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Abstract
The direct energy deposition (DED) process utilizes laser energy to melt metal powders and deposit them on the substrate layer to
manufacture complex metal parts. This study was applied as a remanufacturing and repair process to fix used parts, which
reduced unnecessary waste in the manufacturing industry. However, there could be defects generated during the repair, such as
porosity or bumpy morphological defects. Traditionally the operator would use a design of experiment (DOE) or simulation
method to understand the printing parameters’ influence on the printed part. There are several influential factors: laser power,
scanning speed, powder feeding rate, and standoff distance. Each DEDmachine has a different setup in practice, which results in
some uncertainties for the printing results. For example, the nozzle diameter and laser type could be varied in different DED
machines. Thus, it was hypothesized that a repair could be more effective if the printing process could be monitored in real time.
In this study, a structured light system (SLS) was used to capture the printing process’s layer-wise information. The SLS system is
capable of performing 3D surface scanning with a high resolution of 10 μm. It can provide the information to determine how
muchmaterial needs to be deposited and monitor the layer-wide surface topography for each layer in real-time. Once a defect was
found in situ, the DED machine (hybrid machine) would change the tool and remove the flawed layer. After the repair, the
nondestructive approach computed tomography (CT) was applied to examine its interior features. In this research, a DED
machine using 316L stainless steel was used to perform the repairing process to demonstrate its effectiveness. The lab-built
SLS system was used to capture each layer’s information, and CT data was provided for the quality evaluation. The novel
manufacturing approach could improve the DED repair quality, reduce the repair time, and promote repair automation. In the
future, it has a great potential to be used in the manufacturing industry to repair used parts and avoid the extra cost involved in
buying a new part.
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1 Introduction

Metal additive manufacturing applies laser power to melt the
metal powder and built height in a layer-by-layer manner. It
has significant advantages for manufacturing complicated
structure parts. Combined with computerized numerical con-
trolled (CNC) methods, the process has been recognized as a
hybrid manufacturing approach [1]. Direct energy deposition
(DED) printing is one of the most popular metal additive
manufacturing approaches. The DED system uses a laser to
melt the jetted powder and build three-dimensional geometry
on various substrates. It could be used to repair broken or used
parts to save costs and contribute to green manufacturing [2].
If there was a defect on a used part, pre-machining and the
DED printing could be combined as a hybrid manufacturing
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approach to repair the part. For example, defective voids in
turbine airfoils were repaired by the DED process and evalu-
ated to reduce impact on the environment and energy by life
cycle assessment [3]. It also can repair parts with materials that
differ from the original material of the part. In Germany,
Benjamin et al. used a milling tool to remove cracks or dam-
age and then applied the DED to deposit Ti-6Al-4V and stain-
less steel in the repairing process [4]. The manufacturing of
tool dies in the industry has the characteristic of being time-
consuming from product design, manufacturing, maintenance,
high-cost, and complex manufacturing processes. Leunda
et al. [5] demonstrated the effectiveness of repairing dies with
CPM 10V and Vanadis 4 Extra tool steel powders material by
Nd:YAG laser enabled metal printing process. In the field of
manufacturing, it was used to repair defects in Inconel 718 [6].
Bone regeneration and repair are challenging due to the bio-
logical and mechanical nature of bone. In the medical area,
DED printing has successfully been used for bone repair [7].
In this study, DED printing was used to repair used parts with
the novel real-time monitoring system.

Although DED printing has many advantages and applica-
tions in multiple disparate areas, the printing results may be
influenced by various parameters. Torsten et al. [8] conducted
experiments to demonstrate that laser power, velocity, powder
mass flow, and spot diameter may result in the different mi-
crostructure of Inconel 718 parts. The process parameters may
affect the microstructure and the tensile property of printed
parts [9]. The effect of building height on mechanical proper-
ties and corrosion for austenitic stainless steel 316 L material
was investigated in the DED printing process [10]. Different
scanning strategies without shift and rotation between layers
resulted in defects with diameters from 100 to 900 μm [11].
Before printing on a substrate, Shim [12] found that a slower
cooling rate could be achieved by the assistance of preheating
when printing high-speed tool steel M4 powder. The varia-
tions in these parameters could result in a low-quality part, and
the process is unpredictable unless a comprehensive under-
standing of these parameters is established.

DED printing has various process variables that could in-
fluence the printing quality of the manufactured part. It is vital
to understand how these parameters influence the quality of
printed parts and the optimal strategy to select the printing
parameters. However, there is limited research work on un-
derstanding how these printing parameters influence DED
printing. To improve the quality of metal additive
manufactured parts, different monitoring methods such as sur-
face quality measurement, sensing, control, and modeling
were used to monitor and inspect the printing process [13].
Meanwhile, Elliott [14] pointed out the operator’s burden ac-
tivities, such as finish the part after printing and reset the
printing equipment. Thus, it is necessary to develop an in situ
monitoring system to assist the DED printing process and
produce high-quality parts. Hofman [15] used a CMOS

camera and developed a software algorithm to capture the
melt pool’s width for compensating disturbances within one
second. Craeghs [16] achieved processing rates up to 10 kHz
with a high-speed CMOS camera during the in situmonitoring
of the DED printing process. The cooling rate and temperature
gradient have an impact on the part quality. Farshidianfar [17]
used an infrared thermal imaging system to understand the
cooling rate effects and melt pool temperature to monitor
316L stainless steel’s microstructure. Modeling strategies
were widely used for optimized designs of metal additive
manufacturing [18]. A thermo-elastic-plastic model was
established by Yang [19] to predict the thermomechanical
behavior of Ti-6Al-4V during the DED printing process. An
optoelectronic sensor recorded the powder flow rate to
achieve a uniform geometry [20]. The optical monitoring sys-
tem was considered one of the most effective approaches for
observing the high scanning speed and melt pool dynamics
during the metal additive manufacturing process [21].

Although several methods for monitoring the printing pro-
cess exist, the structured light system (SLS) has not been used
as an optical system to monitor the DED printing process in
real time. The SLS system has high resolution, high speed,
and low cost characteristics to achieve the 3D scanning of
three-dimensional objects. The SLS is an optical system that
could capture and reconstruct three-dimensional objects in
real time with an accuracy of 0.2 mm [22]. The resolution of
the SLS system could be adjusted according to various sce-
narios in the application. In this study, the SLS system was
used to monitor the DED printing process, capture the 3D
morphology [23] of additive manufactured parts [24], and
evaluate measurement results among different optical systems
[25, 26]. Each printed layer’s three-dimensional characteris-
tics were captured and stored to optimize printing parameters
and repair used parts. Engine heads that have been in service
for a long time can develop multiple defects, but it is not
economically affordable to remove them from service and
replace with new part [27]. Green manufacturing encourages
recycling used parts to avoid material waste and possible pol-
lution to the environment [2, 28].

This research creates a real-time AM repair system
(RAMRS) using a DED machine and an SLS optical system
to repair used parts in the manufacturing field. The repair
process was presented and demonstrated in this study to prove
the effectiveness of this method. First, a DED system was
used to repair a used engine head, as shown in Fig. 1.
Before the repair, the SLS systemwas used to scan the surface
of the used part for locating the position and size information
of defects. After that, a corresponding strategy for repairing
the engine head was formed. CT scanning was used to capture
the repaired sample’s interior structure after the repair process.

This study has provided a new optical approach to monitor
and assist the re-made manufacturing process. It is assumed
that the SLS system could capture each layer’s morphology
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and provide the 0.2 mm resolution during the printing process.
The repair quality will be verified based on the surface rough-
ness value and the nondestructive approach’s evaluation. This
novel method could develop a green, high-quality, automated,
defects-reduced metal additive manufacturing industry.

2 Materials and methods

2.1 Materials

The powder material used in this study for DED is 316L
stainless steel. The particle size of the spherically shaped pow-
der particle ranges between 1 and 100 μm. The material was
preheated to 40°C before the actual printing was initiated [29].
Stainless steel substrate was selected in this study for the
printing experiments. The used engine heads were made of
cast iron.

2.2 Mechanism of direct energy deposition

In this study, a hybrid manufacturing machine was used for
the repair process. The 316L stainless steel powder was stored
in the material chamber and sent out through a controlled disk
system. During printing, the powder flows onto the substrate
and is melted simultaneously by a laser. Melted SS powder
was deposited layer by layer and rapidly cooled down in a
solid state as the laser moves away.

As shown in Fig. 2, the material was melted and deposited
on the metal substrate to form a specific shape as the printer
head moved at a plotting speed v. The bead size of the DED
printer was 1 mm. This printing process was controlled by the
laser recipe, plotting speed, and standoff distance. The g-code
program controlled the plotting speed and distance between
the nozzle head and substrate.

Equation (1) describes the quantitative relationship be-
tween the effective absorption rate and temperature [30].
This function represents the ratio of the energy for heating
the specimen T_H vs. laser irradiation E_L energy input.
The energy used to heat the specimen started with a tempera-
ture T_0 and ended with temperature T_1. P is the nominal
laser power, v is the scanning speed, and l is the laser track’s

total length during the printing.

Aeff ¼ EH

EL
¼ ∫T1

T0
mCp Tð Þdt
P

l
v

� � ð1Þ

2.3 In situ monitoring system

The printing process was observed and monitored by the SLS
system in real time. The SLS system consists of a camera C1,
a projector P1, and control systems. The projector projects
fringe patterns on the target object’s surface, while the camera
captures the fringe patterns (Fig. 3). Using the captured fringe
images and the calibration information, the 3D surface can be
reconstructed [31]. The 3D data from SLS will be in point
cloud data format. This system’s resolution is 10 μm and
has a field of view of 12 mm by 12 mm.

The surface point cloud data was used in this study to
reflect the surface quality and quantitative change of surface
roughness as the layer was building up. Before the printing,
the SLS system was used to scan the part surface to determine
the shape, location, and volume of defects. This information
will be used for the programming of the g-code to pre-
machine and repair the defect area. During the printing pro-
cess, the SLS system will capture the point cloud data of each
layer. This operation enables the operator to monitor the pos-
sible abnormal defects during the printing process, such as
bumpy morphology or porosity. If any defects are found in
the process, the hybrid DED printer could use the milling tool
to remove the defect layer and print a new layer to replace it.

2.4 Micro-CT measurement

Micro-CT data for DED was taken with a lab-built X-ray
radiography system (see Fig. 4) consisting of the X-ray

Fig. 2 A schematic diagram of the DED process

Fig. 1 a Engine head parts and b sliced engine head with defects on top
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source, rotation/translation stage, panel detector, control sys-
tem, and reconstruction system.

During the measurement process, the specimen was illumi-
nated by a cone-beam X-ray source. After the X-ray transmit-
ted the specimen and was partially absorbed, the remaining X-
ray was collected by a flat-panel detector and converted into
grayscale data according to the residual intensity. The sample
was rotated by 360°, and a series of two-dimensional gray-
scale data was taken for further reconstruction.

The system parameter settings and the individual settings
for each sample are listed in Tables 1 and 2.

After the CT scanning, the original raw data will be recon-
structed with lab-built software. All samples are reconstructed
into 1000 × 1000 × 1000 volume data, where each voxel
contains 16-bit grayscale information. In this work, surface
data is also segmented besides internal defects inspection.
Volume data cannot directly reflect the “surface,” so it is re-
quired to localize all the voxels on the “surface.”

2.5 Point cloud data processing

The segmentation process identifies every voxel if it belongs
to the target or the background converting grayscale CT vol-
ume into a form that allows quantitative characterization. The
methods applied to volume data segmentation generally

originate from expanding image segmentation methods to
higher dimensions. Image segmentation methods can be di-
vided into two categories, global thresholding and locally
adaptive segmentation. Global thresholding generally sets a
fixed threshold value to separate the entire CT volume based
on the histogram of voxels with grayscale intensity (see
Fig. 5a). Locally adaptive segmentation methods make seg-
mentation decisions for each voxel based on itself and its
neighbors’ gray values (see Fig. 5b).

Global segmentation is fast and straightforward, but it is
easily affected by artifacts (see Fig. 6a, b). On the other hand,
local adaptive segmentation is time-consuming but performs
better (see Fig. 6c).

Locally adaptive segmentation generally can separate the
foreground with the background well, but not enough for sur-
face extraction, especially for the irregular surfaces (see
Fig. 7a, b). In this work, a combination of CL-Ridler
thresholding [17] and locally adaptive segmentation method
[18] with local contrast enhancement is applied for surface
determination (see Fig. 8c). After extracting the surface, it will
be converted into the same 3D (x, y, z) form as SLS data (see
Fig. 8).

An iterative closest point (ICP) algorithm [19, 20] is ap-
plied to align the surface datasets from SLS and CT systems.

The resolutions of the camera of SLS and the detector of
the CT system are different. So a common region of interest is

Fig. 4 Schematic of the CT system

Table 1 CT system settings

Parameter Value

Source to detector distance 1228 mm

Filter material Copper

Filter thickness 1 mm

Number of projections 360

Detector pixels 2048 × 2048

Detector pixel pitch 200 μm

Spatial resolution 2.5 lp/mm

Fig. 3 a Setup and b mechanism
of the SLS system
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set, and all the points outside this region are removed to trim
the surfaces into the same size.

2.6 Data comparison between CT and SLS system

After completing the alignment and trimming, the similarity of
the two sets of data needs to be checked to ensure that the
surface data from the CT is capable of subsequent operations.
Three methods are applied to test the correlation between the
two datasets: areal surface texture parameter, cloud compari-
son methods, and a statistical method.

The arithmetical mean height of area roughness (Sa) and
the root mean square height of area roughness (Sq) are first
used to evaluate the two datasets.

Sa and Sq can be described as follows:

Sa ¼ 1

M � N
∑
M

i¼1
∑
N

j¼1
Z xi; y j
� �h i

ð2Þ

Sq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M � N
∑
M

i¼1
∑
N

j¼1
Z xi; y j
� �h i2s

ð3Þ

whereM and N are the numbers of data points in X and Y axis
correspondingly and Z(xi, yj) is the height variation.

The regional surface roughness can quickly compare the
average or root mean square height variations of two surfaces.
However, a consistent surface roughness does not mean that
the two surfaces are similar.

A method that can take into account the degree of fit of
each point needs to be applied. Since the two datasets are in
the form of 3D (x, y, z), point cloud comparison methods are
used.

C2C is a 3D comparison method of point clouds, which is
fast and straightforward. This method finds the nearest point
in surface 2, corresponding to each point in surface 1, and
calculates the absolute distance between them (see Fig. 9).

The variation between two surface datasets is calculated by
the distance between the point clouds from surface 1 and the
reference mesh constructed by surface 2 (see Fig. 10).

In the M3C2 process, the core point is firstly subsampled
from the reference point cloud. For any given core point i, a
normal vector is defined for each cloud by fitting a plane to the
neighbors of that cloud within a radius D/2 of i. Then a cyl-
inder with diameter d is centered on the core point i and
projected along the normal vector Ni. After that, the distance
between the two point clouds average positions is calculated
(see Fig. 11) [21].

Pearson correlation coefficient (PCC) is widely used to
measure the linear correlation between two variables X and
Y. The value r of PCC ranges from −1 to +1. A value of +1
means the two variables are perfectly positively correlated, a
value of 0 means there is no association, and a value of −1
represents a perfectly negative correlation.

For the PCC measurement of the two surface data, they are
first gridded into depth-coded images. By connecting each
row, the matrices can be rearranged into two M×N vectors,
which are denoted as I1 and I2. To compare the two matrices,
the two vectors are generated in this way, and the PCC can be
calculated as a metric of similarity of the two generated vec-
tors [22]. The PCC is calculated as:

∑
M�N

i¼1
I1;i−I1

� �
I2;i−I2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

M�N

i¼1
I1;i−I1

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
M�N

i¼1
I2;i−I2

� �2
s ð4Þ

Table 2 CT scan individual settings

Sample No. S1 S2 S3

Source to target distance 114 mm 114 mm 105 mm

Voxel size 38.1626 μm 38.1626 μm 35.8741 μm

Acceleration voltage 200 kVp 225 kVp 200 kVp

Filament current 510 μA 400 μA 650 μA

Fig. 5 Simplified representation
of two segmentation methods: a
global thresholding based on the
grayscale histogram and b locally
adaptive method test each pixel
with its neighbors
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2.7 The RAMRS repair framework

Figure 12 shows the complete repair process, starting from
SLS scanning of the defect sample to the nondestructive eval-
uation of the fixed part. The process starts by determining the
dimension of the defect by scanning with the SLS system.

The depth of the defect is the milling depth for pre-machin-
ing. The pre-machining process could clean the surface and
remove extra material for high-quality repair. The defects’
location will enable the hybrid DED machine to find the
starting point and volume deposited material. The repair pro-
cess will consist of printing multi-layer 316L stainless steel
powder onto the substrate. There exists uncertainty during the
printing of each layer. Thus, the SLS system will scan each
layer in real time to monitor the repair quality. However, each
layer of the deposited material varies in thickness. Porosity
defects may exist inside the layer. Thus, after the repair was
finished, a post nondestructive evaluation method, computed
tomography (CT), was deployed to examine the repaired
part’s interior quality.

3 Results and discussion

3.1 DED printing results

The DED printed parts were manufactured on a stainless steel
substrate. The successful printing of one line pattern on the
substrate under selected printing parameters is considered a
filament. Different printing parameters influenced the dimen-
sion of printed filaments. This nature of the DED system en-
ables repairing different defects, considering the repair effi-
ciency and accuracy. For example, a higher laser energy rec-
ipe could repair parts with large defects to save time. For small
defects, smaller filaments shall be generated for the repair.

Different filaments with various dimensions were fabricat-
ed, as shown in Fig. 13a. These filaments were fabricated on
the stainless steel substrate. It could be seen that different
filaments have different colors due to the influence of different
recipes. The temperature and powder feeding rate defined the
recipe. The melting temperature could result in a different
color of deposited stainless steel material.

The material started to cool down at different temperatures,
which generated different oxidized layers that reflected vari-
ous colors. There are several constant parameters for the print-
ing process: the standoff distance is 5 mm, and the powder
feeding rate is 5 g/min.

It was shown in Table 3 that there were three levels of the
scanning speed of the DED printer head, and there were four
levels of the recipe to define the energy and powder feeding

Fig. 6 CT slice images processed
with different methods: a global
thresholding, b a CT slice with
scatter artifacts processed with
global thresholding, and c slice
with scatter artifacts processed
with locally adaptive
segmentation

Fig. 7 Segmentation of surface from CT data: a applied with locally
adaptive segmentation, b zoom-in figure of Fig. 8a, and c segmentation
comparison between the locally adaptive method (red contour) and the
proposed approach (blue contour) Fig. 8 Surface extracted from CT data
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rate. Figure 13 a shows the 12 filaments fabricated on a stain-
less steel substrate under 12 treatment conditions.

The dimensions of printed filaments have exhibited signif-
icant differences, which were influenced by these printing
parameters. To understand the relationship between the print-
ing parameters and the size of filaments, the SLS system was
used to scan the surface of the printed sample. In Fig. 13b,
these filaments were shown different sizes and colors. The
color represents the height of each point; yellow color points
are the highest points. Figure 14 showed the quantitative rela-
tionship between printing parameters and the height of the
deposited material. Under the same recipe, filament height
increases with the decrease of plotting speed from 39.37 to
7.87 in./min. Because of the increased speed, less material
could be deposited on the same spot of the substrate in the
same amount of time. The filament increases with the change
of recipe. From recipe 1 to recipe 4, the powder feed rate has
increased together with laser power, which deposited more
material onto the substrate.

3.2 Layer-wise point cloud results

Multi-layer printing is of paramount importance for the repair
of used parts. It is not common to repair parts with only one
layer of printing; these experiments were performed to print
three four-layer samples on the stainless steel substrate.
However, new challenges appear for multi-layer printing be-
yond those related to single-layer printing, such as monitoring
each layer’s printing quality and identifying possible defects
inside the printed sample. The in situ data collection process
was deployed to capture the surface point cloud data of each
layer.

The SLS system was mounted inside the hybrid DED
printer for collecting data in real time. The SLS images of
each printed layer were taken to characterize the evolution
of the surface roughness. The SLS was deployed to cap-
ture the surface information in the same area after printing
each layer. The captured data was visualized in Matlab
using color to represent each point’s height information
on the surface. In Figs. 15, 16, and 17, the surface point
cloud data of each layer could be seen. It was evident
from the surface color that each layer has a uniform
height and smooth surface roughness. The thickness of
this printed sample is around 1 mm from the measurement
results of the SLS system.

However, it is still unknown how the surface roughness
of each layer evolved. Thus, this study used the Sa pa-
rameter to calculate the area roughness of deposited mate-
rial on each layer. Sa was measured by calculating the
difference in each point’s height compared to the arithmet-
ical mean of the surface, considering all points on the
same scanned area in each layer. In these three experi-
ments, the surface roughness values are maintained be-
tween 44.25 and 81.75 μm (Fig. 18-20).

The surface roughness has little variation in the first few
layers and reaches a higher value at the end of printing for all
three samples. The repeatability of the multi-layer printing
process is high according to the visualized data of each layer
and values of surface roughness, which has demonstrated the
DED repair to be a robust technique in remanufacturing
industry.

Fig. 9 Schematic of C2C method [21]

Fig. 10 Schematic of C2M method [21]

Fig. 11 Schematic of M3C2
method [21]

965Int J Adv Manuf Technol (2021) 116:959–974



3.3 DED repair of used part

The repair was conducted on used engine head parts. The
repair material was 316L stainless steel.

It is easy to locate cracks or dents on the surface of used
parts in the manufacturing industry. In this study, optical im-
ages of the engine head samples were taken. These defects
were distributed unevenly on the substrate. The dimension
of these defects was less than 1 mm on a flat surface. In Fig.
21b, the SLS system was used to capture the object’s surface
before the repair manufacturing. The model was visualized in
Matlab to present the height information for each point on this
sample’s surface. The established coordinate system was used
to track each small defect’s location in their point cloud map.
The volume of each defect can also be calculated to instruct
the subsequent machining process.

The defect sample was prepared for pre-machining after the
SLS system scanned it. The g-code was programmed to re-
move material by milling. Figure 22 a shows that the material
in the red square area was removed according to a previous
design. A square hole was formed on the surface of the engine
head after the milling process was finished. A square pattern
that was slightly larger than the square hole was programmed
for the DED printing process. There are four layers to ensure

that the deposited material is enough to fill the milled hole.
The laser power was 500 W, the powder feeding rate is 5
g/min, the standoff distance was 5 mm, and the nozzle diam-
eter was 1 mm. The DED deposition of the 316 L stainless
steel material was conducted on the engine head, and SLS
scanned, as shown in Fig. 22b. The repaired area was higher
than the surrounding area. Thus the removal of extra material
was needed to be performed. The milled part is presented in
Fig. 22c.

The defect area was filled with new 316L stainless steel
material. Although the deposition material was different from
the substrate material, the repair was still accomplished,
resulting in good surface roughness of repaired part. There
are still some porosities on the surface due to the cast iron
substrate’s carbon material, which can be further addressed
by optimizing printing parameters.

Compared to the existing remanufacturing methods, such
as the thermal spray processes for engine remanufacturing,
RAMRS has several advantages. First, the DED process can
provide metallurgical bonding, which melts the deposited ma-
terial with the substrate surface material instead of a mechan-
ical bonding relying on friction forces to adhere. Metallurgical
bonding could also be achieved with thermal spray tech-
niques, however, with a larger heat-affected zone (HAZ).

Fig. 12 Repair framework of
used parts

Fig. 13 a A 3D printed sample
with different scanning speed,
powder feeding rate, and laser
power and b scanned sample
(unit: mm)
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Second, RAMRS can provide a nearly full-density deposition.
During the experiments, a nearly full-density as-built sample
with about 10 mm thickness was achieved. On the other side,
it is common to observe a porosity of over 5% in the thermal
sprayed coating, which would detrimentally affect repaired
parts’ strength and wear characteristics.

3.4 CT results

The deposited material may have internal cracks or porosity
defects. The nondestructive evaluation provides an approach
to examine the DED printed part without destroying the
manufactured part to detect these defects. CT is one of the
most effective nondestructive evaluation approaches to get a
high-resolution three-dimensional model and a view of the

metal sample’s interior structure. If the metal sample is too
thick, the X-ray would not be able to penetrate the sample.
Thus, the extra material on the printed sample was machined,
and then the sample was sent to be scanned by a CT device
(Figs. 23 and 24).

3.5 Correlation of surfaces from SLS and CT system

In the RAMRS repair framework, the process starts by deter-
mining the dimension of the defect by scanning with the SLS
system. However, the SLS system is not capable of directly
detecting defects like near-surface pores. Thus, the

Table 3 The values of printing parameters in this study. There are two
factors: scanning speed (3 levels) and recipe (4 levels). The standoff
distance was 5mm, and the nozzle diameter is 1mm

Scanning speed
(inch/minute)

Standoff distance
(mm)

Nozzle diameter
(mm)

Recipe
(level)

7.87 5 1 1

23.62 5 1 2

39.37 5 1 3

5 1 4

Fig. 14 DED printed filaments with different treatment combinations of
scanning speed and powder feeding rate

Fig. 15 SLS images of each layer of the DED printed sample 1 (unit: mm)
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aforementioned methods are applied to inspect and locate the
internal pores with the micro-CT system. Use the surface as
the pubic reference, and the near-surface defects can also be
labeled in SLS data. This section discusses the correlation
based on the surface roughness from two systems, point cloud
comparison, and Pearson’s coefficients.

For each sample, surfaces from four different areas are
collected. Then Sa and Sq values and the percentage differ-
ence of the samples are calculated and listed in Table 4.

The difference in the area surface roughness percentage of
the two sets of data is less than 10%, and the absolute differ-
ence is less than the voxel size, which indicates a good

Fig. 16 SLS images of each layer of the DED printed sample 2 (unit: mm)

Fig. 17 SLS images of each layer of the DED printed sample 3 (unit: mm)
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correlation considering the characteristics of the DED process.
One of the main reasons for the difference between the two is
that the SLS system is an optical detection method, and some
information will be lost in the valley. Another reason that may
cause this is the artifacts from the CT scanning and the seg-
mentation parameters.

The two surface datasets (see Fig. 25) are evaluated with
point cloud comparison methods. The mean distance and cor-
responding standard deviations were listed in Table 5. C2C
methods are prone to noises and the roughness of the surface.
Thus, it can be observed that the mean distance value is much
larger than the results from the other two methods. On the
other hand, the mean distance with sub-voxel values was ob-
tained with C2M and M3C2 methods. The histograms of the
distances of C2M and M3C2 were shown in Fig. 26.

Considering the voxel size of reconstructed data from the
CT system, 76 microns, all the three point cloud comparison
methods showed a fitting match since all the standard devia-
tion is less than the voxel size.

The Z coordinates from the two datasets were analyzed by
Pearson correlation, and the results are shown in Table 6. The
r-values from sample 2 and sample 3 show a strong positive
linear correlation, and sample 1 shows a high positive corre-
lation between CT and SLS data (see Fig. 27).

Based on three sets of analysis results, considering the
characteristics of DED processing and the CT system’s reso-
lution, the surface data from the CT and SLS systems are well
matched. Based on this, the surface defects detected by CT
can be accurately marked into the SLS system as a reference
for further milling defect operations.

4 Conclusion

In this research, we establish a new system, RAMRS (Real-
time AM repair system), to demonstrate the effective repair of
the used engine head part with the real-time structured light
system’s assistance. During the manufacturing process, each
printed layer’s surface quality could be monitored and calcu-
lated by the SLS system to ensure high-quality repair. In the
end, a nondestructive evaluation method was used to prove
the interior quality of the deposited material. The RAMRS has
demonstrated a novel method to utilize metal additive
manufacturing techniques for repairing used parts. It benefits
the manufacturing industry by avoiding the disposal of used
parts by high-quality and reliable repair techniques. The main
results are as follows:

& It was found that higher scanning speeds could help to
print smaller filaments, and lower scanning speeds shall
be selected for the fabrication of large filaments. Different
repair strategies were used based on the type of defect.

Fig. 18 The surface roughness of each layer byDED fabrication sample 1
(unit: μm)

Fig. 20 The surface roughness of each layer byDED fabrication sample 3
(unit: μm)

Fig. 19 The surface roughness of each layer byDED fabrication sample 2
(unit: μm)
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Fig. 21 The optical image of
engine head sample by a optical
microscopy and b SLS scanned
data (unit: mm)

Fig. 22 The optical image of the engine head sample by a optical microscopy, b SLS image of the sample (unit: mm), and c the milled sample

Fig. 23 The CT characterization
of the multi-parameter printed
sample by a 3D reconstructed
sample and b visualized porosity
distribution

Fig. 24 The X-ray characteriza-
tion of samples printing on stain-
less steel substrate by a and b
different views of printed sample
and c porosity distribution of the
printed sample
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& The surface point cloud data of a printed four-layer sample
were scanned and presented. Each layer has a uniform
surface with a variation of height within thirty
micrometers.

& The nondestructive approach (CT) was used to analyze the
interior quality of the DED printed sample. It was found
that the stainless steel substrate could result in much less
porosity in comparison with the cast iron substrate.
Surface extractions frommicro-computed tomography da-
ta were conducted to demonstrate the capability of the μ-
CT system for surface topography, especially for those
irregular surfaces fabricated with metal additive
manufacturing, such as direct energy deposition.

& The samples are scanned with both μ-CT and SLS sys-
tems, and the SLS data was applied as the reference mod-
el. In the surface extraction process from CT data, a com-
bination of CL-Ridler thresholding and locally adaptive
segmentation method was applied to achieve a better sur-
face determination performance. Before the comparison,

the extracted surfaces from CT data were aligned and
rescaled using the SLS data as the reference and then
trimmed into the same size at the region of interest. In
the end, the paired datasets were evaluated with areal sur-
face roughness, point cloud comparison, and Pearson cor-
relation coefficient.

& All the percentage differences for areal surface roughness
between the two datasets were less than 10%. The average
distance between the two sets of surfaces is less than or
approximately the voxel size through the test of three point
cloud comparison methods. The results of the Pearson
correlation coefficient showed strong linear correlations
between the CT and SLS data. These results confirm that
the CT system is capable of extracting complex and irreg-
ular curved surfaces at a sub-voxel level.

In the future, the study will be focused on data fusion of the
SLS data and CT data to optimize the RAMRS technique. CT
takes hours to obtain the sample’s point cloud data, while SLS
has the real-time capability to obtain the surface point cloud
data. Based on the correlated surface data, more relationships
between the internal defects and interlayer information such as

Table 4 Areal surface roughness
results Sample no. Area no. Sa Sq

CT SLS % Diff. CT SLS % Diff.

S1 1 66.72 61.43 8.24 78.84 86.99 9.82

2 68.57 65.11 5.18 80.21 86.29 7.30

3 72.38 71.02 1.89 84.56 93.35 9.89

4 72.38 69.01 4.77 84.95 90.63 6.47

S2 1 250.13 243.57 2.66 308.80 301.90 2.26

2 248.01 247.49 0.21 304.99 305.11 0.04

3 234.83 241.65 2.86 291.30 297.84 2.22

4 240.57 248.63 3.29 292.06 304.20 4.07

S3 1 90.33 86.21 4.66 127.95 125.62 1.84

2 99.47 93.51 6.18 141.19 135.93 3.80

3 105.82 102.22 3.46 155.10 152.52 1.68

4 109.55 102.51 6.64 166.00 157.20 5.44

Table 5 Point cloud comparison results

No. C2C C2M M3C2

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

S1 0.039 0.031 0.008 0.062 0.021 0.066

S2 0.033 0.028 0.001 0.044 0.006 0.060

S3 0.024 0.023 0.002 0.034 0.008 0.044
Fig. 25 Surface data of sample 2 from CT and SLS
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surface topography, thermal history, and residual stress can be
further correlated. Our future works will focus onmulti-sensor
data fusion assisted with machine learning techniques for me-
trology and defects detection and prediction in the AM pro-
cess. Besides, the repair quality will be studied by designing
experiments to address the problem of porosities that occurred
on cast iron substrates.

Fig. 26 Histograms of the mean
distance from C2M and M3C2
results: a–c the histograms of
C2M results for samples 1–3, d–f
the histograms of M3C2 results
for samples 1–3

Table 6 Pearson
correlation coefficient Pearson’s r p-value

Sample 1 0.8136 <0.001

Sample 2 0.9473 <0.001

Sample 3 0.9430 <0.001
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