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Abstract
Thermal error of ball screws seriously affects the machining precision of computerized numerical control (CNC) machine tools
especially in high speed and precision machining. Compensation technology is one of the most effective methods to address the
thermal issue, and the effect of compensation depends on the accuracy and robustness of the thermal error model. Traditional
modeling approaches have major challenges in time series thermal error prediction. In this paper, a novel thermal error model
based on long short-termmemory (LSTM) neural network and particle swarm optimization (PSO) algorithm is proposed. A data-
driven model based on LSTM neural network is established according to the time series collected data. The hyperparameters of
LSTMneural network are optimized by PSO, and then a PSO-LSTMmodel is established to precisely predict the thermal error of
ball screws. In order to verify the effectiveness and robustness of the proposed model, two thermal characteristic experiments
based on step and random speed are conducted on a self-designed test bench. The results show that the PSO-LSTM model has
higher accuracy compared with the radial basis function (RBF) model and back propagation (BP) model with high robustness.
The proposed method can be implemented to predict the thermal error of ball screws and provide a foundation for thermal error
compensation.
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1 Introduction

Ball screws have been widely applied in CNC machine tools
owing to its high efficiency, precision, and stiffness [1]. The
productive efficiency of the machine tool is determined by the
speed and feed rate of the machine tool, and it shows an
obvious high-speed trend in recent years. However, severe
thermal issues will follow the high speed and feed rate. The
temperature rise results in thermally induced error of ball
screws, which seriously affects the machining precision of
CNC machine tools especially in high speed and precision
machining. It is reported that thermal error represents 40–
70% of the total error of machine tools [1, 2]. Generally, the
heat generation of ball screws is mainly from the motor, nuts,
and bearings, which cause the thermal deformation of the
screw resulting in loss of position accuracy [3]. Therefore,

with the increase of manufacturing precision, it is extremely
important to reduce the influence of thermal issue of ball
screws on position accuracy.

Reduction and compensation of the thermal deformation
are the two main technical measures to address the thermal
issues of ball screws. In terms of the thermal errors reduction,
Xu et al. [4, 5] and Shi et al. [6] discussed the air/liquid
cooling system in a ball screw shaft to reduce thermal errors
and achieve quick temperature equilibrium. A series of tests
were carried out to show the position accuracy could be sig-
nificantly improved. Nevertheless, the systems become more
complicated and cause the loss of stiffness. Gao et al. [7]
proposed an adaptive method based on carbon fiber–
reinforced plastics to reduce thermal deformation. But the de-
signed ball screws are difficult to implement in engineering
practice because of the oversized clamping structure in the
two ends. Guo et al. [8] proposed a bio-inspired graphene-
coated ball screws inspired by the Saharan silver ant to reduce
the thermal deformation. However, the coating may peel off
from the surface of the ball screw resulting in failure of the
method.

Thermal error compensation is a cost-effective method to
solve this problem, which merely depends on the exact mea-
surement and the accurate prediction of thermal error during
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machining. In the last decades, the most widely used algo-
rithms in the thermal error modeling were the multivariate
linear regression analysis. Yang et al. [9] proposed a thermal
error model based on cerebellar model articulation controller
(CMAC) neural network which can search for the nonlinear
and interaction characteristics between the thermal errors and
temperature field on the machine tools. However, the conver-
gence rates and prediction accuracy are not suitable since the
model parameters are not optimized. Yang et al. [10] reduced
the number of sensors according to thermal expansion and
thermal bending mode analysis and established the multivar-
iate linear regression model to compensate the thermal error
on a CNC turning center. Nevertheless, a practical regression
model with high accuracy and robustness is difficult to estab-
lish by the method. Zhao et al. [11] proposed a method for
determining the convection heat transfer coefficient, and then
the temperature field and thermal errors were dynamically
simulated using the finite element analysis (FEA) method sat-
isfying to replace the experiment results. Zhu et al. [12] de-
veloped a temperature sensor placement scheme and thermal
error modeling strategy by using the finite element analysis,
thermal mode concept, and linear regression models. But the
boundary conditions in actual working conditions have not
been mentioned in these studies. Some researchers focused
on the mathematical model to reveal the error generation
mechanism. However, the modeling method is less compati-
ble since the variation of temperature rise is complicated lead-
ing to the analytic relationship variation with the working
condition [13, 14]. In recent years, with the development of
computer technology and intelligent algorithm, gray theory,
support vector machine, artificial neural network, and some
hybrid approaches were gradually employed by many re-
searchers. Ramesh et al. [15, 16] employed Bayesian net-
works to classify the thermal error in different parameter set-
tings and adopted the support vector machine algorithm to
determine the thermal error of each class. Wu et al. [17]
established a GA-BPN–based thermal error model for online
prediction of the thermal errors and developed a real-time
compensation system to compensate for the thermal drift er-
rors, while the performance of the model under complex con-
ditions was not revealed. Zhang et al. [18] used the artificial
neural networks and gray theory to enhance the robustness
and the accuracy of the thermal error model, but the weight
coefficients seem difficult to be adjusted in real time. Wang
et al. [19], Miao et al. [20, 21], and Yang et al. [22] used a
combination of fuzzy clustering analysis and advanced algo-
rithm to establish the thermal error model. Abdulshahed et al.
[23, 24] established ANN and ANFIS thermal error model for
thermal error compensation on CNC machine tools. Liu et al.
[25] established a thermal error model by using the ridge re-
gression algorithm to inhibit the bad influence of collinearity
on the thermal error predicted robustness. Santos et al. [26]
established physical models with data-driven models based on

the ANN and the FEM simulation to predict the thermal error.
Huang et al. [27] used a genetic algorithm (GA) to optimize
initial weights and thresholds of back propagation (BP) net-
work for training the thermal error sample data and modeling
of the thermal error. Rojek et al. [28] used single-directional
multilayered neural networks with error back propagation
(MLP), radial basis function neural networks (RBF), and
Kohonen networks to establish the compensation model of
ball screws. Li et al. [29] proposed a thermal error compensa-
tion model by using genetic algorithm to optimize wavelet
neural network. The robustness of thermal error model, vari-
able searching, and modeling time can be optimized theoreti-
cally. Although these methods can enhance the predicted ro-
bustness of the model, the predicted accuracy reduced at the
same time [23]. The robustness and accuracy of the model
need to be improved since the thermal errors are not only
related to temperature of selected sensitive points at certain
moments but also vary with historical temperature value.
Therefore, it is necessary to establish an accurate real-time
and historical mapping relationship between temperature
fields and thermal errors. Long short-term memory (LSTM)
network as one of the modern deep learning models has a
strong ability for time series forecast in various fields, since
it can dynamically learn new information while maintaining a
persistent memory of historical information. Sagheer et al.
[30] implemented time series forecasting of petroleum pro-
duction based on LSTM recurrent networks optimized by ge-
netic algorithm (GA). Zhang et al. [31] employed the LSTM
network to predict remaining useful life (RUL) of lithium-ion
batteries. Zhang et al. [32] developed a LSTM model to pre-
dict water table depth in agricultural areas and evaluated and
discussed the ability of the proposed model. Qin et al. [33]
employed the LSTMmodel to predict gear remaining life. In a
word, LSTM network has both the short-term correlation and
long-term dependence characteristics, and it can characterize
the dependence relationship of time sequence data and predict
the variation trend of the time series data. However, the re-
search on thermal errors prediction of machine tools by using
LSTMnetwork is rarely reported, especially in the field of ball
screws.

In this research, a novel thermal error model of ball screws
is proposed. Initially, a LSTM model is developed to forecast
the time series thermal errors of ball screws. In order to estab-
lish an accurate mapping relationship with time-varying be-
tween temperature fields and thermal errors, particle swarm
optimization (PSO) algorithm is employed to optimize the
hyperparameters of LSTM network for improving the perfor-
mance of the model. Furthermore, the effectiveness and ro-
bustness of the PSO-LSTM model are verified according to
the collected experimental data. Finally, performance of the
proposedmodel and traditional ones are compared. The rest of
this paper is organized as follows. In Section 2, the modeling
process and relevant theory of the proposed method are
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introduced. In Section 3, the thermal mode analysis and ex-
periments are conducted, and the performance of proposed
data-driven model is discussed and compared with other
methods. Section 4 summarizes the main conclusions.

2 Thermal error prediction of ball screws
based on PSO-LSTM

A deep learning model based on PSO-LSTM to predict ther-
mally induced error of ball screws according to temperature
and deformation data measured by temperature sensor and
eddy current displacement sensor, respectively, is proposed
in this research. And then the essential configuration of the
deep learning model is optimized by particle swarm optimiza-
tion (PSO) algorithm. The model is intended to quickly deter-
mine the thermal deformation and is used to compensate on-
line thermal error in the working status. It is established and
optimized by the Matlab deep learning toolbox and global
optimization toolbox, respectively.

2.1 LSTM neural network

Long short-term memory (LSTM) network, one of popular
deep learning architectures in recent years, is developed spe-
cially to learn and handle long-term dependencies presented in
sequential data such as temperature rise and thermal deforma-
tion of machine tools in the machining process. The
exploding/vanishing gradient problem, which directly leads
to the recurrent neural network (RNN) learning stopping or
becoming too slow, can be solved by introducing a memory
cell and three gating mechanism into the architecture of
LSTM which modifies the RNN structure. Figure 1 shows
the framework of a LSTM neural network. The core of
LSTM network is a cell memory state represented by the
horizontal line through the cell which is similar to a conveyor

belt running through the entire cell, but it only has few
branches. It also includes three gates known as the forget gate,
input gate, and output gate, to control and update cell status.
Therefore, the network can ensure the entire information
passes through the cell and update information to maintain
its memory state with time. Based on the above characteristic,
LSTM can not only address variable length time series data
and capture long-term dependencies but also memorize his-
torical information dynamically and learn new information
while maintaining a persistent memory of historical informa-
tion [34–37].

The first step of LSTM is removing unimportant informa-
tion operated by a unit called forget gate, which can be derived
as

f t ¼ σ W f ⋅ ht−1; xt½ � þ bf
� � ð1Þ

where ft represents the forget gate, σ is the activation function,
Wf is the weight matric of forget gate, ht − 1 is the output at the
previous time t − 1, xt is the current input, and bf is a bias
vector.

The next step is to select and add valuable information to
the network through input gate and to produce new cell infor-
mation waiting to be selected. This process can be expressed
as

it ¼ σ Wi⋅ ht−1; xt½ � þ bið Þ ð2Þ
eCt ¼ tanh WC ⋅ ht−1; xt½ � þ bCð Þ ð3Þ
where it and eCt are the input gate and the intermediate value
during the calculation,Wi andWC are weight matrixes of input
gate and internal state, and bi and bC are biases of input gate
and internal state.

Subsequently, new cell information is updated in the net-
work through input gate and forget gate, which is formulated
as

Fig. 1 Framework of the LSTM
neural network
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Ct ¼ f t*Ct−1 þ it*eCt ð4Þ
whereCt andCt − 1 are the cell state at the current time t and the
previous time t − 1, respectively.

Finally, the outcome and cell state of LSTM is determined
by updating and selecting the new cell information and the
input, which is written as

ot ¼ σ Wo⋅ ht−1; xt½ � þ boð Þ ð5Þ
ht ¼ ot*tanh Ctð Þ ð6Þ
where ot, σ,Wo, and bo are the output gate, activation function,
the weight matrix of output gate, and the bias of output gate,
respectively. ht is the output at the current time t.

The above equations reveal the internal calculation mech-
anism of LSTMwhere the network output of each time step is
associated with previous input and cell state to predict future

information by addressing variable length time series data and
capturing long-term dependencies.

2.2 Thermal error modeling by LSTM

Thermally induced error of ball screws can be processed by
LSTM network as the temperature and deformation are time
series data increasing or dropping with time once the machine
tool is working. Firstly, the essential configuration of LSTM
network is designed based on the input and output data where
the number of features corresponds with temperature measure-
ment point and thermal deformation, respectively. The multi-
layer LSTM and added full-connected layer are introduced
into the network model. In the model training process, weighs
and bias are updated by Adam optimizer and the root mean
square error (RMSE) as fitness function is used to evaluate the
performance of the LSTM. Additionally, the hyperparameters

Fig. 2 Search process of particles

Calculate fitness (RMSE) 

of particles 

Get personal best(pbest) fitness

of particles

Get global best (gbest) fitness

of particles

Optimization of the position and 

velocities vectors

Meet the evaluation 

criterion

YESNO

Initialize the position 

and velocities vectors of particles 

Data

Determine LSTM network structure

Set initial parameters (learning rate, 

unit number, time window) as particles  

Get the optimal parameters 

of particles

Train the LSTM network through 

training samples data

Test the LSTM network through 

test samples data

Output the results of prediction

and errors  

Fig. 3 Flow chart of the thermal
error prediction modeling
process. Software: Matlab
R2019a, deep learning and global
optimization toolbox, Win7 64-
bit operating system. Hardware:
RAM 8 GB, Inter (R) Core (TM)
i5-5200U CPU 2.20GHz
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of LSTM is adjusted by optimization algorithm due to the
ability to quickly find the best solution.

2.3 Hyperparameter optimization algorithm

In order to establish an ideal network with accurate perfor-
mance, it is necessary to search optimal parameters of the
model. Particle swarm optimization (PSO) algorithm is de-
rived from the imitation of bird predation behavior. As one
of the evolutionary calculation technologies, PSO can collab-
orate and share information between individuals in the group
to find the optimal solution quickly so that it is suitable to be

used for searching the optimal parameters. Therefore, PSO is
applied in this study to optimize the network hyperparameters
for better results. This algorithm is conducted by continuously
searching and updating the personal best and global best of
swarm while simultaneously updating the position and veloc-
ity of each particle for the next optimization process. The
search process of this algorithm is summarized in Fig. 2.

2.4 Data normalization

In order to ensure the equivalence and homogeneity of the
various factors, it is necessary to process the sample data to
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Fig. 4 First four thermal modes
with temperature fields and time
constants. a 1st order, b 2nd
order, c 3rd order, d 4th order

Table 1 Parameters of
experimental instrument Type Product description

Temperature sensors KYW-TC, Kunlunyuanyang, Beijing, China

Eddy current displacement sensor ML33-01-00-03, Milang, Shenzhen, China

Temperature inspection instrument KYLE/A-8RS1V0, Kunlunyuanyang, Beijing, China

Displacement inspection instrument XSAE-CHVB1M2V0, Milang, Shenzhen, China
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dimensionless normalized data. Therefore, the Z-score meth-
od is used to uniformly normalize the data of the model in this
study, as shown in Eqs. (7) ~ (9).

x ¼ 1

n
∑
n

i¼1
xi ð7Þ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1
∑
n

i¼1
xi−x

� �2
s

ð8Þ

x
0
i ¼

xi−x
S

ð9Þ

where xi and x are the sample data and average value, S and x
0
i

are the standard deviation and normalized value, and n is the
number of samples.

2.5 Evaluation metrics of the model

RMSE, MAE, MSE, and MAPE are four metrics for evaluat-
ing the performance of the model. The smaller value of the
metric indicates the better performance with the model, which
are expressed as

Motor
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(a) Test bench of ball screws 
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Fixed bearing housing
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Eddy current 
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Temperature sensor

Supporting 
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Temperature data Displacement data
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(d) Temperature and thermal deformation test (e) Data acquisition system

Fig. 5 Experiment setup. a Test
bench of ball screws, b
temperature sensor mounted on
nut, c temperature sensor
mounted near fixed bear, d
temperature and thermal
deformation test, e data
acquisition system
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
yi−y

0
i

� �2
s

ð10Þ

MAE ¼ 1

n
∑
n

i¼1
yi−y

0
i

�� �� ð11Þ

MSE ¼ 1

n
∑
n

i¼1
yi−y

0
i

� �2
ð12Þ

MAPE ¼ 100

n
∑
n

i¼1

yi−y
0
i

yi

����
���� ð13Þ

where n is the number of samples and yi and y
0
i are the testing

and predictive values of i-th sample, respectively.

2.6 Thermal error prediction based on PSO-LSTM
model

Learning rate is the most crucial hyperparameters, followed by
the network size [38]. In this paper, the hyperparameters of
LSTM network, learning rate, and unit number were searched
by PSO intelligent optimization algorithm by using the fitness
function of root mean square error to search the optimal learn-
ing rate and unit number under the best fitness value.
Simultaneously, the time window size of data set is designed
by using PSO where the time window is introduced into the
data set to improve the accuracy of the model. In this research,
the relationship between thermal deformation and temperature
rise of measured points is given by

Y t ¼ f Y t−1; Tt−1; Tt−2;⋯; Tt−nð Þ ð14Þ
where Yt and Yt − 1 are on behalf of the predicted thermal error
at the current time t and the previous time t − 1; Tt − 1, Tt − 2,⋯,
Tt − n are the previous temperatures; and the number n is the
time window size.

The time series data of temperature and thermal deforma-
tion in axial direction are measured by temperature sensor and
eddy current displacement sensor, respectively. And then
these data are imported into the LSTM network to train the
data-driven LSTM model. Sequentially, the optimal learning
rate and unit number determined by PSO intelligent optimiza-
tion algorithm are input into the network for obtaining the
optimal configuration of the model to predict thermally in-
duced error. The flow chart of proposed PSO-LSTM model
is shown in Fig. 3.
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3 Results and validation

In order to validate the PSO-LSTM model for predicting
thermally induced error of ball screws, thermal charac-
teristic experiments for the time series thermal error fore-
cast are implemented in this paper. Firstly, thermal sen-
sitive points of ball screws are captured according to
thermal modal analysis (TMA) to determine the key tem-
perature measurement point. Secondly, a thermal experi-
ment with step speed of the motor for obtaining the data
of temperature and deformation is carried out to validate
the effectiveness of PSO-LSTM model, and then another
thermal experiment with random speed is carried out to
verify the robustness of the proposed model further.
Finally, the performance of the proposed model is com-
pared with that of RBF model and BP model.
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3.1 Thermal sensitive point

Ball screws feed drive systems mainly include motor,
coupling, bearings, and ball screws. In the working status,
the thermal deformation of ball screws is mainly caused
by temperature rise of bearings, nuts, and a screw. With
the purpose of thermal error modeling, it is required to
establish a correlation between the temperature rise of
components and deformation. Therefore, the selection of
temperature sensitive points based on thermal mode is
introduced in this section. The thermal modes of the sys-
tem represent the distribution of the temperature field un-
der the corresponding eigenvalues, which is the reciprocal
of the time constant. The corresponding transient response
of temperature field can be acquired by superposition of
each order thermal mode. Additionally, the areas with
which significant temperature changes can be identified
rely on the shape of low order thermal modes. In order
to analyze the thermal sensitive point of ball screws, a
finite element (FE) model of ball screws is established
and the thermal modal analysis is carried out.

To perform the thermal modal analysis, the finite element
solution of the underlying heat transfer problem needs to be
solved [12], which requires the integration of coupled differ-
ential equations of the form

CT½ � Ṫ tð Þ
n o

þ KT½ � T tð Þf g ¼ Q tð Þf g ð15Þ

where [CT] and [KT] are the heat capacity matrix and the heat
conductivity matrix, respectively, {T(t)} is the nodal

temperature vector, and {Q(t)} is the nodal thermal load
vector.

The eigen-problem associated with Eq. (16) is

KT½ � ΦT½ � ¼ CT½ � ΦT½ � Λ½ � ð16Þ
where [Λ] is a diagonal matrix composed of all the eigen-
values and [ΦT] is the corresponding eigenvector matrix.
Theoretically, the reciprocal of the corresponding time con-
stant is

τ i ¼ 1

λi
ð17Þ

where λi and τi are the i-th eigenvalue and time constant,
respectively. The time constant describes how quickly the
mode responds to thermal loads.

The first four thermal modes with the time constants
and the corresponding temperature field distributions are
calculated by thermal modal analysis, and the magni-
tudes of the temperature for each mode are normalized
by Eq. (18) .

T
0
j ¼

T j

Tk k∞
ð18Þ

where Tj is the temperature result in the j-th position

and T
0
j is the normalized temperature result.

The first four thermal modes with temperature fields and
thermal time constant are shown in Fig. 4. It is seen that the
thermal time constant of ball screws is greater, indicating that
the variation of temperature field is slow. It is depicted signif-
icant temperature rise occurs on the fixed bearing, the support
bearing, and the nut/screw interface. The reason is that the
heat is mainly generated by the friction of components and
causes the temperature rise of the frictional contact region
obviously. Therefore, the temperature sensitive points are de-
termined and three temperature measuring points are arranged
on the surface of the nut and the end surface of two bearings in
this research.
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Fig. 10 Absolute error scatterplot of the testing set. a PSO-LSTM model, b RBF model, c BP model

Table 2 Comparison among different predictive models

Models RMSE MAE MSE MAPE

PSO-LSTM 3.7755 3.5557 14.2541 1.4281

RBF 7.2715 5.9230 52.8746 2.4339

BP 5.5459 4.0659 30.7569 1.7565
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3.2 Experimental results and validation

To verify the effectiveness and robustness of this proposed
model and to compare with the performance of other models
in this study, two thermal characteristic experiments with step
speed and random speed are conducted on the high-speed
precision ball screw test bench in our laboratory. The experi-
mental setup is shown in Fig. 5a–e. Parameters of the measur-
ing instrument are shown in Table 1. Three temperature sen-
sors are mounted on the feed drive system to obtain the tem-
perature data, where they are arranged on the front bearing
seating, the rear bearing seating, and the nut, respectively.
An eddy current displacement sensor is installed on the end
face of the screw to measure the thermal deformation.
Additionally, the ambient temperature is monitored during
the experiment so as to consider the effect of ambient temper-
ature on thermal deformation.

First of all, the ball screw runs as reciprocating cycle at a
rotational speed of 500r/min for 10min, where the purpose is
to avoid the influence of gap between the parts of ball screws
and instability of the machine at the startup stage, and the
accuracy of experimental results is guaranteed. Ten minutes
later, the experiment is carried out according to the speed
spectrum and the nut moves along with the screw as the

reciprocating cycle. The temperature of the front bearing
housing, the rear bearing housing, and the nut and the ambient
temperature and the thermal deformation of the screw are in
real-time collected where the data is recorded by a self-
designed data acquisition system and sampling period
assigned as 600ms. After the experiment, the temperature of
components should be naturally cooled to the ambient tem-
perature and then another experiment continues.

A thermal characteristic experiment with step speed of the
motor is carried out to validate the effectiveness of PSO-
LSTM model. The speed of the motor is changed on every
20 min and increases from 300r/min to 1000r/min and then
decreases to 300r/min (see Fig. 6). The experimental result
based on step speed is shown in Fig. 7. According to experi-
mental results, the data of temperature rise and thermal defor-
mation is normalized and feed the neural network models. The
first 80% data is taken as a training set and the last 20% data is
assigned as a testing set. The PSO searching result shows the
time window size, learning rate, and unit number are 5,
0.0037, and 88, respectively. In order to verify the advantage
of this proposed model, the results of this model is compared
with those of other models. The parameters of each network
model are fairly assigned. Comparative results of each model
under the step speed are shown in Fig. 8. It is clear that the
result of PSO-LSTM model is almost entirely consistent with
the experimental result. The RBF and BP can reasonably pre-
dict the values that never appeared, but the error between
predictive result and experimental result of both models is
greater than PSO-LSTM one. The result of the testing set
can indicate the performance of model and is most critical
for validating the model. Figure 9 illustrates the relative error
distribution characteristics of the three models. It is concluded
that the results of PSO-LSTM model and BP model are better
than RBFmodel in testing set. The PSO-LSTMmodel and BP
model are both with high accuracy, while the PSO-LSTM is
more accurate than the BP model. Figure 10 presents the ab-
solute error distribution characteristics of the three methods. It

(a) PSO-LSTM model           (b) RBF model               (c) BP model

Fig. 11 Regression analysis. a PSO-LSTM model, b RBF model, c BP model

Fig. 12 Random speed spectrum
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Fig. 13 Experimental results of
thermal error in random speed
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(a) Predictive results of the PSO-LSTM model   (b) Predictive results of the RBF model
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(c) Predictive results of the BP model

Fig. 14 Comparative results between the experiment and the prediction of the three models. a Predictive results of the PSO-LSTMmodel, b predictive
results of the RBF model, c predictive results of the BP model
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can be found that many error points of RBF and BP are be-
yond 10μmand some of them even close to 20μm. In contrast,
the absolute error of data obtained from PSO-LSTM are most-
ly controlledwithin 5μm, only a little of points outside of 5μm
but not larger than 8μm.

Figure 11 shows the results of regression state analysis for
the three models. The regression prediction performance of
PSO-LSTM model is better than others. To quantify the pre-
dictive performance of the models, the four criteria, RMSE,
MAE, MSE, and MAPE, of the testing set of the three models
are listed in Table 2. It is concluded that the PSO-LSTM
model has the smallest RMSE, MAE, MSE, and MAPE with
the highest precision, followed by the BP model, and then the
RBF model. Consequently, the proposed model provides an
exact global trend prediction of thermal error; meanwhile, the
thermal error at a certain time also can be accurately deter-
mined. As the predictive results well agree with the experi-
mental one, the PSO-LSTM model is validated. Via compar-
isons with other models, it is concluded that the PSO-LSTM
model has the advantage in prediction accuracy.

According to the random speed spectrum (see Fig. 12),
another thermal experiment is carried out to verify the robust-
ness of the proposedmodel. The experimental results based on
random speed are shown in Fig. 13. The experimental data is
normalized and imported to the model. The first 80% data is
taken as a training set and the last 20% data is assigned as a
testing set. The PSO searches that the time window size is 5,

the learning rate is 0.0029, and the unit number is 86. In order
to compare fairly, RBF and BP are set with the same structure.
The prediction results of three models are shown in Fig. 14. It
can be seen from Fig. 14 that the LSTM model outperforms
the others and the RBF model and the BP model have an
obvious decline in their accuracy. Although the results of
RBF and BP are acceptable for the training set, a certain data
of the testing set are with large error and even some of them
close to 6%. The results of RBF and BP for the testing set are
both with obvious errors, which indicate that the generalizabil-
ity is not strong enough to predict the data that never appear in
the training stage. In contrast, the proposed PSO-LSTMmod-
el can predict the thermal error variation more accurately.

The relative error obtained by the PSO-LSTM model is
smaller than that of other two models, as depicted in Fig. 15.
The absolute error distribution characteristics of the three
methods are shown in Fig. 16. It is concluded that the PSO-
LSTM model has a smaller and narrower error band. Most
error points of RBF and BP in testing set are beyond 10μm
and some of them even close to 20μm. In contrast, the abso-
lute error of data from PSO-LSTM is all controlled within
5μm, which shows the excellent performance of this proposed
model. The results of regression state analysis for the three
models are shown in Fig. 17. The regression prediction per-
formance of PSO-LSTM model is better than that of the
others. The statistic evaluation indexes of the testing set of
the three models are given in Table 3. The PSO-LSTMmodel
still has the smallest RMSE, MAE, MSE, and MAPE with the
highest precision. It is concluded that the accuracy of the PSO-
LSTM, RBF, and BP model at step speed is 98.5%, 97.5%,
and 98.1%, respectively, and the accuracy of them at random
speed is 99.4%, 96.5%, and 97.2%, respectively. The PSO-
LSTM model has higher accuracy and lower error compared
with the RBF model and BP model in two thermal character-
istic experiments based on step speed and random speed. The
generalization ability of the PSO-LSTM model is superior to
the other two models according to the experimental results.
The proposed model can not only provide an accuracy predic-
tive result of thermal error but also maintain a stable and
satisfactory performance even in complex work condition.
Therefore, the effectiveness and robustness of this proposed
model are verified. The proposed method in this paper can be
implemented to predict the thermal error of ball screws and
provide a foundation for thermal error compensation.

In addition, two predictive results based on random divi-
sion of training set and testing set are shown in Fig. 18 to
illustrate the performance of the PSO-LSTM model. To facil-
itate comparison, the experimental data based on random
speed is used to establish the model and implement the ther-
mal error prediction of ball screws where the training set and
testing set are changed by two random divisions. Figure 18a is
the result of the PSO-LSTMmodel where the first 74% data is
assigned as a training set and the last 26% data is taken as a

Table 3 Comparison among different prediction models

Models RMSE MAE MSE MAPE

PSO-LSTM 1.7217 1.3866 2.9644 0.4636

RBF 8.3665 7.0474 69.9985 2.4349

BP 7.8532 6.6345 61.6720 2.1513

PSO-LSTM RBF BP
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Fig. 15 Absolute relative error of the three models
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testing set. The predictive accuracy of this division can reach
98.5%; it is lower than the division in Fig. 14a and still has a
high accuracy. Another division is that the first 82% data is
taken as a training set, and the rest is assigned as a testing set.
The predictive result of this division is shown in Fig. 18b. The
predictive accuracy is 99.5% and slightly higher than the di-
vision in Fig. 14a. The result shows that the PSO-LSTMmod-
el has a considerable stability and high predictive accuracy in
different divisions, and the accuracy of the PSO-LSTMmodel
can be improved by increasing the proportion of training set.

4 Conclusions and future work

In this paper, a novel data-driven model based on PSO-LSTM
is proposed for predicting thermally induced error of ball
screws, where the deep learning model combining with intel-
ligent optimization algorithm is established based on experi-
mental results. The thermal error of ball screws can be accu-
rately predicted based on this proposed method, which pro-
vides a foundation for thermal error compensation to improve
the machining accuracy. The effectiveness and robustness of
this proposed model are validated by thermal error obtained
from experiments based on step speed and random speed. The
comparison between the proposed model and traditional

models is implemented. The conclusions can be drawn as
follows:

(1) A novel data-driven thermal error model of ball screws
based on PSO-LSTM is proposed, and the effectiveness
of this model is validated by a thermal characteristic
experiment at step speed on a self-designed ball screw
test bench. Comparison between PSO-LSTM model and
experiment shows that thermal error of ball screws can
be accurately predicted by this proposed model, which
can provide a foundation for thermal error compensation.

(2) The robustness of this proposed model is verified based
on another thermal characteristic experiment at random
speed. By comparison between predictive results and
experimental ones, the PSO-LSTM model can not only
provide an accuracy predictive result of thermal error but
also maintain a stable and satisfactory robustness even in
complex work conditions.

(3) Comparative results between this proposed model and
the traditional models are analyzed. In terms of
predicting thermal error of ball screws in this paper, the
PSO-LSTM model has higher accuracy and lower error
compared with the RBFmodel and BPmodel and has the
smallest RMSE,MAE,MSE, andMAPE. It is concluded
that the PSO-LSTM model outperforms the others.
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(a) PSO-LSTM model           (b) RBF model               (c) BP model

Fig. 16 Absolute error scatterplot of the testing set. a PSO-LSTM model, b RBF model, c BP model

(a) PSO-LSTM model           (b) RBF model           (c) BP model

Fig. 17 Regression analysis curve. a PSO-LSTM model, b RBF model, c BP model
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Although the predictive thermal error model of ball screws
is established, the effect of thermal error compensation has not
been checked yet. The thermal compensation based on this
proposed model will be conducted, and its effects will be
checked in the next stage of our research work.
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