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Abstract
Real-time chatter detection is important in improving the surface quality of workpieces in milling. Since the process from stable
cutting to chatter is characterized by the progressive variation of the vibration energy distribution, entropy has been utilized to
capture the decreasing randomness of vibration signals when chatter occurs. To make such an index more sensitive to transitions
of the cutting state, the entropy can be computed based on signal components obtained through signal decomposition techniques.
However, the classic empirical mode decomposition (EMD) is difficult to put into practice due to its weak robustness to noises.
The up-to-date variational mode decomposition (VMD) has strict requirements on a priori information about the signal and thus
is not applicable either. In this paper, a novel method named the iterative Vold-Kalman filter (I-VKF) is proposed under the
framework of the greedy algorithm, where the Vold-Kalman filter (VKF), a classic order tracker for rotating machinery, is
improved to recursively extract each signal component. In the meantime, a spectrum concentration index–based technique is
developed for the estimation of the instantaneous chatter frequency to adaptively determine the filter parameter. Numerical
examples demonstrate the superiority of the I-VKF over the original VKF, EMD, and VMD, especially in the presence of strong
noises. Combined with the energy entropy of extracted components and an automatically calculated threshold, the proposed
strategy greatly helps in timely chatter detection, which has been verified by dynamic simulation and experiments.
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1 Introduction

Chatter is a type of unexpected self-excited vibration occur-
ring in almost all machining processes, which limits the

productivity, damages the machined surface, and shortens
the tool life [1]. With the development of automation, the
flexibility of the machine tool leads to diverse working con-
ditions in milling processes. Therefore, it is impossible to
completely avoid chatter. Over the past decades, researchers
devote their efforts to chatter prediction before milling. They
focus on the stability lobe chart based on the identified dy-
namic model of the milling system [2]. Nonetheless, chatter
may still occur when machining under stable conditions indi-
cated by theoretical prediction, because the lobe chart is sen-
sitive to the system parameters that are uncertain in
engineering.

Real-time chatter detection is an online approach necessi-
tating the least a priori information on the milling system.
Combined with the subsequent controlling operation, this
strategy helps to eliminate chatter in time. In real-time chatter
detection, various signals are collected to provide substantial
information, including the cutting force [3], spindle accelera-
tion [4], spindle torque [5], workpiece displacement [6], and
machining noise [7]. Signal processing methods are applied
then to extract the crucial feature, and the corresponding
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cutting state indicator can be established. The effectiveness of
such an indicator is the key to achieve the chatter prognosis at
an early stage.

Characterizing the variation in the vibration energy distri-
bution from stable cutting to chatter, entropy-based indicators
are widely used, such as the approximate entropy [8] and
multiscale entropy [9] in the time domain, and the normalized
spectral entropy [10] and spectral Rényi entropy [11] in the
frequency domain. However, these indices fail to reflect the
cutting state timely when raw data are analyzed, because the
complexity of milling responses reduces their sensitivity.
Under such a circumstance, signal decomposition techniques
are utilized as a pre-processor to decompose the original signal
into a series of simple intrinsic components. Although the
well-known empirical mode decomposition (EMD) [12] has
been applied [13], the lack of a rigorous mathematical foun-
dation makes this classic method extremely sensitive to noise
and thus difficult to put into practice. The later developed
variational mode decomposition (VMD) [14] outperforms
the EMD in robustness but requires the number of signal com-
ponents as a priori parameter [15], which is difficult to obtain
in engineering.Moreover, nonlinearity and time-delay in mill-
ing systems result in the wideband property of milling re-
sponses [16, 17]. Therefore, when the narrowband filter
bank–based approaches like the VMD and empirical wavelet
transform (EWT) [18] are applied, the obtained signal com-
ponents tend to be physically meaningless [19–21].

In real-time condition monitoring of rotating equipment,
the Vold-Kalman filter (VKF) [22] is of great importance.
Strong robustness and low computational cost are achieved
thanks to the framework of the widely used Kalman filter
[23]. As a tachometer measurement-based order tracker [22],
the VKF simultaneously extracts all the order-based harmonic
components from measured vibration responses, which char-
acterize tooth-passing dynamics in milling processes.
However, when chatter occurs, non-harmonic modes become
the main concern, and thus, the order-tracking is no longer
helpful [24]. This is because the chatter signal can only be
effectively decomposed with the information about the instan-
taneous chatter frequency. In the meanwhile, as machining
dynamics become more complex and the number of signal
components increases, the joint optimization (i.e., the simul-
taneous extraction of all the components) in the VKF tends to
be computationally unstable [25]. That being the case, the
framework of the VKF needs to be improved and the accurate
instantaneous frequency (IF) of each chatter mode is required
to adaptively determine the filter parameter.

In this work, based on the spectrum concentration index
(SCI) [26], a measure to evaluate the degree of signal demod-
ulation, a novel technique is developed to parametrically esti-
mate the signal IF. This technique transforms the estimation of
a continuous IF into the optimization of a few polynomial
coefficients, and thus works effectively even in the presence

of strong noises. With this approach, only the IF of the dom-
inant mode with the highest energy in the signal can be ob-
tained. Therefore, under the framework of the greedy algo-
rithm, the original VKF is modified to recursively extract each
component based on the latest available IF information, just
like the EMD does [12]. As a result, the number of compo-
nents is automatically determined and the filter becomes more
stable and more adaptive compared to the original VKF. The
procedures above lead to a new multicomponent signal de-
composition tool named the iterative Vold-Kalman filter (I-
VKF). A numerical example is given to demonstrate the su-
periority of the I-VKF over the EMD, VMD, and original
VKF. Then, the energy entropy [27], a generalization of
Shannon’s entropy [28] in the energy domain, is computed
based on extracted signal components to capture the decreas-
ing randomness [29] of vibration responses when chatter oc-
curs. Based on collected stable milling responses, the chatter
alarm threshold of the entropy is set by the maximum likeli-
hood estimation [30] and the three-sigma criterion [31]. Using
the developed strategy, chatter can be detected accurately and
timely, which has been demonstrated by dynamic simulation
and experimental verification.

The remainder of this paper is organized as follows. The
proposed iterative Vold-Kalman filter is detailed in Section 2.
Section 3 introduces the energy entropy as the cutting state
indicator. Section 4 presents dynamic simulation to demon-
strate the effectiveness of the proposed method. In Section 5,
the procedure for determining the threshold is given. Section 6
describes the detailed implementation of the online strategy
and several milling experiments conducted. Section 7 con-
cludes this paper.

2 Iterative Vold-Kalman filter

2.1 Chatter frequency estimation based on spectrum
concentration index (SCI)

The complex dynamic response s(t) measured during milling
processes can be regarded as a superposition ofmultiple single
modes as

s tð Þ ¼ ∑
N

j¼1
s j tð Þ; ð1Þ

where the jth mode sj(t) is parametrically modeled here as a
polynomial phase signal as

s j tð Þ ¼ aj tð Þexp
ffiffiffiffiffiffi
−1

p
2π c0t þ ∑

k

i¼1

ci
iþ 1

tiþ1

� �
þ φ0

� �� �
;

ð2Þ

where aj(t) is the amplitude, c tð Þ ¼ ∑k
i¼0cit

i stands for the IF
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of the mode, k is the order of the polynomial phase, c0 repre-
sents the initial frequency,ci(i = 1,⋯, k) denotes IF parame-
ters, and φ0 is the initial phase. In this manner, the estimation
of the continuous IF is equivalent to the estimation of polyno-
mial parameters, which greatly simplifies the problem. If the

term ∑k
i¼1cit

iþ1= iþ 1ð Þ is removed from the polynomial, the
energy of sj(t) will concentrate on c0 in the frequency domain;
that is, the signal mode sj(t) will be fully demodulated. As a
result, a demodulation operator can be defined as

Φ t; eC� �
¼ exp −

ffiffiffiffiffiffi
−1

p� �
2π ∑

k

i¼1

eci
iþ 1

tiþ1

 !
; ð3Þ

where eC ¼ ec1;ec2;⋯;eckf g are the estimated IF parameters.
Then, the demodulated mode can be obtained as

s j;d t; eC� �
¼ s j tð ÞΦ t; eC� �

: ð4Þ

When the estimated IF is exactly the true one (i.e., eC ¼ C ),
the signal is fully demodulated as

s j;d t;Cð Þ ¼ aj tð Þexp
ffiffiffiffiffiffi
−1

p
2πc0t þ φ0ð Þ

� �
; ð5Þ

where the spectrum has a single peak at the constant frequency
c0. Following this idea, the SCI is adopted to evaluate the
spectrum concentration degree of the demodulated signal as
[26]

SCI eC� �
¼ E ℱ s j;d t; eC� �� ���� ���4� �

; ð6Þ

where E(·) stands for the expectation and ℱ(·) denotes the

Fourier transform. The optimized eC can be expressed as

eCopt ¼ ec1;ec2;⋯;eckn o
opt

¼ argmaxeC SCI eC� �
; ð7Þ

and then ec0 can be naturally worked out as

ec0 ¼ argmax
f

ℱ s j;d t; eCopt

� �� ���� ���; ð8Þ

i.e., the peak frequency in the Fourier spectrum of the
demodulated modesj, d, and this frequency can be easily de-
tected. A modified particle swarm optimization with dynamic
adaptation (DAPSO), of which the ability to jump out of the
local extrema is greatly improved and the convergence is ac-
celerated compared with the original PSO [32], is adopted to
solve the nonlinear optimization problem in Eq. (7) [33]. The
size of the population is set to 30 and the initial values are set

as zero in this work. Obtaining the eC and ec0 through Eqs. (7)
and (8), the IF of the target mode sj(t) can be accurately esti-
mated. Since the SCI is to be maximized, the IF of the

strongest mode with the highest energy in the synthetic signal
will be estimated first.

2.2 Signal decomposition via iterative Vold-Kalman
filter (I-VKF)

With the estimated IF, the VKF can be employed to extract the
target component sj(t). The center frequency for the VKF can
be adjusted adaptively according to the estimated IF, which
makes it possible to separate closely distributed or even
crossed signal modes in the time-frequency plane. However,
in the original VKF, the tachometer information has to be
collected and a joint optimization is adopted (i.e., all the com-
ponents are simultaneously extracted) [22], while by using the
approach in Section 2.1, only the IF of the dominant mode
with the highest energy can be obtained. Therefore, the VKF
is modified in this work under the framework of the greedy
algorithm to recursively extract each component.

The mode sj(t) in model (1) can be given in another form as

s j tð Þ ¼ aj tð ÞΘ j tð Þ; ð9Þ

where aj(t) represents the amplitude envelope and Θj(t)
denotes the carrier signal as

Θ j tð Þ ¼ exp
ffiffiffiffiffiffi
−1

p
∫t0ω j τð Þdτ

� �
; ð10Þ

where ∫t0ω j τð Þdτ denotes the instantaneous phase with ωj(τ)
being the instantaneous circular frequency. In the original
VKF [22], it is assumed that ωj(τ) is an integer or fractional
multiple of the fundamental frequency (i.e., the spindle rota-
tional frequency), but this assumption is not made here. Target
components are no longer limited to the order-based
harmonics.

For discrete signals, the smooth degree of the slowly vary-
ing amplitude function aj(t) can be evaluated by

∇sa j mð Þ ¼ ε j mð Þ; m ¼ 1; 2;⋯;M ; ð11Þ

where s is the difference order, ∇ denotes the difference oper-
ator, M is the signal length, and εj stands for the higher order
term. Setting s = 2 (i.e., the second-order VKF is employed),
Eq. (11) can be formulated as

a j m−1ð Þ−2a j mð Þ þ a j mþ 1ð Þ ¼ ε j mð Þ; ð12Þ

where aj(0) = 0 and aj(M + 1) = 0 for a practical causal signal.
The matrix form of Eq. (12) is given as

−2 1 0 ⋯ 0
1 −2 1 ⋯ 0
0 1 −2 ⋯ ⋮
⋮ ⋮ ⋮ ⋱ 1
0 0 ⋯ 1 −2

266664
377775

a j 1ð Þ
a j 2ð Þ
a j 3ð Þ
⋯

a j Mð Þ

266664
377775 ¼

ε j 1ð Þ
ε j 2ð Þ
ε j 3ð Þ
⋮

ε j Mð Þ

266664
377775: ð13Þ
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Equation (13) can be written as

Ra j¼ε j; ð14Þ

which is the structural equation corresponding to the state
equation in the Kalman filter [23]. In the meanwhile, the mea-
sured signal s(t) in Eq. (1) can be re-formulated in a discrete
form as

s mð Þ ¼ a j mð ÞΘ j mð Þ þ ξ j mð Þ; m ¼ 1; 2;⋯;M : ð15Þ

Note that in the original VKF [22], all the components are
jointly estimated and ξj(m) in Eq. (15) only includes the esti-
mation error and noise, while in this work ξj(m) also includes
the non-target components (i.e., sp(m), p = 1, 2, ⋯, N, p ≠ j).
Such an idea coincides with the greedy algorithm; that is, the
non-target components are regarded as the unwanted noise,
and the target component is extracted greedily in each round
of optimization. In other words, the obtained mode in each
extraction takes away as much energy as possible from the
current signal. This strategy is effective because it is consistent
with the technique of the chatter frequency estimation devel-
oped in Section 2.1, where only the IF of the dominant mode
is estimated. Finally, all the extractions together formulate the
signal decomposition. Equation (15) can be expressed in the
form of a matrix equation as

s 1ð Þ
s 2ð Þ
⋮

s Mð Þ

2664
3775−

Θ j 1ð Þ 0 ⋯ 0
0 Θ j 2ð Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Θ j Mð Þ

2664
3775

a j 1ð Þ
a j 2ð Þ
⋮

a j Mð Þ

2664
3775

¼
ξ j 1ð Þ
ξ j 2ð Þ
⋮

ξ j Mð Þ

2664
3775; ð16Þ

which can also be written as

s−B ja j ¼ ξ j: ð17Þ

Similarly, Eq. (17) is a variant of the data equation corre-
sponding to the measurement equation in the Kalman filter
[23].

Combining the structural equation (14) and the data equa-
tion (17), a weighted loss functionℒ in the sense of ℓ2 norm
is given as

ℒ ¼ λ2 ε j
�� ��2

2
þ ξ j

�� ��2
2
¼ λ2εHj ε j þ ξH

j ξ j; ð18Þ

where λ is a weighting factor and the superscript H denotes
the conjugate transpose. To minimize the function ℒ, the
normal equation is introduced as

∂ℒ
∂a j

¼ λ2RTR þ I
	 


a j−BH
j s ¼ 0; ð19Þ

where I denotes the identity matrix. Equation (19) leads to the
optimal solution for aj as

ea j ¼ λ2RTR þ I
	 
−1eBH

j s≜G
−1eBH

j s: ð20Þ

The target mode sj can be finally reconstructed as

es j ¼ eB jea j; ð21Þ

where the square matrix eB j can be easily formulated be-
cause the ωj(τ) in Eq. (10) has been worked out with the
estimated IF. Thanks to the sparsity of matrix G in Eq. (20),
the Cholesky factorization of matrix G [34] can be employed
as the fastest algorithm to solve Eq. (19). Besides, the
weighting factor λ is set to 1 × 106 in this work to achieve a
trade-off between the accuracy and computational cost [25].

Thus far, the entire I-VKF method can be summarized in
Fig. 1. The extraction of signal modes is implemented recur-
sively until the residual energy ratio is less than a pre-set value
(5% is used here); that is, the mode number N is determined
automatically. Considering that the mode number (i.e., the
highest order) is empirically specified in the original VKF,
the improved framework makes the filter more adaptive.
Besides, the recursive decomposition rather than simultaneous
extraction makes the filter more stable, which will be verified
by the following example.

2.3 An example

To validate the proposed method, an example of a four-
component signal is given as

s tð Þ ¼ s1 tð Þ þ s2 tð Þ þ s3 tð Þ þ s4 tð Þ; 0≤ t≤15 s;
s1 tð Þ ¼ exp −0:1tð Þcos 2π 5tð Þð Þ;
s2 tð Þ ¼ exp −0:1tð Þcos 2π 10t þ 1:5t2−

1

30
t3

� �� �
;

s3 tð Þ ¼ exp −0:1tð Þcos 2π 20t þ 1:8t2−
1

20
t3

� �� �
;

s4 tð Þ ¼ exp −0:1tð Þcos 2π 40t þ 0:5t2−
1

15
t3

� �� �
;

8>>>>>>>><>>>>>>>>:
ð22Þ

where IFs of four modes are f1(t) = 5, f2(t) = 10 + 3t − 0.1t2,
f3(t) = 20 + 3.6t − 0.15t2, and f3(t) = 40 + t − 0.2t2 respectively.

The signal in Eq. (22) is contaminated by white Gaussian
noise with the signal-to-noise ratio (SNR) as 2 dB. The sam-
pling frequency is set to 100 Hz. The waveform of the noisy
signal is shown in Fig. 2a. Figure 2c gives the time-frequency
representation (TFR) generated by the short-time Fourier
transform (STFT), while Fig. 2b is the noise-free version. In
the parametric estimation of IFs, the order of the polynomial
model is set to three (although true IFs here are of the second-
order type).

Table 1 lists the estimated IF parameters by the SCI opti-
mization with corresponding estimation error. Using the I-
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VKF, extracted four components and their TFRs are shown in
Fig. 3. With accurately estimated IFs, four single components
are successfully separated and embedded noises are removed.
The SNRs of four reconstructed modes are 17.5516 dB,
17.0363 dB, 18.5479 dB, and 16.7213 dB, respectively.

For comparison, decomposition results by the EMD,
VMD, and original VKF are also given (note that when the
original VKF is used, the number of modes and IF of each
mode are taken as known information to initiate the filtering).
When the EMD is applied, the strong noise leads to severe
mode aliasing [35], as Fig. 4 shows. The filter bank property
of the VMD [36] makes obtained single modes physically
meaningless as Fig. 5 shows, because four real components,
which overlap in the time-frequency domain, cannot be sepa-
rated by a filter in the frequency domain. When the original
VKF is used, four chirp modes are indeed tracked but are
distorted by noise (see Fig. 6), which is due to the instability
of the joint optimization [25]. Moreover, the computational
time consumed by the I-VKF does not exceed that consumed
by the VKF (all the tests are carried out with MATLAB®

R2018b on a personal computer with a 3.60-GHz Intel®

Core™ i7-7700 CPU).
The above example demonstrates that the developed I-

VKF method, which acts as an adaptive time-frequency filter,
works effectively in the decomposition of multi-chirp signals
with a low SNR, and thus will be of great help in chatter
detection.

3 Energy entropy–based feature extraction

It is vital to extract the fault feature from measured signals
accurately and timely for chatter detection. The selected fea-
ture quantity should not only make it simple and feasible for
the signal acquisition and data processing but also reflect the
essence of milling processes; that is, this quantity should be
closely related to the change in cutting states. As an indicator
of the internal confusion degree of a system, entropy, such as
the permutation entropy [37] and approximate entropy [38],
can be expressed as a function of the probability distribution

Fig. 1 Flow chart of the
developed iterative Vold-Kalman
filter (I-VKF)

a b c

s1

s2

s3

s4

s1

s2

s3

s4

Fig. 2 Example of a four-
component signal. aWaveform of
the noisy signal. b TFR of the
noise-free signal. c TFR of the
noisy signal. All the TFRs are
generated by the STFT
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of a signal and has been widely applied in fault diagnosis. The
energy entropy [27] is utilized in this work to characterize the
energy distribution of signal modes {s1(t), s2(t),⋯, sN(t)} of a
milling response s(t), which are extracted based on the I-VKF
approach in Section 2. The energy of each mode is given by

E j ¼ ∫ s j tð Þ
�� ��2dt; j ¼ 1; 2;⋯;N : ð23Þ

Neglecting the residual, the aggregate energy of all modes
should be equal to that of the original signal. Then, the energy
entropy is defined based on Shannon’s entropy [28] as

H energy ¼ − ∑
N

j¼1
pjlog2pj; ð24Þ

where pj = Ej/E and E ¼ ∑N
j¼1E j.

Energy entropy in Eq. (24) is a dimensionless index larger
than zero. The larger the index, the more dispersed the energy
distribution in the frequency domain [27]. Since each mode is
located within a specific frequency band, the energy entropy

characterizes the degree of randomness of milling dynamics
that underlie a vibration response.

In stable milling, the vibration obeys a Gaussian-like dis-
tribution in the time domain and shows a wideband property
in the frequency domain. At an early stage of chatter, the
amplitudes at certain frequencies (i.e., chatter frequency and
its harmonics) gradually increase, and the vibration energy
tends to gather within several narrow bands. As chatter be-
comes more severe, the vibration resembles a sinusoidal os-
cillation, which results in a rapid decrease in signal random-
ness in the time domain.

According to the above mechanism, a strategy is proposed
for chatter detection, which combines the I-VKF-based de-
composition in Section 2 and the energy entropy–based fea-
ture extraction in Section 3. In this way, the progressive
change in cutting states can be accurately captured by the
energy entropy that is computed based on signal modes ex-
tracted from milling responses. The effectiveness of this strat-
egy will be demonstrated by dynamic simulation and experi-
ments in Section 4 and Section 6, respectively.

4 Dynamic simulation

In this section, milling vibration responses are simulated using
the Runge-Kutta algorithm. The classic Balachandran two-
degree-of-freedom milling model [39] is considered and the
simulation parameters follow those in the original investiga-
tion [39]. We give two cases where the spindle speed and the
axial cutting depth linearly increase, respectively. As Fig. 7
shows, the process from stable cutting to chatter can be ob-
served in both cases, and the corresponding transition points
A, B, and C coincide with those predicted by the stability lobe
[39].

Table 1 Estimated IF parameters based on the SCI optimization (values
in parentheses denote the relative estimation errors)

c0 c1 c2 c3

s1(t) Estimated 5.0061 0.0012 0.0004 0.0025

True 5 (0.12%) 0 (/) 0 (/) 0 (/)

s2(t) Estimated 9.9930 3.0028 −0.1003 0.0017

True 10 (0.07%) 3 (0.09%) −0.1(0.30%) 0 (/)

s3(t) Estimated 19.9867 3.6047 −0.1503 0.0023

True 20 (0.07%) 3.6 (0.13%) −0.15(0.20%) 0 (/)

s4(t) Estimated 40.0244 0.9978 −0.2006 0.0066

True 40 (0.06%) 1 (0.22%) −0.2(0.31%) 0 (/)

a b c d

s1
s2

3 4

Fig. 3 Extracted components by the I-VKF. a–d give s1 ~ s4 respectively. Top panels are waveforms (blue lines denote the estimated ones while red lines
denote the true ones). Bottom panels are corresponding TFRs generated by the STFT
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a b c d

s1

s2

s3

s4

Fig. 4 Extracted components by the EMD. a–d give TFRs of s1 ~ s4 generated by the STFT respectively

a b c d

s1

s2

s3

s4

Fig. 5 Extracted components by the VMD. a–d give TFRs of s1 ~ s4 generated by the STFT respectively

a b c d

s1
s2

s3 s4

Fig. 6 Extracted components by the original VKF. a–d give TFRs of s1 ~ s4 generated by the STFT respectively

a b
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Fig. 7 Two simulation cases. a
Case #1 with linearly increasing
spindle speed. b Case #2 with
linearly increasing axial cutting
depth. Top panels denote the
variations of the processing
parameters and bottom panels
denote the milling force responses
in the feed direction
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A preliminary time-frequency analysis of the response in
case #1 is given in Fig. 8a. The force signal consists of three
types of components: the tooth-passing modes resulting from
spindle rotations, random modes due to system noises, and
chatter modes caused by regenerative effects [40], which to-
gether lead to an intricate spectrum.

Since the spindle speed is known, the VKF is applied as a
pre-processor to remove the tooth-passing components before
the decomposition, with the aim to eliminate the interference
of spindle rotations and intermittent cutting. The TFR of the
components filtered out is shown in Fig. 8b. The remaining
signal is then decomposed by the I-VKF into eight modes as
Fig. 9 shows (note that in all the following simulated and
experimental cases, only the third-order polynomial model is
considered in the SCI optimization to minimize the computa-
tional cost). The energy of the extracted mode reduces as the
order increases, which is consistent with the idea of the greedy
algorithm. Eight modes exhibit chatter-related dynamics,
showing the chatter frequencies that are spindle speed–
independent [40]. Similar characteristics can be observed
when the same processing is applied to the response in case
#2.

The VMD and EMD are also applied to decompose the
milling force signal and the results are given in Fig. 10 and
Fig. 11, respectively. Mode aliasing can be observed in eight
components extracted by the VMD and this problem is even
exacerbated when the EMD is used, which makes the intro-
duction of the I-VKF technique necessary.

As Fig. 9 shows, TFRs of extracted modes during chatter
(the intermediate interval surrounded by two white borders)
are much more condensed than those during stable cutting,
which suggests a more concentrated energy distribution.
This decrease in signal randomness can be captured by the
energy entropy that is computed using a sliding window with
a length of 0.1 s, as Fig. 12 shows. The energy entropy is
sensitive to changes in the cutting state, and the variations of
the entropy always precede such changes, which demonstrates
the effectiveness of the proposed strategy in timely chatter
detection.

5 Threshold determination

Since chatter is expected to be detected automatically, an
alarm threshold is needed. In many existing studies, the
threshold is determined by manually observing the deviation
between index values under chatter and stable cutting [4, 38,
41]. This empirical strategy suffers from the sensitivity to
working conditions. In this work, a robust threshold is deter-
mined statistically. In many fault diagnosis problems, the fault
feature is assumed to obey the Gaussian distribution, which
simplifies the model construction for fault classification
[42–44]. The same null hypothesis is made here in the analysis
of the statistical distribution of milling signals.

At the incipient stage of a machining task, vibration signals
under stable cutting can be collected and corresponding ener-
gy entropies can be calculated as a sample. Then, the normal-
ity test can be carried out on the sample, where the Lilliefors
test [45] is adopted in this work because the population mean
μ and variance σ2 are not known. The statistic is given by

DN ¼ max
x∈R

bFN xð Þ−G0 xð Þ
��� ���; ð25Þ

where x is the sample, N is the sample size, bFN xð Þ is the
empirical cumulative distribution function (CDF) of the sam-
ple, andG0(x) is the CDF of the hypothesized distributionwith
the estimated parameters equal to the sample parameters, that
is,

bμ ¼ X ¼ 1

N
∑
N

k¼1
X k ;

bσ2
¼ S2 ¼ 1

N−1
∑
N

k¼1
X k−X
� �2

:

8>><>>: ð26Þ

Equation (26) exactly gives the maximum likelihood esti-
mate under a Gaussian distribution [30]. The null hypothesis
will be rejected when the observation of DN is larger than the
critical value at a specified significance level (5% is set here),
and this critical value can be obtained by the Monte Carlo
method [46].
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Once the normality test is approved, the three-sigma crite-
rion [31] will be adopted to calculate the allowable range of
the fluctuating energy entropy under stable cutting, which is
given by bμ−3bσ; bμþ 3bσ½ �. Considering the decrease in ran-
domness when chatter occurs, the alarm threshold is set as
the lower limit, i.e., bμ−3bσ.

6 Implementation and experimental
verification

The detailed implementation of chatter detection in the indus-
try is introduced in this section, and a series of milling

experiments are conducted to show the performance of the
proposed approach.

6.1 Implementation of chatter detection

Dynamic simulations in Section 4 show promising results of
chatter detection based on the I-VKF technique and subse-
quent energy entropy monitoring. Herein, the practical imple-
mentation is given in Fig. 13, which consists of the following
steps:

1. Processing parameters’ definition: Define the spindle
speed, feed rate, and cutting depth. All these parameters
can be variable in a milling task.
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2. Vibration signal acquisition: Collect milling system-
related vibration signals. The milling force is collected
in this work since it suffers from the least influence of

the displacement of transducers [47], but the developed
approach can also be utilized to analyze displacement and
acceleration signals because the cutting force and vibra-
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tion are strongly coupled in milling dynamics; i.e., other
types of vibration signals would exhibit the same chatter
features [40].

3. Online energy entropy computation: Calculate the real-
time energy entropy of the collected signal based on the
procedure given in Fig. 13a. A sliding window with a
specified window length is used for online monitoring.

4. Threshold determination: Obtain the alarm threshold of
the entropy using the incipient stable milling response,
according to the strategy in Section 5.

5. Cutting state monitoring: The moment when discrete data
points of the computed entropy cross the given threshold
three consecutive times triggers the chatter alarm. The
situation where only one or two data points cross the
threshold and the following point falls back will be
regarded as not chatter but an accident.

6.2 Experimental setup

The experimental setup is shown in Fig. 14. All the tests were
conducted on a DMG five-axis CNC milling machine. The
carbon-steel end-milling tool has four teeth and a diameter of
4 mm, and the spindle has an overhang of 40 mm. The work-
piece is an aluminum alloy block. The full-immersion cutting
was adopted. Chatter vibrations were monitored with a Kistler
9123C dynamometer that was attached to the workpiece.
Signals were recorded by a data acquisition card and were
analyzed using a PC. The sampling frequency was set to 20
kHz.

The stability of milling is closely related to the spindle
speed and depth of cut. Herein, the axial cutting depth varies
from 2.6 to 6.7 mm and the spindle speed varies from 3600 to
4200 rpm. Five sets of processing parameters are listed in
Table 2. Tests #1–#4 in experiment I give four different

cutting states. Test #5 in experiment II gives a dynamic pro-
cess from stable cutting to chatter.

6.3 Results

6.3.1 Offline experiment I

Four test signals are shown in Fig. 15. In tests #1 and #2, the
amplitudes of milling forces are relatively small and the spec-
tra are dominated by the evenly distributed tooth-passing fre-
quencies, which indicates a stable cutting. With an increase in
the spindle speed and cutting depth, the slight and the severe
chatter occur in tests #3 and #4, respectively, leading to the
large amplitudes and conspicuous chatter frequencies that are
modulated by the spindle rotational frequency. The uncertain-
ty of the distribution is reduced in these cases. With the I-VKF
applied, the single modes of four test signals are obtained and
the normalized energy ratios of each mode are calculated and
given in Fig. 16a. The results verify the aforementioned
Gaussian randomness in stable cutting and the harmonic con-
centration in chatter. The gathering of energy is also revealed
in the computed energy entropies of four test signals, as shown
in Fig. 16b.
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Table 2 Milling tests with parameters

Experiment Test Milling states Ω (r/min) f (mm/min) ap (mm)

I #1 Stable 4200 580 6.6

#2 Stable 3600 250 2.6

#3 Chatter 4000 580 6.6

#4 Severe chatter 4000 640 6.7

II #5 Stable to chatter 4000 580 6.3
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The above offline results demonstrate the effectiveness of
the proposed method, and the industrial application of this
strategy will be further shown in the following online results.

6.3.2 Online experiment II

In the second experiment, the cutting state is monitored on-
line. The length of the sliding window is set as 100 points with
no overlap. The incipient milling force signals under stable
cutting were collected and the corresponding energy entropy
was computed. With the Lilliefors test performed, the empir-
ical CDF of the sample versus the theoretical CDF of the
hypothesized Gaussian distribution is obtained and given in
Fig. 17. The linear regression shows an excellent fit between
the two functions. Therefore, the strategy in Section 5 can be
used to determine the alarm threshold. The allowable range of
the fluctuation is obtained as [2.081, 2.145], and thus, the
threshold is set as 2.081.

The collected milling force signal with the corresponding
energy entropy computed online is shown in Fig. 18. The
indicator detects the premature chatter at t = 0.58 s, around
0.12 s ahead of the moment when the amplitude suddenly
increases (which means the destruction of the workpiece).
For further verification, the machine was not shut down after
the chatter alarm. Three signal samples with an equal duration
of 0.3 s marked with S1, S2, and S3 in Fig. 18, respectively,

are extracted and given in Fig. 19. The VKF is applied as a
pre-filter to remove the tooth-passing components, and the
Fourier spectra after are shown in Fig. 19c.

During the stable cutting (0~0.3 s), the vibration energy
disperses within a wide band (see the first panel in Fig. 19c).
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With a drastic increase in the vibration amplitude at around
0.6 s, the chatter emerges, which is accompanied by the no-
ticeable chatter frequencies as shown in the second panel in
Fig. 19c. At about 1.8 s, chatter has been fully developed. A
modulated waveform appears (see the third panel in Fig. 19a)

and the chatter frequencies become dominant, which absorb
most of the energy as the third panel in Fig. 19c shows.

The proposed I-VKF and the classic EMD are both ap-
plied to decompose the chatter response. As Fig. 20a
shows, severe mode aliasing can be observed when the
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EMD is used, because the collected signal contains noise
that is inevitable in engineering. Based on the I-VKF, the
harmonic-like components have been recovered from the
noisy signal, which makes the characteristic peaks of chat-
ter in the spectra conspicuous (see Fig. 20b). The superi-
ority of the I-VKF over EMD is further shown in analyses
of the energy distribution and energy entropy based on
extracted single modes. As Fig. 21 and Fig. 22 show, three
different cutting states cannot be distinguished by means of
the EMD. This came as no surprise because an ineffective
signal decomposition will render the subsequent computa-
tion of the chatter index ineffective too.

7 Conclusions

To protect the machine tool and workpiece from the damage
caused by chatter, it is necessary to detect chatter timely and
accurately in machining processes. Since the chatter can be
characterized by the progressive variation in the energy distri-
bution, when chatter occurs, the decreasing randomness of
vibration responses can be captured by energy entropy, a gen-
eralization of Shannon’s entropy in the energy domain. To
make such an index more sensitive to transitions of the cutting
state, the energy entropy should be computed based on single
signal modes that are obtained by means of signal
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decompositions. Considering that the applications of the well-
known EMD and VMD are limited due to the sensitivity to
noise and the need for a priori information, respectively, the I-
VKF is proposed in this work as an efficient multicomponent
signal decomposition tool.

Based on the idea of the greedy algorithm, the original
VKF, which adopts a joint optimization framework, is modi-
fied to recursively extract each chatter mode (i.e., signal
modes are no longer simultaneously extracted). This modifi-
cation improves the stability and adaptability of the filter, and
does not increase the computational cost. In the meanwhile, a
novel technique based on the SCI is developed to parametri-
cally estimate the instantaneous chatter frequency of the dom-
inant mode in the current signal, and thus to initiate each round
of extraction. This technique transforms the estimation of a
continuous IF into the optimization of a few polynomial pa-
rameters, which simplifies the problem and improves the ro-
bustness of the filter. As a result, the proposed I-VKF acts as
an adaptive time-frequency filter and achieves much better
performance than the EMD, VMD, and original VKF do,
especially in the presence of strong noises, which has been
verified by numerical examples.

By modeling the distribution of the energy entropy
sample under stable cutting as a Gaussian type, we deter-
mine the alarm threshold of chatter through the maximum
likelihood estimation and three-sigma criterion. With this
threshold, an online chatter detection strategy is detailed.
Through dynamic simulation and experimental verifica-
tion, it has been demonstrated that chatter can be detected
timely when the proposed strategy is used. The variation
in entropy can be clearly observed during the transition
from stable cutting to chatter. When other similar schemes
such as the EMD-based entropy monitoring are employed,
the decrease in the randomness of the collected signal
cannot be revealed because the fundamental signal de-
composition is ineffective in this case. Despite the fact
that the focus of this work is milling chatter, the devel-
oped approach can be applied to other common machin-
ing operations such as turning and boring, because chatter
in these processes can also be explained by the regenera-
tive effect and be characterized by non-harmonic frequen-
cy components and decreasing entropy.
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