine control module will be enabled. In the
final pass, a new forming step will be created to compensate
the remaining vertical geometric error. The fine control mod-
ule works iteratively until the error is small than the threshold.
Considering the dimensions of the target parts, which will be
presented in section 2.5.1, in this study, the threshold was set
as 0.1mm to avoid over-forming.

Since the creation of the new forming step is to compensate
the vertical error in the bottom of the formed part, the vertical
element z needs to be optimized by the fine control module,

while the horizontal element is fixed as c 1ð Þ
N 1ð Þ . Step k+1 (k >

N(Υ)) is taken as an example in the following calculation of the
vertical element of the tool path. Suppose the previous step k
was formed and the states of the geometry representative
points were measured. Based on the linear state-space model
expressed by Eqs. (5) and (6), the status of step k+1 can be
predicted

bY Υð Þ
F ;kþ1jk ¼ Y Υð Þ

F ;k þ B Υð Þ
F ;kþ1 z Υð Þ

kþ1−z
Υð Þ
k

� �
∀k ¼ NΥ ;NΥ þ 1;NΥ þ 2⋯

ð13Þ
where the symbol F in the subscript represents that the vari-
able belongs to the fine control module. As the module works
iteratively, the prediction horizon is 1 step. Similar to the
vertical control module of the algorithm 1, for each of the
geometric representative point in the fine control module,

the geometric response b Υð Þ
F ¼ 1. The cost function is

expressed as

J Υð Þ
F ;kþ1jk ¼ bY Υð Þ

F ;kþ1jk−W
Υð Þ
F ;NΥ

����
����
2

2

∀k ¼ NΥ ;NΥ þ 1;NΥ þ 2⋯ ð14Þ

Therefore, the vertical element in the tool path of step k+1
can be optimized as
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z*kþ1
Υð Þ ¼ argmin J Υð Þ

F ;kþ1jk ∀k ¼ NΥ ;NΥ þ 1;NΥ þ 2⋯

ð15Þ

To avoid over-forming, the upper and the lower boundaries
for the fine control module are set as 0.0 and −1.0mm respec-
tively. Similar to the algorithm 1, the detailed implementation
of the algorithm 2 will be discussed in section 2.5.1.

2.5 Experimental methodology

To test the performances of the developed control algorithms,
single-point multi-pass ISF experiments were conducted.
Firstly, target geometries are introduced, and the intermediate
shapes are determined in section 2.5.1. Then, the detailed
implementation of the two algorithms and the experimental
apparatus are presented in section 2.5.2.

2.5.1 Target geometries and intermediate shapes

In this study, a circular cone-shaped part and an elliptical
cone-shaped part were formed for the validation of the con-
trollers. The horizontal contours of the parts were a circle and
an ellipse, respectively. Fig. 4 shows the top views of the two
parts along with the dimensions. The wall angles of the two
parts were 65°.

The target shape of an intermediate pass is referred to as an
intermediate shape. For a multi-pass ISF process, designing of
the intermediate shapes is of great importance, which deter-
mines whether or not the target part can be formed without
failure and the achieved geometric accuracy. Theoretically,
for a part that requires forming with a multi-pass ISF process,
there are infinite varieties of the designing of intermediate
shapes. Liu et al. [14] proposed a systematic method of de-
signing intermediate shapes. According to their research, the
intermediate shapes can be parametrized by three basic geo-
metric features, i.e., radius (applies to circular shapes only),

wall angle, and depth, which are denoted as strategy A, B, and
C, respectively, in the following context. More complex de-
signs can be achieved by combining the three basic features.
In this study, both of the two target parts were formed in three
passes. And, based on the method proposed by Liu et al. [14],
intermediate shapes were designed using the strategy B, B+C,
and A+B+C, respectively. The strategies B and B+C can be
applied to both parts, while the strategy A+B+C can be ap-
plied to the circular cone-shaped part only. Fig. 5 is the verti-
cal view showing of the designed intermediate shapes, and the
detailed geometric parameters can be found in Table 1.

2.5.2 Controller implementations and experimental
apparatus

To assess the applicability and performances of the two de-
veloped MPC algorithms, a group of benchmark tests were
conducted. Then, two additional groups of tests were carried
out to further assess the generality of the algorithm with a
better performance in the benchmark test.

In the benchmark tests, MPC-1 and MPC-2 were respec-
tively used in forming the circular cone-shaped part using the
intermediate shape design B. MPC-1 was activated in all the
passes. The control problem for MPC-1 in the first pass was
the same as that in the closed-loop single-pass ISF processes
in our previous studies [16, 25]. In this situation, the depth of
the bottom of the formed part was the dominant factor for the
global geometric accuracy. More specifically, when the verti-
cal error on the base was significantly compensated by opti-
mizing the step-down trajectory, the horizontal error was
largely reduced as well. As the target depths for all the inter-
mediate shapes in design B were the same, in the benchmark
test with MPC-1, the vertical module was enabled in the first
pass to eliminate the majority of the global error caused by the
springback on the bottom, while the remaining horizontal er-
ror was compensated in the following passes by the horizontal
module. As MPC-2 was designed for compensating the

Fig. 4 Top view showings and
dimensions of a a circular cone-
shaped part and b an elliptical
cone-shaped part.
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geometric error in the final pass, it was activated in the final
pass only, and nominal tool paths were used in previous
passes. According to section 2.4, in the nominal steps of the
final pass, the horizontal module was enabled to eliminate the
horizontal error. Then, the fine control module was enabled to
compensate the remaining vertical error iteratively. In the ini-
tial period of the single-point ISF process, the sloping wall
cannot be formed to the full extent, and there is a transient
area between the undeformed area and the wall [16, 26, 27].
Therefore, the scheduled control module was activated after
the completion of first few steps. The scheme of the imple-
mentation of the controller is shown in Fig. 6.

In the second group of tests, the circular cone-shaped part
in the benchmark test was used again, but with a different
design of the intermediate shapes, i.e., design A+B+C. In
the third group of tests, an elliptical cone-shaped part with
the intermediate shape design B+C was formed. The control-
ler implementation of the second and third groups of tests was
the same as that in the benchmark test.

The multi-pass single-point ISF tests in this study were
performed on a multi-axes computer-numerical-control

(CNC) machine in the University of Queensland. Each test
was performed once, and all the samples used in the tests were
aluminum 7075 bare, with a size of 290*290mm and a thick-
ness of 1.6mm. A tool with a round end was used in the tests
and the diameter is 30mm. The nominal tool paths with 12
steps in each pass were planned by Siemens NX software. The
controller was developed with Python 3.6 and was deployed
on a Windows workstation. Detailed information about the
apparatus can be found in [25]. The geometry of the partially
or fully formed part was measured by a 3D scanner without
unclamping, and the data format was cloud of points. The
geometric error was obtained by comparing the clouds of
points of the formed and the targeted geometry.

3 Results and discussion

In this section, the results of the three groups of tests will be
presented, and the applicability, performance, and generality
of the two developed control algorithms will be analyzed and
compared.

3.1 Test group 1—benchmark test

In the benchmark test, a circular cone-shaped part was formed
in three passes, and the intermediate shapes were designed
with the strategy B as explained in section 2.5.1. To assess
the applicability and performances of the control algorithms,
the benchmark part was formed with closed-loop multi-pass
ISF processes that were controlled by MPC-1 and MPC-2,
respectively. In addition, the part was formed with open-
loop multi-pass and single-pass ISF, respectively, for
comparison.

In the open-loop single-pass test, the forming process failed
due to the occurrence of the crack, as shown in Fig. 7. This
proved that for the target part, a multi-pass process is
necessary.

Table 1 Geometric parameters of the intermediate shape

Design Pass Geometric feature

Depth (mm) Wall angle (deg) Radius (mm)

B 1 30 47 N/A
2 30 56

3 30 65

B+C 1 29 47 N/A
2 29 56

3 30 65

A+B+
C

1 28.5 49 69.5

2 28.5 57 69.75

3 30 65 70

Fig. 5 Vertical view showing of the intermediate shapes of a design B, b design B+C, and c design A+B+C
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In the following multi-pass tests, the parts were formed
successfully without cracks. In the open-loop test, the part
was formed with the nominal tool paths for all the three
passes. In the closed-loop tests, the parts were formed with
the tool paths that were optimized by the MPCs. The trajecto-
ries of the control variables determined byMPC-1 andMPC-2
in the three passes are shown in Figs. 8, 9, and 10, respective-
ly. Fig. 11 is the vertical view showing the formed part in the
three passes. Fig. 12 shows the error distribution on the
formed part. To further quantify the performances of the
controller, the statistical analysis of the geometric error
was carried out for different zones on the target part, as
shown in Fig. 13. The detailed results of the statistical
analysis are provided in Table 2.

It can be seen from Figs. 8, 9, and 10 that in pass 1 of the
closed-loop process using MPC-1, the step-down trajectory
was optimized by the vertical module after step 3, while the
step-over kept unchanged. Fig. 11 a is the vertical view

Fig. 6 Scheme of the implementation of the controller.

Fig. 7. Crack that occurred in the single-pass test of the circular cone-
shaped part.

Fig. 8 Optimized trajectories of a step-down and b step-over of pass 1.
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Fig. 9 Optimized trajectories of a step-down and b step-over of pass 2.

Fig. 10 Optimized trajectories of a step-down and b step-over of pass 3.

Fig. 11 Vertical view showings of the formed part in a pass 1, b pass 2, and c pass 3.
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showing of the formed part in pass 1, from which it can be
seen that compared to the formed geometry in the open-loop
process, both the vertical and the horizontal errors were re-
duced significantly by the vertical module. In passes 2 and 3,
the step-down trajectories were kept unchanged, while the
step-over trajectories after step 7 were optimized by the hori-
zontal module. It should be noticed from Fig. 11 that, in pass
2, the base of the part was overly formed from the position
where it was in pass 1. In pass 3, this occurred as well. The
reason is that when forming passes 2 and 3, the tool contacted
with a sloping wall, which made the existence of a vertical
component of the forming force possible. It was the vertical
component of the force that pushed down the entire part. This
downward over-forming phenomenon can also be observed in
the work of Liu et al. [14] in which the multi-pass ISF process
was also employed; however, it does not exist in the authors’

previous work [25] in which the single-pass ISF process was
implemented. Due to the phenomenon described above, in the
multi-pass ISF process, the individual passes were not inde-
pendent. However, in MPC-1, the controller treated each pass
as if they were independent single-passes, which made the
MPC-1 unable to perform properly in the multi-pass ISF pro-
cess. This phenomenon also happened in the closed-loop pro-
cess with MPC-1, as shown in Fig.11, which deteriorated the
achieved geometric accuracy in the base of the part. The max-
imum geometric error of the base achieved in the open-loop
test was 0.45±0.04mm. However, in the closed-loop process
with the MPC-1, the maximum base error was 0.75±0.04mm,
which was even higher than the error in the open-loop
test. Besides, compared to the open-loop test, MPC-1
enlarged the error in the conjunction zone from 1.17
±0.04mm to 1.78±0.04mm. The statistical analysis

Fig. 12 Error distribution maps of the formed circular cone-shaped parts using multi-pass strategy B with a the controller disabled, b MPC-1, and c
MPC-2.

3349Int J Adv Manuf Technol (2021) 116:3339–3353



further proved that the MPC-1 was not applicable to the
multi-pass ISF process.

Considering the downward over-forming phenomenon in
the multi-pass ISF process, MPC-2 was designed to be en-
abled in the last pass only. In MPC-2, the vertical control
module was removed. In pass 3, the horizontal module opti-
mized the step-over trajectory after step 5 of the nominal steps.
When the nominal steps were completed, the maximum and
the average error on the base were 0.26±0.04 and 0.19
±0.04mm, respectively. Then, the base error was further com-
pensated by the fine control module. The fine control module
stopped in 2 iterations and reduced the maximum and the
average error on the base to 0.20±0.04 and 0.14±0.04mm,
respectively. As explained in section 2.2, to reduce the

computational cost, the representative points were used
to represent the geometry of the base. The stopping crite-
rion of the fine control module was that the measured
average vertical error of the vertical geometry representa-
tive points was smaller than 0.1mm. That was the reason
why the average error on the entire base was slightly
larger than the threshold. In addition, compared to the
open-loop test, the MPC-2 reduced the maximum errors
of the wall from 1.57±0.04 to 0.62±0.04mm, and reduced
the maximum errors of the conjunction zone from 1.17
±0.04 to 0.87±0.04mm. According to the previous study
[7, 16, 22, 23, 25], the edge error cannot be compensated
in single-point ISF, since there is no underneath support,
and this was confirmed in this study.

Compared to MPC-1, MPC-2 reduced the maximum geo-
metric error in the wall, conjunction, and base zones by 26%,
51%, and 73%, respectively. The comparison indicated that
MPC-2 had a better performance in the multi-pass ISF
process.

3.2 Test group 2—additional test

The benchmark test proved that MPC-1 was not applicable to
the multi-pass ISF process, since it cannot handle the down-
ward over-forming phenomenon properly. In contrast, MPC-2
performed well in the test. To further test the generality of the
MPC-2, in this group of tests, the MPC-2 was used in forming
the target part in the benchmark test again but with the inter-
mediate shape design A+B+C. The multi-pass open-loop test
with controller disabled was also performed for comparison.
Fig. 14 shows the error distribution of the formed part.
Compared to the open-loop test, in the closed-loop test
with MPC-2, the maximum error in the wall and con-
junction zones reduced from 1.67±0.04 to 1.03±0.04mm
and 1.37±0.04 to 0.99±0.04mm, respectively. When the

Fig. 13 Top view showings of different zones on the circular cone-
shaped part.

Table 2 Results of the statistical
analysis of the geometric errors of
the circular cone-shaped part with
the intermediate shape design B.

Zone Statistical
index

Controller disabled (±0.04,
mm)

MPC-1 (±0.04,
mm)

MPC-2 (±0.04,
mm)

Edge Maximum 1.52 1.60 1.81

Minimum 0.01 0.01 0.01

Average 0.54 0.53 0.45

Wall Maximum 1.57 0.84 0.62

Minimum 0.57 0.02 0.00

Average 1.17 0.50 0.20

Conjunction Maximum 1.17 1.78 0.87

Minimum 0.00 0.02 0.01

Average 0.43 0.81 0.32

Base Maximum 0.45 0.75 0.20

Minimum 0.29 0.48 0.03

Average 0.39 0.59 0.14
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nominal steps in the pass 3 of the closed-loop process
were completed, the maximum error on the base was
0.65±0.04mm, and the fine control module reduced the
error to 0.30±0.04mm in 4 iterations. The archived max-
imum error on the base was far less than that obtained
in the open-loop test, i.e,. 0.61±0.04mm.

3.3 Test group 3—additional test

In the third group of tests, an elliptical cone-shaped part was
formed with the open-loop process and the closed-loop

process controlled by MPC-2. The used strategy of the inter-
mediate shape design was B+C. Fig. 15 shows the error dis-
tribution of the formed part, and Fig. 16 shows the different
zones on the part that were defined for the statistical analysis.
The maximum errors in the wall and the conjunction zones
were reduced from 1.68±0.04 to 0.90±0.04mm and 1.38±0.04
to 0.91±0.04mm by MPC-2, compared to the open-loop test.
The maximum base error achieved in the last nominal step in
the final pass was 0.61±0.04mm, and it was reduced to 0.25
±0.04mm by the fine control module. The maximum base
error obtained in the open-loop test was 0.57±0.04mm.

Fig. 14 Error distribution maps of the formed circular cone-shaped parts using multi-pass strategy A+B+C with a the controller disabled and bMPC-2.

Fig. 15 Error distribution maps of the formed elliptical cone-shaped parts using multi-pass strategy B+C with a the controller disabled and b MPC-2.

3351Int J Adv Manuf Technol (2021) 116:3339–3353



The results of the additional tests show that the MPC-2 can
be applied to various target geometries and various interme-
diate shapes, which confirmed the generality of the control
algorithm.

4 Conclusion

In this study, for the first time, the on-line autonomous path
optimization approach for multi-pass ISF processes was pro-
posed, developed, and validated. Two model predictive path
control algorithms were formulated. MPC-1 was designed to
be activated in all the passes and treated each pass indepen-
dently, which was composed of a vertical control module and
a horizontal control module. MPC-2 was designed to elimi-
nate the errors raised in the entire process in the final pass, and
it contained a horizontal control module and a fine control
module.

The benchmark tests were conducted by forming a circular
cone-shaped part in three passes with the intermediate shape
design B using the two MPCs. The maximum errors achieved
on the wall were 1.57±0.04, 0.84±0.04, and 0.62±0.04mm
with the controller disabled, MPC-1, and MPC-2, respective-
ly. Those achieved in the conjunction zone were 1.17±0.04,
1.78±0.04, and 0.87±0.04mm with the controller disabled,
MPC-1, and MPC-2, respectively. The maximum error on
the base was 0.45±0.04mm in the open-loop process without
the controller, and it was 0.75±0.04 and 0.20±0.04mm in the
closed-loop process with MPC-1 and MPC-2, respectively.
MPC-2 reduced the maximum geometric error in the wall,
conjunction, and base zones by 26%, 51%, and 73%, re-
spectively, compared to MPC-1. The results show that

MPC-1 cannot handle the downward over-forming phe-
nomenon on the base and thus is not applicable to the
multi-pass ISF process. In contrast, MPC-2 achieved a
desired performance.

Two additional tests were carried out to further prove the
generality of MPC-2. In the first additional test, the part in the
benchmark test was formed with another intermediate shape
design, i.e., A+B+C. Compared to the open-loop test, the
maximum geometric error in the closed-loop process was re-
duced from 1.67±0.04 to 1.03±0.04mm (by 38%), 1.37±0.04
to 0.99±0.04mm (by 28%), and 0.61±0.04 to 0.30±0.04mm
(by 51%) in the wall, conjunction, and base zones, respective-
ly. In the second additional test, an elliptical cone-shaped part
was formed with the intermediate shape design B+C.
Compared to the open-loop process, MPC-2 reduced the max-
imum error on the wall from 1.68±0.04 to 0.90±0.04 mm (by
46%), in the conjunction zone from 1.38±0.04 to 0.91
±0.04mm (by 34%), and on the base from 0.57±0.04 to 0.25
±0.04mm (by 56%). MPC-2 was tested in forming different
parts using different intermediate shapes in three groups of
tests, which proved that MPC-2 had a good performance and
wide generality in forming parts with single-point multi-pass
ISF processes. Future works will be focusing on
implementations of the developed algorithm on manufactur-
ing parts withmore complex geometric features and extending
the present algorithm to multi-point multi-pass ISF processes.
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