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Abstract
Thermoplastics are widely used in industry and life fields. Laser transmission welding (LTW) provides a solution to improve
comprehensive performances of different thermoplastics. This paper reviews LTW process of thermoplastics according to
classification of composition and structure of materials, such as the fiber-reinforced thermoplastics (FRP), polycarbonate (PC),
acrylonitrile/butadiene/styrene (ABS), polyethylene terephthalate (PET), polypropylene (PP), and polymethyl methacrylate
(PMMA). The effects of typical laser parameters, such as laser power and scanning speed on the welding strength of materials,
are discussed. The impact of reinforcement or additive on the laser welding process is also elaborated. As an auxiliary to
experimental tools, the modeling and simulation methods involved in the welding process are also presented and it is concluded
that finite element method (FEM) is the primary techniques employed in modeling and simulations. Response surface method-
ology (RSM) and artificial neural network (ANN) have also shown advantages in the welding research. Mixed method (MM),
which combines various kinds of modeling and simulation methods, can be employed to obtain optimized process parameters
more efficiently. In general, still, significant research is needed to improve the welding quality of thermoplastics by combining
experiments with modeling and simulations.
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1 Introduction

Thermoplastics are commonly used in automotive, furniture,
biological, and medical fields due to the excellent properties
of low density, good flexibility, and low cost [1–5].With rapid
industrial development, the monolithic materials are unable to
meet the diverse performance requirements in extreme envi-
ronments. Laser transmission welding (LTW) is a promising
connection technology that combines different thermoplastics
to achieve better comprehensive properties of mechanical
strength, temperature resistance, and thermal conductivity
[6]. LTW is also a useful tool to obtain complex parts in the
micromachining field [7]. Although laser welding of various
metals such as copper [8], aluminum [9], and titanium [10],
and corresponding alloys [11–13] have been studied for

several years, multiple challenges faced in LTW of thermo-
plastics still need to be addressed.

Schematic of LTW of transparent materials is displayed in
Fig. 1. Laser beam passes though the transparent part and
focuses on the absorbent part. Then, materials melt on the
interface and join each other due to the heat diffusion [14].
As the transparent material is between the welding surface and
the laser beam, the energy transfer process is more difficult to
control to obtain high welding quality which is characterized
by tensile strength, microstructure, and elemental composi-
tion. A comprehensive review of the related studies is crucial
for the development of LTW. In the field of laser welding,
extensive review has been performed on the alloys of magne-
sium [15], copper [16], and titanium [17]. However, for ther-
moplastics, the reviews only exist on the thermal degradation
in LWT of polycarbonate (PC) and polyamide 6 (PA6) [18].
Hence, a comprehensive review of the LTW of thermoplastics
is required to promote the development of welding field.

In this paper, an overview of LTW is provided to present
the process for typical thermoplastics such as fiber-reinforced
thermoplastics (FRP), polycarbonate (PC), polyethylene tere-
phthalate (PET), polypropylene (PP), and polymethyl meth-
acrylate (PMMA). The complicated physical and chemical
processes involved in LTW can be simulated using models
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which can be more conducive to optimize the process param-
eters. To further understand the welding process, finite ele-
ment method (FEM), response surface methodology (RSM),
artificial neural network (ANN), and other mixed methods
used in LTW are also discussed. The summary of the current
study and the development direction are outlined at the end of
the paper.

2 LTW process of thermoplastics

For different welding materials, it is vital to select appropriate
process conditions to obtain better welding quality. Hence,
welding process of the typical thermoplastics and effects of
process parameters on welding features are deliberated.

2.1 Fiber-reinforced thermoplastics (FRP)

Carbon fiber is the most widely used reinforcement material
due to good tensile strength and light weight [19]. Mechanical
properties and heat resistance of thermoplastics can be im-
proved by adding carbon fiber in the matrix [20, 21]. Carbon
fiber-reinforced thermoplastics (CFRP) play an increasingly
important role as engineering materials.

Jaeschke et al. [22] performed LTW of CFRP using a semi-
crystalline polyphenylene sulfide (PPS) as the matrix. The
welding materials with different thicknesses and non-fibers
were designed as the contrast experiments. Results indicated
that the absorption behavior of composites was significantly
affected by the carbon fibers and the reinforcement was con-
ducive to improve the shear strength. The temperature distri-
bution was changed by the orientation of carbon fibers, lead-
ing to the formation of weld seam. These results were also
confirmed by Wippo et al. [23]. Their experimental results
found that selection of an appropriate laser scanning path
was beneficial to improve the stability of welding quality.
Figure 2 shows cross sections of samples at different energy
per unit length (Fig. 2a) and carbon fiber arrangements (Fig.
2b). A prominent gap was observed at the connection of

welding parts at low energy per unit length. As the value of
process parameters increased, thermal damage became more
severe. The PPS decomposed at high temperatures due to
generation of pores inside the material. The heat conduction
between PPS changed with different arrangements of carbon
fiber, leading to a decrease in height of the welding lens.
Berger et al. [24] investigated the LTW of transparent filler
materials of PA6 to connect PA6 reinforced with carbon fi-
bers. It was found that the process parameters of laser power
and feeding rate depended on the optical properties of mate-
rials. In addition, the welding quality was little affected by the
roughness of welding surface.

Glass fiber is also a typical reinforcement in the thermoplas-
tics. Welded structural parts composed of nylon-doped glass
fiber are widely used in automobile and garden fields [25, 26].
Grewell et al. [27] reported on the LTW of composites of glass
fiber-reinforced nylon. The tensile strength increased with the
rise in content of glass fibers. They also studied the effect of
different colorants on laser transmittance. Figure 3 shows the
transmittance of colored nylon for different wavelengths.
Except for the white nylon, the transmittance reduced with de-
crease in wavelength. The transmittance changed with the col-
orants in the descending order of red, natural, yellow, green, and
white. Chen et al. [28] measured the absorption coefficient of
LTW of glass fiber-reinforced PA6 via direct-scan method. The
advantages of this method are wide applications and no special
environment is required in the laboratory. However, the draw-
back is that the reflectance cannot be measured. The absorption
coefficient for PA6 without absorbent additives displayed sim-
ilar issues. As shown in Fig. 4, the experimental results sug-
gested that the absorption and the contents of carbon black (CB)
had a proportional relationship in the PA6 composites.
Materials with fiber reinforcement was found that materials
decomposed fibers led to longer transmission path [29, 30].
Hence, the absorptivity was closer to the surface of the mate-
rials. In comparison to the materials without glass fibers, not
only the scattered light was increased, but also the peak height
of laser energy was density decreased in the reinforcement ma-
terials [31, 32].

Fig. 1 Schematic of LTW of
transparent materials [14]

2094 Int J Adv Manuf Technol (2021) 116:2093–2109



2.2 Polycarbonate (PC)

Effects of laser power and scanning speed on the welding
strength of PC were studied by Sekou et al. [33]. It was found
that materials decomposed at high energy input with high
power and low speed. However, low energy input at low pow-
er and high speed was not enough to melt materials. Results
indicated that decent welding strength could be obtained at
medium laser power and speed which could melt PC without
a negative effect on the welding quality [34]. With regard to
representative indicators of welding quality, namely welding
strength and width, the sensitivities to laser power and scan-
ning speed were different [35]. These results can provide a
reference for the optimization of process parameters.

To increase the absorption of materials to laser, CB is usu-
ally used as an additive in thermoplastics. Wang et al. [36]
characterized the size, shape, and distribution of CB in LTW
of PC. The particle diameters of CB in PC ranged from 5 to
20 nm due to better dispersion and were smaller than the sizes
of CB in PA6. As the optical properties are the important
aspects of the welding process, the suitable selection of laser
wavelength is crucial to improve the quality of LTW [37,
38].The introduction of additives plays a positive role in
obtaining better welding quality of materials. However, the
process is relatively complicated compared with the process
without absorber [39–41].

Mamuschkin et al. [42] studied the intensity distribution of
laser wavelength at 968 nm and 1530 nm on the welding
surface of PC containing different TiO2 contents. As shown
in Fig. 5, the intensity decreased significantly with the rise in
TiO2 content at the wavelength of 968 nm. The loss of inten-
sity could be compensated by increasing laser power, but it
was ineffective on the zero intensity at the TiO2 content of 2%.
Although similar tendency of laser intensity was observed at
the wavelength of 1530 nm, the attenuation slowed down
prominently. This result indicated that more energy saving
could be achieved in the LTW of PC containing TiO2 by
operating at 1530 nm.

2.3 Acrylonitrile/butadiene/styrene (ABS)

ABS is a promising thermoplastic which can exhibit different
properties by changing the composition of acrylonitrile, buta-
diene, and styrene [43]. Vidal et al. [44] performed experi-
mental study on the LTW of natural ABS and carbonFig. 3 Transmittance of colored nylon for different wavelengths [27]

Fig. 2 Cross sections of samples at welding parameters: different energy per unit length (a) and carbon fiber arrangements (b) with Es = 100 J/cm [22]
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nanotube–doped ABS. Figure 6 shows the weld width and
shear force as a function of line energy. There is a linear rela-
tionship between the weld width and line energy at different
scanning speeds and contents of carbon nanotubes. The rise in
weld width was more prominent with the increase in linear en-
ergy at higher carbon nanotube contents. Accordingly, the max-
imumvalue of shear force was higher than that at low percentage
of carbon nanotubes. Notably, the relationship of shear force and
line energywas not linear, but was expressed by a polynomial fit.
In addition, higher content of carbon nanotubes inABS led to the
formation of a welding seam that was more sensitive to the
change in of process parameters [45].

2.4 Polyethylene terephthalate (PET)

PET is extensively employed as a medical and food plastic
due to excellent physicochemical and biological properties
[46, 47]. Hermetical capacity is an important index to evaluate

the reliability of PET. Wang et al. [48] explored the LTW of
PETwith the coating of infrared absorbing medium and tested
the water vapor permeability. The transmittance spectra of
pure and coated PET are shown in Fig. 7. The results of tests
suggested that the welding seam was in good condition after
aging and the permeability was lower than 0.02 g in 24 h. This
indicated that LTW was a useful tool to join PET with good
sealing performance and aging resistance. The advantages of
laser in transparent material packaging have been confirmed
by other researchers [49, 50].

In order to obtain environment-friendly structural parts,
Gisario et al. [51] employed LTW technology to process
PET. As shown in Table 1, the mechanical properties could
be adjusted by adding different contents of ethylene-vinyl
acetate copolymer mixture (PEVA). The maximum load at
break and maximum Young’s modulus decreased by increas-
ing PEVA in PET. Maximum elongation presented the oppo-
site trend and rose up to 10% in comparison to as-received

Fig. 4 Direct-scanmethodmeasured absorption coefficient as a function of CB level and laser scan speed for PA6: awithout glass fiber and b containing
glass fiber [28]

Fig. 5 Distribution of laser intensity in the joining plane at different TiO2 contents [42]
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PET. This was primarily due to the difference in the distribu-
tion of additive phase dispersed in the matrix.

2.5 Polypropylene (PP)

PP is a promising thermoplastic and has become the material
of choices to replace traditional engineering plastics [52].
Ghorbel et al. [53] conducted a process study to weld PP.
Natural PP and CB-doped PP were used as the transmission
layer and absorption layer, respectively. Figure 8 shows the
morphology of welding seams of natural PP and CB-doped PP
at different scanning speeds. The dimensions of welding
seams increased with the decrease in scanning speed. The
main reason was that lower scanning speed led to more energy
accumulation. Also, decomposition of PP may be caused by

higher temperature leading to voids in the welding seam. This
phenomenon of PP is similar to those of PPS [22] and PC [33].

Poor compatibility is the one of the main bottlenecks to
obtain high welding quality. Liu et al. [54] proposed to adapt
grafting modification technology to weld PP and PA66. By
using polar maleic-anhydride, the welding strength of PP and
PA66 enhanced from 0.3 to 3.5 MPa owing to inter-diffusion
structure and chemical reactions. The chemical reaction is
presented in Fig. 9. The uniform bubble distribution was ben-
eficial to improve the bonding strength of materials.

2.6 Polymethyl methacrylate (PMMA)

PMMA has great application prospects in biomedical and in-
dustrial fields [55, 56]. Devrient et al. [57] investigated the

Fig. 6 Weld width (a) and shear force (b) as a function of line energy for different contents of carbon nanotubes [44]

Fig. 7 Transmittance spectra of
pure and coated PET [48]
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LTW of PMMA with part adapted temperature fields.
Figure 10 shows the experimental setup and schematic dia-
gram. Using the pyrometric system, temperature was mea-
sured in the LTW process, which was of great significance
to improve the tensile strength of materials. Schmitt et al. [58]
used the optical coherence tomography to observe the defects
in the welding seam. The monitoring system and results of
detection of PMMA are shown in Fig. 11. In addition to the
conventional laser processing system, the measurement sys-
tem was integrated to detect the defects in welding seam.
Based on this technology, the optimized process parameters

for better welding quality can be obtained in a short duration.
By measuring the distribution of laser power flux at the
welding interface transverse to the laser scanning direction,
the conditions of LTW can be examined [59].

Bauernhuber et al. [60] explored the LTW of PMMA and
structural steel. Effects of surface treatments and laser welding
process parameters on the welding quality were investigated.
Results indicated that sandblasting on the sample surface
could not only increase the welding area of the materials,
but also improve the laser absorption, in order to obtain higher
welding strength. Owing to the impact of pulse shape on the
laser power and energy, an effective way to improve the
welding strength is the adjustment of appropriate waveform.

3 Modeling and simulation in LTW

As auxiliary methods, modeling and simulation cooperate
with experiment research to effectively shorten the process
exploration time and efficiently obtain the ideal process pa-
rameters [61, 62]. This section introduces the commonly used
modeling and simulation technologies in LTW and the char-
acteristics of various methods are also analyzed.

Table 1 Mechanical properties of PET with different PEVA [51]

Material Maximum load
at break/N

Maximum Young’s
modulus/MPa

Maximum
elongation/mm

PET 110.4 ~1100 0.97

PET-PEVA
(5 wt%)

102.8 ~1030 1.04

PET-PEVA
(10 wt%)

98.6 ~950 1.09

PET-PEVA
(15 wt%)

90.4 ~860 1.10

Fig. 8 Morphology of welding
seams of natural PP and CB-
doped PP at different scanning
speeds [53]
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3.1 Finite element method (FEM)

The process of LTW is accompanied by the change in tem-
perature field in materials, especially the thermal degradation
which is crucial to the welding strength of materials [63].
Bates et al. [18] employed FEM combined with a non-linear
model-fitting method to study the thermal degradation of PC
and PA6 containing CB in LTW. Figure 12 shows the com-
parison of theoretical and experimental results of power caus-
ing degradation and the onset of welding strength decline as a
function of CB content in PC and PA6. As shown in Fig. 12a
and b, both for PC or PA6, power decreased with the increas-
ing contents of CB. Notably, the difference between experi-
mental and predicted results was more prominent at lower
contents of CB as a result of poor dispersion. Similarly, with
the increase in CB content, power at the onset of welding
strength decline gradually decreased in both PC and PA6
(see Fig. 12c and d). As the reduction in molecular weight
of the materials during LTW was not considered, the theoret-
ical calculation values were about 25% higher than the exper-
imental results. In addition to the process parameters and ma-
terial composition, the temperature field was also affected by
the distribution of laser beam [64].

Mayboudi et al. [65] developed a two-dimensional finite
element model to investigate the LTW of nylon 6. Although
the depth of molten zone and distribution of temperature in
laser-treated area were predicted, a three-dimensional model
was necessary to calculate the spatial state changes of mate-
rials during the welding process [66, 67]. The researchers also
studied the distribution of temperature along the depth of

materials in the LTW of PA6 using thermal imaging and the-
oretical calculations [68]. Figure 13 shows the three-
dimensional thermal model (Fig. 13a) and comparisons be-
tween the thermal imaging and modeling along the depth of
the laser absorbing (Fig. 13b) and transmitting parts (Fig.
13c). Results indicated that the temperatures calculated by
the model were in good agreement with the data obtained in
the experiments. In addition, the rationality of data predicted
by FEMwas verified using finite volumemethod (FVM) [69].

Geiger et al. [70] investigated the effects of absorption coef-
ficient of PP on the temperature fields and geometry of molten
pool using FEM. The group concluded that the geometry of
molten pool was negligibly affected by the absorption coefficient
change with the temperature field. There have been several
works on the temperature field simulations. However, the study
of force fields in LTW is also important, especially the relevant
interaction of different fields [71]. Labeas et al. [72] proposed the
thermo-mechanical model to predict the distribution of tempera-
ture and stress in the LTWof PPS. This model was convenient to
systematically study the influence of various process parameters
on the real-time welding process by combining multi-physics
fields. Becker et al. [73] and Zoubeir et al. [74] also proved that
the residual stress field was directly related to the quality of
material welding and was as crucial as temperature field.

The welding quality is significantly affected by the heat
transfer state between the welding interfaces [75]. Liu et al.
[76] developed thermal contact model to study the effect of
interfacial contact status on the LTW of PA66. Figure 14
shows a schematic diagram of the heat-affected zone (Fig.
14a) and the comparison of the profile of heat-affected zone

Fig. 9 Chemical reaction between the grafting-modified PP and PA66 [54]

Fig. 10 Experimental setup and schematic diagram: a device of LTWwith simultaneous thermal radiation detection, b arrangement of gap on surface of
absorbing plastic, c method to ensure the laser spot in the center of the measuring system [57]
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at the cross-section (Fig. 14b, c, d). It was found that the heat-
affected zone (HAZ) in opaque PA66 was larger than the
transparent PA66 because the energy was mainly absorbed
by the opaque part. The simulations using thermal contact
model were more consistent with the experiments. Owing to
different thermal properties of PA66, the thermal contact re-
sistance led to differences of HAZ in transparent and opaque

PA66. Chen et al. [77] proposed a hybrid model with rotary
body and plane heat source to investigate the LTW of PP and
ABS. Figure 15 shows temperature distribution along the xy
and yz planes with the body and plane models. As shown in
Fig. 15a and b, the calculation of temperature field distribution
along xy was similar. The simulations of temperature field in
the YZ plane were also close. Although the molten pool of PP

Fig. 11 Schematic diagram of the monitoring system (a) and defects detection of PMMA (b) [58]

Fig. 12 Comparison of theoretical and experimental results: power causing degradation as a function of CB contents at the surface of PC (a) and PA6 (b),
power at onset of weld strength decline as a function of CB contents in PC (c) and PA6 (d) [18]
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was wider than ABS in Fig. 15c and d, the temperature at the
corresponding position was opposite. The temperature of PP
was higher in the hybrid model. However, the temperature of
ABS was higher in the plane model. This was mainly caused
by the difference in laser energy absorption and material heat
conduction in the model. The experiments prove that the hy-
brid model has higher precision and can better reflect the real
situation.

3.2 Response surface methodology (RSM)

Several process variables are involved in LTW and have
comprehensive impact on the welding quality. RSM pro-
vides an effective way to study the relationship between
variables. In the process of using the response surface meth-
od, it is usually necessary to link the variables to be studied
with mathematical formulas, and then combine the
ANOVA method to assess the importance of each variable
on the welding quality. Acherjee et al. [78] used RSM to

predict the welding strength and seam width in the LTW of
acrylic. Using ANOVA tables, it was found that the lap
shear strength was strongly affected by the welding speed.
This parameter and stand-off-distance had great impacts on
the seam width. The same method is applicable to the LTW
of PMMA to ABS [79]. RSM can also contribute to saving
processing costs [80]. Wang et al. [81] improved the
welding strength by introducing PC film between PMMA
and polybutylene terephthalate. Figure 16 shows interac-
tion effects of process parameters on the welding strength.
The welding strength increased at lower laser power and
slower welding speed (see Fig. 16a and b). In general,
higher laser power and higher welding speed signify higher
energy input, but it can easily cause thermal damage to
materials. The results indicated that laser power had a great-
er influence on the welding strength. The clamping pressure
is another factor that affects the welding strength [82].
Effect of clamping pressure on the welding strength varied
with laser power (see Fig. 16c and d). This was mainly

Fig. 13 Three-dimensional thermal model (a) and comparison between thermal imaging and modeling along the depth of laser absorbing (b) and
transmitting (c) parts [68]
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caused by the contact status between the welding materials
and molecular mobility in the welding process. Therefore,
the selection of moderate clamping pressure was conducive
to improve the welding strength. The combination of
Taguchi method and ANOVA can play a similar role in
the prediction of LTW [83, 84].

3.3 Artificial neural network (ANN)

ANN is an extremely powerful tool to predict the experimen-
tal results through learning and prediction by itself. As pro-
posed by Acherjee et al. [85], Fig. 17 shows a typical ANN
model to predict the lap shear strength and weld seamwidth in

Fig. 14 Schematic diagram of HAZ (a) and comparison of HAZ profile at the cross-section by experiment (b), thermal contact model (c), and traditional
model (d) [76]

Fig. 15 Distribution of temperature along different planes with the body and plane models: a xy plane, hybrid heat source model; b xy plane, Gauss
plane heat source; c yz plane, hybrid heat source model; and d yz plane, Gauss plane heat source [77]

2102 Int J Adv Manuf Technol (2021) 116:2093–2109



the LTW of acrylics. It was found that the results of ANN
prediction and experimental data were similar. The research
also proved that the precision of ANN was higher than multi-
ple regression analysis. However, ANN is based on the
existing process database. Before employing this model, it is
often necessary to obtain the characterization data of welding
quality through process experiments. Nakhaei et al. [86] in-
vestigated the LTW of acrylic by ANN. As shown in Fig. 18,
the experimental and prediction results were in good agree-
ment corresponding to different input variables. Therefore, the
results predicted by the model are credible.

3.4 Mixed methods (MM)

As each method of modeling and simulation has its limita-
tions, for a deeper insight into LTW, it is advantageous to
combine various methods. Acherjee et al. [87] investigated
the LTW of PC by a combined approach of FEM and RSM.
Figure 19 shows the flow chart of the mixed method. Firstly,
the temperature field and weld dimensions in the welding
process were simulated by FEM. After the rationality of the

model was verified by experiments, the influence of various
process parameters on the welding quality was studied using
RSM. Then, the process parameters were optimized to obtain
the ideal welding quality. Results indicated that the influences
of laser power, welding time, and beam width on the maxi-
mum value of temperature at the weld zone and interface,
weld width weakened in turn. However, the influencing fac-
tors of depth of penetration in the transparent and absorbing
materials weakened from welding time, laser power to beam
width. This method can be employed to study the LTW of PC
containing CB [88]. Wang et al. [89] proposed an integrated
method including FEM, RSM, and genetic algorithm (GA) to
study the LTW of PET and titanium. Figure 20 shows the
research route of the integrated method. Similar to the study
of Acherjee et al. [87], the results of FEM transmitted to RSM
were experimentally verified. Notably, GAwas used to obtain
the optimum parameters after RSM. Therefore, it is beneficial
to obtain better process parameters and save experimental
time and processing costs. Although this method included
GA which had a better guiding role in the final verification
of the selection of process parameters using experiments, in

Fig. 16 Interaction effects of process parameters on welding strength: laser power and welding speed of RSM (a) and contour plot (b), laser power and
clamping pressure of RSM (c) and contour plot (d) [81]
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comparison with the follow-up research works that used FEM
and RSM directly [90, 91], the calculation time increased due
to more modeling steps.

4 Summary and outlook

LTW has proven to be a promising technology for joining the
thermoplastics and has a wide range of applications. The ma-
terials connected by this technology are divided into transpar-
ent part and absorption part. The laser passes through the
transparent part and acts at the joint surface which leads to
thermal interaction between the joining materials. This article
reviews the LTW process based on the types of thermoplas-
tics. To date, the research works have primarily focuses on the
impact of laser power, scanning speed, and other process pa-
rameters on the welding strength and material microstructure.

Fiber reinforcement and CB have significant impacts on the
welding performance of thermoplastics. It is mainly concen-
trated on a series of processes caused by the second-phase
fiber or particle scattering of the laser beam. The selection of
laser wavelength also affects the welding quality. This is
mainly reflected by the difference in absorption rate of the
material components to the laser. The research on process
parameters and welding mechanism still need further studies.

Ideally, to obtain best welding effect, pure process experi-
ments are required which are time-consuming and costly.
Modeling and simulations have greatly promoted the devel-
opment of LTW. As the most typical and widely usedmethod,
2D or 3D modeling of welding materials is performed using
FEM to provide theoretical basis for the change in temperature
field due to heat conduction during LTW. LTW includes mul-
tiple process parameters. Hence, it is vital to study the influ-
ence of multiple process parameters on the processing quality.

Fig. 17 A typical ANN model to predict lap shear strength and weld seam width [85]

Fig. 18 Comparison of
experimental and prediction
results for lap shear strength [86]
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RSM provides routes for investigating the relationship be-
tween process parameters. In particular, it can visually display
the change trend of welding quality when multiple process
parameters are changed simultaneously. However, this meth-
od still needs to be based on the existing experimental results.
If there is a need to predict the influence of process parameters
on the welding quality by the experiments that have not been
done yet, then ANN method is more suitable.

The mixed method can provide the advantages of var-
ious modeling and simulation methods. By incorporating

a variety of methods in the LTW research in sequence, in
combination with experimental validation, the experimen-
tal time can be greatly shortened. The optimum process
parameters for welding quality can be more intuitively
reflected and best processing quality can be obtained
more conveniently. Notably, modeling and simulation
are only the auxiliary means of experiments. The accuracy
of the model and the simulation process can only be ex-
tremely close to reality, but there would still be certain
differences. The development of high-fidelity models and

Fig. 19 Flowchart of mixed method [87]
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obtaining results with fast simulations to guide experi-
ments is the future direction.
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