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Abstract
Aiming at the low tool utilization rate caused by tool wear in the milling process, a tool wear automatic monitoring system based
on machine vision is proposed. The tool wear images are automatically acquired by a charge-coupled device (CCD) camera. The
system selects the image with obvious characteristics and cuts the wear area for processing, thus extracting the tool wear value.
On one hand, the reliability of using the wear area of flank face as a technical index to judge the degree of tool wear is explored.
On the other hand, the changes in the surface texture of workpiece are also analyzed by the gray-level co-occurrence matrix
(GLCM) method. A milling experiment was carried out and the wear value measured by the monitoring system was compared
with the real wear value. The result showed that the accuracy of the monitoring systemmet the industrial requirements. The wear
area of the flank face and the wear width are consistent in trend under different cutting parameters, whichmeans that the wear area
of the flank face could be used as an index for judging the degree of tool wear. In addition, the characteristic parameters of the
surface texture of workpiece change regularly with the tool wear, which shows that the tool wear can be characterized from
another aspect.
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1 Introduction

In the milling process, the tool wear has important effects on
the processing quality. Excessive tool wear would result in a
significant reduction in the quality of the machined surface
[1]. The tool damage is one of the main reasons leading to
unexpected downtime [2]. The cost of tools and tool

replacements accounted for 25% of the total cost [3]. Tool
failures accounted for 35% of the total downtime of the mill-
ing machine [4] and downtime caused by tool replacement
accounted for 20% of the total downtime [5]. In order to re-
duce the adverse effects of tool wear on processing, the tools
need to be replaced before it is damaged. In traditional tool
condition monitoring (TCM), the production personnel
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observe the vibration, noise, and machining time during the
machining process based on their own experience to judge the
wear status of the tool, which is strongly affected by subjective
judgment. If the tool is replaced when the tool wear does not
reach the wear standard, the tool is not fully utilized, which
will increase the manufacturing cost. In actual processing,
only 50–80% of the effective life of the milling cutter is used
when changing the tool [6, 7]. If the tool is continued to use
when it is severe wear, the accuracy and surface quality of the
machined parts would be reduced [8]. In severe cases, safety
accidents may even occur. Therefore, exploring a method of
automatically monitoring tool wear will reduce processing
costs and improve processing quality, which is of great
significance.

At present, according to the principle, tool wear monitoring
technology can be divided into two categories: indirect meth-
od and direct method [9]. The indirect method uses the corre-
lation between related parameters like acoustic emission sig-
nals, the cutting force during the machining process, and the
tool wear status to indirectly judge the tool wear status. Zhang
et al. [10] proposed a method for tool life prediction and wear
state evaluation. A new wear model based on the change of
wear rate under different milling conditions was established
and verified. The results showed that the model has good
flexibility. Gomes et al. [11] acquired acoustic emission sig-
nals and vibration signals, thus establishing a tool wear mon-
itoring model based on support vector machine to monitor the
wear of micro milling cutter. The results showed that this
method could effectively classify tool wear. Móricz et al.
[12] used spindle power signals and artificial neural network
to realize off-line and on-line monitoring of micro milling
cutter in machining process of ceramic. The relationship be-
tween wear stage and measurement parameters was deter-
mined. Zhou et al. [13] developed a wireless rotary vibration
measuring tool holder system that could simultaneously mea-
sure the vibration signals of the three axes. The superior ef-
fectiveness and sensitivity of the system were verified by car-
rying out milling experiments on Ti6Al4V. Yang et al. [14]
proposed a new method to judge tool wear state based on
milling force. The milling force was predicted by deducing a
theoretical formula based on undeformed chip thickness. The
support vector machine with different cores was used to clas-
sify tool wear state. The feasibility of the proposed method
was verified by the cutting experiment of Ti6Al4V. Zhou et al.
[15] proposed a milling tool monitoringmethod based on two-
layer corner core extreme learning machine and binary differ-
ential evolution. The method included multiple signals, while
it did not require preset function or optimization of
hyperparameters. Two milling experiments were carried out
and the results showed that the inventive method had low
error. By summarizing previous studies, it turns out that the
indirect method has the advantage of on-line tool wear mon-
itoring, since signals can be acquired in real time during

machining, which could save production time while monitor-
ing tool wear and be able to check sudden damages of the tool.
Nevertheless, the indirect method is usually based on more
expensive special experimental equipment and the monitoring
is easily affected by external factors and experimental condi-
tions. Generally, it is difficult to accurately obtain the value of
tool wear, since the tool wear is reflected by signals.
Therefore, compared with the direct method, the accuracy of
the indirect method is hard to guarantee [16].

With the continuous development of machine vision tech-
nology and image processing algorithms, monitoring tool
wear through a vision system has the advantages of high de-
tection accuracy, low cost, and less susceptibility to external
factors. The direct method of monitoring tool wear has been
widely studied and applied. Yu et al. [17] proposed a wear
area edge detection method based on morphological compo-
nent analysis, which reduced the influence of image noise on
the extraction of wear edges. Subsequently, based on this
method, Zhu and Yu [18] applied a region growing algorithm
to extract the wear area of the target image. García-Ordás et al.
[19] presented a new approach to categorize the wear of cut-
ting tools based on local binary patterns description over the
local texture of tool images. The texture of different wear
patches was evaluated by computer vision and machine learn-
ing to judge the wear state of the tool. Fong et al. [20] devel-
oped a tool wear image measurement system based on cross-
correlation analysis. The sensitivity and accuracy of TCM
technology were improved by cross-covariance analysis of
worn and unworn tool images. The high efficiency of the
developed measuring system is proved by analyzing the cut-
ting tools such as the drill bit, end mill, taper tap, and carbide
insert. Qin et al. [21] proposed an automatic end-milling cutter
monitoring method based on dynamic image sequence, which
could obtain the dynamic image sequence of the milling cutter
when the spindle rotated. You et al. [22] designed an image-
based tool wear monitoring method, which located the wear
area by combining homomorphic filtering and histogram
comparison, thus segmenting the wear area by GrabCut mod-
el. The experimental results showed that this method could
accurately judge the degree of wear. Mamledesai et al. [23]
realized tool wear monitoring based on computer vision,
convolutional neural network, and transfer learning. This
method effectively solved the problem of insufficient data in
TCM system. Pagani et al. [24] proposed a deep learning
method based on image processing, which judged the wear
degree of cutting tools with chip color as the feature.
However, this method was only suitable for fixed machining
processes because of the great influence of workpiece mate-
rials and cutting process parameters on chip color. Compared
with the indirect method, the direct method can reflect the
changes of tool wear more intuitively. It is not susceptible to
the influence of factors such as machining parameters and
vibration during the machining process. Therefore, it has
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better robustness and higher detection accuracy. Nevertheless,
the direct method usually requires the acquisition of informa-
tion related to tool wear during machining intervals, which
will occupy the production time. In addition, it is hard to
realize on-line monitoring because of the insensitivity to sud-
den damages.

Based on previous research, in order to further improve the
automation level of tool wear monitoring, this paper designs
an automatic tool wear monitoring system based on the direct
method. This system is intended to be the basis of the further
TCM system including the direct and indirect methods simul-
taneously. The methods of automatic acquisition of wear im-
ages and automatic extraction of wear areas are explored. In
order to verify the effectiveness of the monitoring system in
this paper under actual processing conditions, milling experi-
ments of the nickel-based superalloy Inconel 718 were carried
out under internal cooling conditions. In order to reflect the
tool wear status more realistically, the average wear area of
flank is used as a technical index and its reliability to reflect
the tool wear is discussed. The relationship between surface
texture and tool wear is explored by analyzing the character-
istic parameters of the processed surface texture of workpiece.

2 Tool wear analysis

2.1 Tool wear monitoring system design

2.1.1 Tool wear evaluation index

During milling, the tool is in constant contact and friction with
the workpiece as well as chips. The resulting high temperature
and high pressure lead to the tool coating to peel off during the
machining process, thus causing the tool wear. The impact is
greater for some difficult-to-machine materials. Kasim et al.
[25] found that when milling nickel-based superalloys, the
high temperature load attached to the processing area caused
severe bonding wear of the tool, which greatly reduced the
quality of the processed surface. Wang et al. [26] carried out a
nickel-based superalloy milling experiment. The results
showed that the temperature of the contact area between the
tool and the workpiece was greater than 1000 K. When the
tool is worn, the material strength of the processing area is
greatly reduced, which affects the processing quality.
Therefore, it is very important to select an appropriate stan-
dard to evaluate tool wear.

Figure 1 shows the tool wear form in the milling process
[9]. Due to the greater rigidity of the workpiece, the flank face
is in contact with the workpiece and the wear is severe, so the
width of the flank face wear zone VB is usually used as the
index for tool wear [27]. When machining nickel-based su-
peralloys, the tool wears quickly. According to the actual sit-
uation, the tool wear evaluation standard in this paper is set as

follows: when the flank face of tool is regularly worn, the
average wear width of the flank VBave shall not exceed 0.25
mm. When the flank face of tool is irregularly worn, the max-
imum wear width of the flank VBmax shall not exceed 0.5
mm. In addition, since the tool wear area is in a complex
mechanical and thermal environment and has irregularities,
it is necessary to analyze the characteristics of the flank face
wear area to reflect the wear status of the tool more reliably
[18]. Therefore, this paper determines that the width of the
frank faceVBmax and VBave are used as conventional indexes
of the degree of tool wear, while the average wear area of flank
face AVB is used as an additional index to reflect the tool wear
status more truly and comprehensively. In addition, compared
with wear width and area, this paper will also explore surface
texture of workpiece caused by tool wear.

2.1.2 Tool wear monitoring platform

The tool wear monitoring system is composed of hardware
and software. The hardware part realizes the function of effec-
tively acquiring images, while the software part realizes the
function of analyzing the acquired wear image and extracting
the wear value. The hardware part includes In-Sight 5403
CCD industrial camera, P/N 119-2043R LED ring light source
and PD2-5024 light source controller produced by Cognex
from USA, CF25HA-1 industrial lens produced by Fujinon
from Japan. The software part is Cognex In-Sight explorer and
the designed tool wear monitoring software.

This paper establishes the tool wear monitoring platform
shown in Fig. 2 to achieve the acquisition and processing of
tool wear images under complex working conditions. The
working principle of the system is as follows: the camera
fixture is set on the worktable of the machine tool. After

Tool nose

Flank wear

Abrasive part

AVB

Fig. 1 Wear form of milling tool [9]
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determining the best shooting angle, keep the relative position
of the camera and the tool unchanged. When measuring the
tool wear during processing is needed, the tool returns to the
original set position. At this time, the spindle is kept rotating at
a constant speed of 120 r/min and the camera is triggered to
acquire a full frame image. The acquired images are transmit-
ted to the computer through the Ethernet interface for process-
ing and the current tool wear value would be extracted. In
order to explore the relationship between surface texture of
workpiece and the tool wear, pictures of the surface texture
are taken for analysis after the measurement.

2.2 Tool wear image analysis

In order to realize the automatic extraction of the tool flank
wear value, it is necessary to process and analyze the tool wear
images acquired by the CCD camera. The tool wear image
analysis process is shown in Fig. 3.

2.2.1 Image preprocessing

In order to effectively analyze the wear value, the image for
further processing must contain clear and complete tool flank.
Due to the uncertainty of the spindle rotation angle at the end
of milling processing, it is difficult to realize automatic detec-
tion. In order to reduce the detection error caused by the dif-
ferent shooting angles of the tools, this paper proposes to use
the structural similarity index (SSIM) to filter the acquired
images of the tools, considering the brightness, contrast, and
structure factors. The image with the highest similarity to the
target image is further processed. The formula for calculating
structural similarity is as follows [28]:

l x; yð Þ ¼ 2μxμy þ C1

μ2
x þ μ2

y þ C1
ð1Þ

c x; yð Þ ¼ 2σxσy þ C2

σ2
x þ σ2

y þ C2
ð2Þ

s x; yð Þ ¼ σxy þ C3

σxσy þ C3
ð3Þ

SSIM x; yð Þ ¼
2μxμy þ C1

� �
2σxy þ C2

� �
μ2
x þ μ2

y þ C1

� �
σ2
x þ σ2

y þ C2

� � ð4Þ

where l(x,y) is the brightness similarity, c(x,y) is the contrast
similarity, s(x,y) is the structure similarity, and μx, μy, σx, σy,
and σxy are the mean, standard deviation, and covariance be-
tween the two images x and y. C1, C2, and C3 have small
values to avoid the situation that the denominator approaches
zero when describing the low brightness and contrast area,
which leads to unstable measurement results. The value range
of SSIM is [−1,1]. If the similarity of the compared images is
higher, the value is closer to 1. The image with the highest
SSIM value is selected as the image for subsequent process-
ing, as shown in Fig. 5b.

The unprocessed original image contains a lot of informa-
tion. Since the tool flank wear area is the region of interest
(ROI) for tool wear monitoring, the extraction of the wear area
is a prerequisite for further processing. The corner points usu-
ally reflect important changes in the image, which can reduce
the amount of information while retaining important features.
In this paper, Harris corner detection is used to detect the
corners of the original image. All the detected corners are
sorted in the vertical direction. Since the highest corner point

Fig. 2 Schematic diagram of tool
wear monitoring platform
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of the image is the highest point in the vertical direction of the
tool wear area, its neighborhood is taken as the ROI area. The
principle of Harris corner detection is as follows: a specific
window is moved on the image. When the gray scales in the
window changes greatly, the corner point is included in the
window. The function for calculating the gray change value of
the window, Harris matrix as well as the simplified function
after Taylor expansion and ignoring the high-order remainder
are as follows:

E u; vð Þ ¼ ∑
x;y
w x; yð Þ I xþ u; yþ vð Þ−I x; yð Þ½ �2 ð5Þ

E u; vð Þ≅ u; v½ �M u
v

� �
ð6Þ

M ¼ ∑
x;y
w x; yð Þ I2x I xI y

I xI y I2y

� �
ð7Þ

where w(x,y) is the window function, I(x,y) is the original gray
scale, I(x + u,y + v) is the gray scale after window translation
of (u,v), and M is the Harris matrix.

This function is a quadratic elliptic function. The size of the
ellipse is determined by the eigenvalues of the Harris matrix
(λ1,λ2) and the direction is determined by its eigenvectors.
The image features are classified according to the eigenvalues
of matrix, thus judging the corner point. The corresponding
function of the corner point for classification is as follows:

R ¼ λ1λ2−k λ1 þ λ2ð Þ2 ð8Þ

where R is the corresponding function of the corner point and
k is the empirical function which usually equals to 0.04~0.06.

When R is a large positive number, it is judged that the
corner point is detected. By sorting the corner points and
extracting the neighborhood of the highest corner point in
the vertical direction, the automatic cropping of the ROI is
realized, as shown in Fig. 4c.

Due to the interference of the external environment and
other factors, the images acquired by the CCD camera often
contain a lot of noises [29], as shown in Fig. 5a. These noises
will have a great impact on the image quality. In order to
improve the quality of images, the acquired images must be
denoised. Compared with other denoising algorithms, median
filtering has an excellent noise reduction effect. The principle
of median filtering is as follows: any pixel (i,j) in the image is
taken as the center point. The gray scales of the pixel in its
neighborhood are sorted and then the median value is taken as
the new gray scale of the point. The median filter with a 7 × 7
mask is selected as the denoising algorithm in this paper.
Figure 5 shows the gray scale distribution before and after
the median filtering. A superior denoising effect is achieved
and the edges of the image are kept intact, so the image would
not be too smooth to keep information.

In order to highlight the wear area on the image and effec-
tively distinguish it from the irrelevant area, it is necessary to
enhance the image. Piecewise linear transformation is an al-
gorithm based on gray scale transformation, which can effec-
tively suppress irrelevant areas and is insensitive to noises, so
that wear area could be easily extracted. Three-stage linear

Fig. 3 Tool wear image analysis process
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gray scale transformation is used and the equation is as fol-
lows:

g x; yð Þ ¼

c
a
f x; yð Þ; 0≤ f x; yð Þ < a

d−c
b−a

f x; yð Þ−a½ � þ c; a≤ f x; yð Þ < b

e−d
g−b

f x; yð Þ−b½ � þ d; b≤ f x; yð Þ < g

8>>>>><>>>>>:
ð9Þ

where f(x,y) is the original gray scale of any pixel, g(x,y) is the
gray scale of the pixel after linear transformation, and a, b, c,
d, e, and g are constants, which determine the slope of the
linear transformation and the stretching range of gray scale
transformation. In order to obtain a clear wear edge, the linear
transformation parameters are debugged, and the final param-
eters are taken as follows: a = 100, b = 140, c = 30, d = 100, e
= 256, and g = 270.

Figure 6 shows the histograms of grayscale value before
and after linear transformation. It can be seen that after linear
transformation, the distribution of pixel points is more con-
centrated, thus effectively highlighting the wear area. Figure 7
shows the effect of median filtering and linear transformation.
It can be seen from the processed image that the wear area is
clearly distinguished from the irrelevant background, which is
benefit for obtaining tool wear value.

2.2.2 Threshold segmentation

In order to extract the wear contour boundary of the tool, it is
necessary to segment the wear area and background on the
image. The choice of threshold determines the effect of image
segmentation. The maximum between-class variance method

(Otsu) [30] is a threshold segmentation method that calculates
the between-class variance of the image and takes the thresh-
old corresponding to the maximum between-class variance as
the best threshold. Since the wear area and the background
gray scale characteristics are different, the smaller the variance
between the classes, the more blurred the information is mixed
by the threshold, which is not conducive to extracting the wear
area. When the variance between the classes is greater, it in-
dicates that the two are more distinct. The image after the
threshold segmentation process is shown in Fig. 9a. It could
be seen that the Otsu method could effectively segment the
wear area and the background. Nevertheless, it still contains
irrelevant areas and requires further processing.

In order to obtain more reliable wear area, the binary mor-
phology is used to process images after using Otsu method.
Binary morphology is a method of processing image collections
by constructing structural elements, including image erosion and
expansion. The image erosion of the image X using the structural
element S is denoted as X⊖ S. If S is still in the set X after being
translated by a distance x, the position of the point is recorded
and the new set (S)x of points obtained is the result of image
erosion. The image expansion of the imageX using the structural
element S is denoted as X⊕ S. If the intersection of the new setbS� �

x
obtained after S is shifted by x and the set X is not an

empty set, the position of the point is recorded and the new set of

points bS� �
x
obtained is the result of image expansion. The

equations of erosion and expansion are as follows:

X⊖S ¼ xj Sð Þx⊆Xf g ð10Þ
X⊕S ¼ xj bS� �

x∩X
h i

≠∅
n o

ð11Þ

)c()b()a(

Region of

interest

Fig. 4 Image cropping: a
standard image, b image with
highest SSIM value, c region of
interest recognition

(a) original image (b) image after median filtering

Fig. 5 Image gray scale
distribution. a Original image. b
Image after median filtering
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The opening operation means that the image is first eroded
and then expanded to separate the seemingly connected
pixels. The closed operation means that the image is first ex-
panded and then eroded to connect the intermittent pixels. The
flexible use of opening and closed operations could effectively
optimize the wear area and facilitate the extraction of its edges.
In addition, in order to eliminate the influence caused by ir-
relevant areas with a large difference from the wear area, the
areas of a small number of pixels accumulated are removed.

Figure 8 shows the changes of the wear image before and
after the morphological processing. The white area in the low-
er right corner of Fig. 8b has been removed after processing,
as shown in Fig. 8c. The results show that the morphological
processing can effectively eliminate the burrs generated by the
Otsu threshold segmentation and make the edges smoother. In
addition, the influence of irrelevant regions on edge extraction
is also eliminated.

2.2.3 Edge detection

After the threshold segmentation process, the pixel grayscale
value changes sharply at the tool wear boundary and the wear
contour boundary could be extracted. Compared with tradi-
tional operators, Canny operator has excellent edge detection
ability and good robustness [9].

Canny edge detection steps are as follows: first, the image
is convolved with the Gaussian template to smooth the image.
Secondly, the gradient magnitude and direction of the tool
wear image are calculated. The non-maximum values of the
image edge are suppressed and only the gradient maximum
points are retained as the candidate edge. Then, the upper and
lower bounds of the threshold are set. Keep the non-isolated
edges between the bounds and the edges larger than the upper
bound of the threshold. Finally, the closed operation is used to
smooth the extracted edges. Figure 9 shows the result of edge
detection. It can be seen that the wear edge obtained by using
Canny operator for edge detection is clear and complete.

2.2.4 Wear value extraction

In order to extract the wear value from the edge of the tool
wear contour, it is necessary to calibrate the camera pixel
equivalent. Firstly, fix the camera’s shooting angle, focal
length, and other factors. Then, use the ruler as a reference
standard and calculate the ratio of the number of pixels N
occupied by the grayscale value on the ruler to the actual scale
valueD as the pixel equivalent of the camera. The equation of
pixel equivalent is as follows:

K ¼ D=N ð12Þ

(a) before linear transformation                       (b) after linear transformation

Fig. 6 The histograms of
grayscale value. a Before linear
transformation. b After linear
transformation

(a) original image                       (b) median filtering                    (c) linear transformation

Fig. 7 Tool wear image. a
Original image. b Median
filtering. c Linear transformation
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The row scan and column scan on the tool wear edge are
performed. The maximum wear width of the flank VBmax is
the maximum number of pixels between the smallest column
and the largest column in each row. The average wear width of
the flank VBave is the ratio of the total number of pixels in the
wear area to the number of rows. In addition, the total number
of pixels in the wear area is used to calculate the area of the
flank wear AVB. Therefore, the tool wear value could be
extracted.

2.3 Surface texture of workpiece analysis

Texture analysis has always been a very challenging direction
in machine vision and pattern recognition, so it has been wide-
ly studied [19, 31, 32]. The texture refers to a group of basic
elements or spatial organization composed of primitive ele-
ments, the basic microstructure in natural images and the
atoms of human forward-looking visual perception [33]. The
texture would obey some statistical properties and the appear-
ance of different texture would be different. Tool wear is di-
rectly reflected in the surface topography of the processed
workpiece. As shown in Fig. 10, machining by a new tool
produces a smooth surface, so that the incident light is regu-
larly reflected, making the texture in the image appear consis-
tent. When the tool is worn, the grooves and ridges of the tool

are unevenly distributed as well as the surface of the work-
piece becomes rough. The diffuse reflection of incident light is
more intense, which means that a rough surface is brighter
than a smooth surface. Therefore, this paper will discuss the
relationship between machined surface texture and tool wear
in milling by using the gray-level co-occurrence matrix
method.

The gray-level co-occurrence matrix method is a method
based on statistics. First, for any point (x, y) and another point
(x +Δx, y +Δy) next to the former one, set the grayscale value
of the pair of points as (f1, f2). Then, the point (x, y) is traversed
through the entire image, so different pairs of points (f1, f2) are
obtained. Each pair of points is recorded and arranged into a
square matrix. Finally, the number of occurrences of (f1, f2) is
recorded and normalized to the probability p(f1, f2) and the
gray-level co-occurrence matrix is obtained. While the devia-
tion value (Δx,Δy) is different, the gray-level co-occurrence
matrix would also be different. When the deviation value
(Δx,Δy) of the image is smaller, the grayscale values of two
points are generally similar. This phenomenon is reflected in
the gray-level co-occurrence matrix as the diagonal of the
matrix and the nearby values are larger. For images with rapid
texture changes, the value distribution of each element of the
matrix is relatively uniform. To be specific, the following
parameters are usually used to describe texture features.

(a) Otsu method               (b) before morphological processing         (c) after morphological processing

Fig. 8 Threshold segmentation. a
Otsu method. b Before
morphological processing. cAfter
morphological processing

(a) Canny edge detection                               (b) tool wear edge   

Fig. 9 Edge detection. a Canny
edge detection. b Tool wear edge
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2.3.1 Angular second moment (ASM)

This feature is an index to describe the texture thickness of an
image. The smaller the ASM value is, the less smooth the
region is and the more irregular texture is. On the contrary,
when the ASM value is greater, the probability that the pixels
have the same gray-level is greater, which means that the
image is smoother and the texture is more regular. The equa-
tion of ASM is as follows:

ASM ¼ ∑
f 1

∑
f 2

p f 1; f 2ð Þ½ �2 ð13Þ

2.3.2 Contrast (CON)

Contrast represents the grayscale difference between different
grayscale areas of the image. There is a significant difference
in contrast between bright and dark areas. For the machined
surface image, the surface scratches processed by the new
knife are narrow and thin. When the tool is worn or blunt,
the scratches would become thicker and wider. Generally
speaking, the scratches have a strong ability to refract light,
resulting in the low contrast of texture images processed by
new tools and the high contrast of texture surfaces processed
by worn tools. The equation of CON is as follows:

CON ¼ ∑
f 1− f 2

f 1− f 2ð Þ2 ∑
f 1

∑
f 2

p f 1; f 2ð Þ
" #

ð14Þ

2.3.3 Correlation (COR)

The correlation is embodied in the local grayscale correlation
of the texture. If the grayscale value in neighborhood is the
same, the processed surface of the workpiece is smoother and
the correlation is greater. On the contrary, the correlation is
smaller. The equation of COR is as follows:

COR ¼
∑
f 1

∑
f 2

f 1 f 2p f 1; f 2ð Þ−μxμy

σxσy
ð15Þ

where:

μx ¼ ∑
f 1

f 1 ∑
f 2

p f 1; f 2ð Þ

μy ¼ ∑
f 2

f 2 ∑
f 1

p f 1; f 2ð Þ

8>><>>: ð16Þ

σ2
x ¼ ∑

f 1

f 1−μxð Þ2 ∑
f 1

∑
f 2

p f 1; f 2ð Þ

σ2
y ¼ ∑

f 2

f 2−μyð Þ2 ∑
f 1

∑
f 2

p f 1; f 2ð Þ

8>><>>: ð17Þ

2.3.4 Entropy (ENT)

This indicator is used to measure the amount of information in
the image. It reflects the disorder or complexity of the texture in
the image. Larger entropy value means that the texture is more
complex. On the contrary, lower entropy value means that the
texture is more regular. The equation of ENT is as follows:

ENT ¼ −∑
f 1

∑
f 2

p f 1; f 2ð Þlog2p f 1; f 2ð Þ ð18Þ

By calculating the four indicators of ASM, CON, COR, and
ENT, tool wear can be explored from the aspect of surface
texture of workpiece.

3 Experiment

3.1 Experiment conditions

In order to verify the reliability of the monitoring system as well
as explore the relationship between surface texture of workpiece

(a) machined by a new tool                      (b) machined by a worn tool

Fig. 10 Surface texture of
workpiece. a Machined by a new
tool. b Machined by a worn tool
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and tool wear, the experimental platform was built as shown in
Fig. 11. The designed experiment was carried out on the
MVC650 CNC milling machine. The workpiece is a nickel-
based superalloy Inconel 718 with a size of 120 mm × 60 mm
× 35 mm. As nickel-based superalloys are difficult-to-machine
materials and internal cooling technology can effectively dissi-
pate the milling heat [34], the milling experiment was carried out
under directional internal cooling condition. The internal cooling
cutter is a Sandvik CoroMill R390 020A20-11M internal
cooling cutter from Sweden and the type of insert is R390-
11T3 04E-PL S30T, the TiAlN coated carbide insert.

The visual monitoring platform is composed of CCD camera,
camera fixture, industrial lens, ring light source, compute, etc. In
order to reduce the impact of the vibration the machine tool on
the position of camera, the CCD camera was fixed on a workta-
ble with a certain distance from the machine tool spindle through
the camera fixing bracket. In order to reduce the impact of cutting
fluid sputtering on imaging under directional internal cooling
condition, a lens protective cover was installed in front of the
lens to guarantee the quality of images. A handheld digital mi-
croscope model AM4113ZT Dino-Lite Premier from China was
used to measure the true wear value of the tool. The image
acquisition under internal cooling condition is shown in Fig. 12.

3.2 Experiment design

In order to verify the reliability of the monitoring system and to
explore tool wear and the change of the surface texture, the ex-
periments consisted of two parts. The first part was an accuracy

detection experiment of monitoring system based on the tool
wear image. In order to avoid the contingency of the shape of
tool wear zone, nine sets of inserts are used to explore the change
of tool wear with different processing parameters by the design of
orthogonal experiments. The second part was a texture analysis
experiment. The gray-level co-occurrence matrix method was
used to explore the relationship between surface texture of work-
piece and tool wear. Two experiments are as follows:

3.2.1 Experiment 1

Taking cutting speed v, feed per tooth fz, and cutting depth ap
as factors, a three-factor three-level orthogonal experiment

Fig. 11 Experiment site

Fig. 12 Image acquisition under internal cooling condition
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was designed. The milling parameters are shown in Table 1.
There were nine sets of experiments. The milling method was
down milling, the milling width ae was 15 mm, the milling
length L was 450 mm, and each set of experiment milled 20
times. After a set of milling experiment was completed, the
tool returned to the set image acquisition point and the CCD
camera acquired the tool wear image automatically. Then the
worn tool was disassembled and the wear value was measured
with a handheld microscope, which was compared with the
result obtained by the monitoring system.

3.2.2 Experiment 2

As shown in Table 2, a set of processing parameters was
selected to carry out the full-life milling experiment. In order
to explore the relationship between the surface texture of
workpiece and tool wear value, the insert was removed and
the wear value was measured every interval milling time T. At
the same time, the texture image of the machined surface was
acquired and the characteristics were extracted.

3.3 Application prospect of integration with indirect
method

Only using machine vision for tool wear monitoring has some
disadvantages, as tool images could only be acquired during
processing intervals, which may occupy a lot of production
time and is difficult to check sudden damages. However, the
indirect method could obtain the information related to tool
wear in real time, while the accuracy is inferior to that of the

direct method. Therefore, the proposed method will be com-
bined with the indirect method. The complete tool wear mon-
itoring system keeps the advantages of the machine vision
method while acquiring the acoustic emission signals during
processing in real time, as shown in Fig. 13. Machine learning
algorithms would be proposed to control the frequency of
image acquisition according to the emission signal system.
When the acoustic emission signal system shows the tool wear
is slight, the tool image would not be acquired to save produc-
tion time. With the deepening of tool wear, the frequency of
image acquisition is gradually increased to obtain the accurate
value of tool wear. When sudden damages occur, this system
could also control the camera to acquire images. Under the
premise of ensuring a lot of production time will not be occu-
pied, the real and reliable value of tool wear can be obtained.
The complete system has the advantages of the direct and
indirect methods, which is a potential work and also has pos-
itive application prospects. The details and the application
prospect of the system are still being developed.

4 Results and discussion

4.1 Tool wear image

Figure 14 shows the tool wear calculated by the monitoring
system and measured by microscope. Figure 15 shows the
comparison between the real tool wear values measured using
the microscope and the wear values calculated by the moni-
toring system. The results show that the minimum error rate of
the average wear width of the flank face VBave measured by
the monitoring system and the real value is 0.88%, the maxi-
mum error rate is 5.73%, and the average error rate is 2.88%.
The minimum error rate of the maximum wear width of the
flank face VBmax is 1.36%, the maximum error rate is 5.17%,
and the average error rate is 2.66%. Therefore, the monitoring
system can effectively monitor the wear of the tool and the
accuracy meets the industrial requirements.

Figure 16 shows the comparison between the wear area
calculated by the monitoring system and the wear value. It
can be seen that the wear area of the flank face AVB has the
same changing trend as the wear width of the flank face under
different processing parameters. Therefore, the wear area of
the flank face AVB can be used as one of the effective indexes
for the tool wear status.

4.2 Surface texture of workpiece

In order to facilitate the calculation, the texture images were
compressed from 256 gray-levels to 16 gray-levels. The gray-
level co-occurrence matrix when the image angles are 0°, 45°,
90°, and 135° were calculated by GLCM. The values of ASM,
CON, COR, and ENT were extracted to describe the surface

Table 1 Milling parameters of experimental 1

Number Cutting speed
v (m/min)

Feed per tooth
fz (mm/z)

Cutting depth
ap (mm)

1 80 0.08 0.4

2 80 0.1 0.5

3 80 0.12 0.6

4 100 0.08 0.5

5 100 0.1 0.6

6 100 0.12 0.4

7 120 0.08 0.6

8 120 0.1 0.4

9 120 0.12 0.5

Table 2 Milling parameters of experimental 2

Number Cutting speed
v (m/min)

Feed per tooth
fz (mm/z)

Cutting depth
ap (mm)

1 110 0.09 0.55
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texture image of the workpiece. The averages of the 4 direc-
tional features were taken as the final results. Figure 17 shows
the changes of the four features extracted from the gray-level
co-occurrence matrix with the increase of milling time. It can
be seen that when the machining time reached 28min, the tool
had entered a stage of severe wear.

As shown in Fig. 17a, for the surface texture of workpiece
image, the ASM value decreases with the increase of the pro-
cessing time, showing a negative correlation. In the initial
processing, the tool wear is slight. The texture after machining
is relatively smooth and changes regularly, so the ASM value
is larger. As the machining progresses, the texture changes
irregularly due to tool wear and the ASM value becomes
smaller. From Fig. 17b, before 28 min, the CON value tends
to increase slowly because of the continuous tool wear. After
28 min, the surface quality of the workpiece deteriorates,
greatly enhancing the ability of the workpiece surface to

reflect light. Therefore, the CON value is greatly increased.
It can be seen from Fig. 17c that theCOR value decreases with
the increase of processing time. The deterioration of the work-
piece surface quality caused by the tool wear leads to a differ-
ence in the grayscale value in the neighborhood of any point.
Therefore, the COR value shows a downward trend.
Figure 17d shows that the ENT value of the image of surface
texture increases with the increase of the processing time and
it has a greater increase after 28 min. The tool enters a period
of severe wear, which means that the geometry of the tool
changes and the surface texture of workpiece changes become
complicated. Therefore, rich information is contained in the
image and the ENT value is increased. To sum up, using the
surface texture of workpiece can analyze the tool wear from
another aspect and using GLCM can clearly see the change
trend of related parameters, which is of great significance to
the judgment of tool wear.

Fig. 13 Tool wear monitoring system with indirect and direct methods

(a) calculated by monitoring system (b) measured by microscope   

200μm

Fig. 14 Tool wear value. a
Calculated by monitoring system.
b Measured by microscope
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detection experiment. a Average
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5 Conclusions

In order to solve the problems of low tool utilization and high
cost caused by tool wear in the milling process, this paper
proposes an automatic tool wear monitoring system. The tool
wear was characterized from different aspects and the accura-
cy of the system was verified by milling experiments. The
specific conclusions are as follows:

1. A tool wear monitoring platform based onmachine vision
was established. Except the width of the flank face, the
wear area of flank face was used as a new tool wear
evaluation index. The tool wear monitoring system and
detection software were designed. Structural similarity
algorithm and Harris corner detection algorithm were
used to solve the problem of automatic shooting tool an-
gle. The automation of the monitoring was achieved. The
use of binary morphology method improved the image
quality, resulting in smooth and complete tool wear edges.

2. A superalloy milling experiment was carried out to verify
the reliability of the monitoring system. The results
showed that the error rate between the wear value calcu-
lated by the monitoring system and the real wear value

measured using the microscope was within 5.73%. The
accuracy met the industrial requirements. In addition, the
wear area and the wear width were consistent in trend
under different processing parameters, which means that
the average wear area of flank could be used as one of the
indexes for judging tool wear.

3. The gray-level co-occurrence matrix method was used to
explore the relationship between the surface texture of
workpiece and the tool wear. Four characteristic parame-
ters ofASM,CON,COR, and ENT are used to characterize
the texture. The results showed that the ASM and COR
values decreased while the CON and ENT values in-
creased with the increase of tool wear. Therefore,
GLCM-based surface texture analysis could be used as a
new aspect to measure tool wear.

Our future work will focus on the integration of machine
vision, acoustic emission signals, and machine learning algo-
rithms, thus developing the on-line tool wear monitoring sys-
tem based on the combination of direct and indirect methods.

Author contribution Ruitao Peng contributed to the conception of the
study; Jiachen Liu performed the experiment and was a major contributor
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