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Abstract
To rapidly predict the thrust force with a tapered drill-reamer, this study develops an integrated methodology coupling a scale-
span model and revised artificial neural networks (ANN) in the drilling of carbon fiber–reinforced polymers (CFRPs). First, the
optimum mesh size of the scale-span finite element (FE) model of CFRPs was obtained to enhance simulation efficiency on the
premise of ensuring accuracy in drilling. Then, an order-driven FE computation approach was first proposed to improve
computing efficiency for batch samples and maximize utilization of the available computing resources. Modeling and solving
of the weight indices of material property parameters (MPPs) and machining parameters for the thrust force were first carried out
entirely based on a feature selection model. A multi-layer revised ANN architecture model, which considers the material
properties of CFRPs and the corresponding initial weight indices, was first designed for the thrust force prediction in Python
software. Finally, drilling experiments involving T700S-12K/YP-H26 CFRPs specimens with different machining parameters
were carried out. The prediction results showed that the established ANN prediction model with a 16-18-18-18-16-1 architecture
has excellent prediction precision, and the maximum absolute deviation is only 4.56% with the comparisons of experiments.
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1 Introduction

Carbon fiber–reinforced polymers (CFRPs) possess attractive
characteristics such as their high strength-to-weight ratios and
high specific stiffness-to-weight ratios compared with metallic
materials [1, 2]. These excellent properties account for the
manufacturing of advanced structures with CFRPs in aviation,
aerospace, and national defense industries, where the drilling
of the structural parts is frequently encountered for either
manufacturing riveted assemblies or structural repairs [3].
High-quality hole is an overriding factor to ensure a higher
assembly accuracy with other structural parts after drilling.

Owing to the inherent anisotropy and structural heterogeneity
of CFRPs, the drilling operation may cause a multitude of
damage, such as delamination, burr, fiber pull-out, and matrix
thermal degradation, consequently reducing the structural
strength and in-service life under fatigue loads [4]. The thrust
force is the primary factor that affects the generation and evo-
lution of hole damage in drilling, especially delamination [5].
The value of the thrust force strongly depends on the geometry
and materials of the tool; workpiece material property param-
eters (MPPs), such as the strength and stiffness; machining
parameters such as spindle speed and feed rate; and coolant
use [6]. Analogously, the thrust force also depends on the
different thicknesses of CFRPs during the entire process of
drilling. Thus, predicting the thrust force exactly is a vital
and necessary strategy to prevent damage in the drilling of
CFRP parts.

Theoretical modeling of the thrust force has played a dom-
inant role in understanding the damage of holes in the drilling
of CFRPs over recent decades. Langella et al. [7] and Tsao
et al. [8] proposed theoretical models to predict thrust force
during composite materials drilling based on the material in-
validation and removal analysis, respectively. Su et al. [9]
established a theoretical drilling model of a tapered drill-
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reamer (TDR) to study the comprehensive analysis for the
thrust force and the delamination under the classical theoreti-
cal prediction model of a twist. Zarif et al. [10] developed
analytical models to predict the critical thrust force and feed
rate at the onset of delamination. The investigation results
revealed that the maximum thrust force has an important effect
on the delamination based on comparison of experiments.
Their contributions laid a solid foundation for the prediction
of the thrust force in future studies. However, the empirical
formulas deduced by curve approximation or data line fitting
are insufficient given the required prediction precision due to
the increased machining accuracy requirements over recent
decades.

Except for experimental studies and the method of formula
derivation, the finite element (FE) method has captured the
attention of scholars by theoretical prediction models of
CFRPs [11]. The thrust force of the entire drilling process
can be obtained at the end of the simulation analysis, and the
prediction results are generally more accurate than those of the
theoretical model. Unfortunately, some parameters of material
failure criteria of CFRPs in the FE model are dependent on the
theoretical model, which leads to errors between the predic-
tion model and experiments. In addition, a single or multiple
similar type of CFRPs is merely considered inmost theoretical
prediction models and FE models. The MPPs of CFRPs are
generally regarded as one of the most important factors
influencing the thrust force. Nonetheless, these are not con-
sidered in previous studies. The major reason is that the MPPs
of CFRPs are extensive and a series of complex analytical
processes must be redone when some parameters are updated
in each analysis, such as remodeling and recalculation. In
contrast, scholars [12–14] are more inclined to research the
influence of machining parameters on the thrust force based
on numerical simulation methods, such as the feed rate and
spindle speed. The shortcoming is that completing the entire
analysis of the simulation process is time-consuming to per-
form because the three-dimensional (3D) drilling FE model is
a dynamic explicit simulation analysis process, and a high-
performance computing facility is essential for the complex
structures of CFRPs.

To make the prediction results of the thrust force more
rapid and accurate, artificial neural network (ANN) mod-
el is an excellent approach to obtain the relationships
between the thrust force and the MPPs of the CFRPs,
and machining parameters. The defects of traditional ar-
tificial intelligence based on logical symbols in dealing
with intuitive and non-resultant information are over-
come. The entire prediction process is dependent on es-
tablishing mathematical relationships between the input
parameters and output parameters. Different algorithms
are adopted to facilitate ANN having the characteristics
of self-adaptation, sub-organization, and real-time
learning.

ANN is an implementation of an algorithm inspired by
research on the brain, and ANN models are a technology in
which computers learn directly from data, thereby assisting in
classification, function estimation, data compression, and sim-
ilar tasks. ANN can be seen as computing elements, simulat-
ing the structure and function of a biological neural network
[15]. Actually, ANN have been widely used in machining
composites over the last few decades, such as real-time control
and optimization of machining parameters [16, 17], tool wear
[18], and prediction of parameters [19, 20]. For the drilling of
composites, Mishra et al. [21] first predicted the likely damage
before drilling the unidirectional FRP based on an ANNmod-
el; the diameter and geometry sizes of the tool were added and
used as the input parameters. Based on this investigation,
Palanikumar et al. [15] first used an ANN model for the pre-
diction of the delamination factor in drilling to achieve a
higher quality hole in fiber-reinforced plastic (FRP).
Unfortunately, the MPPs that are considered one of the most
influential factors were neglected and other parameters that
are used in evaluating drilling quality were also predicted
through the ANN model. The prediction results showed that
the well-trained ANN model was able to predict the surface
roughness in the drilling of glass FRP. Kahraman [22] predict-
ed the major drilling parameters (such as the bit load, optimum
rotation speed) of a diamond bit under different machining
drilling conditions. The prediction results revealed that the
prediction method proposed by the authors had higher preci-
sion than the traditional modeling method, whereas the defi-
ciencywas that the weight ratio of each parameter was random
in the establishment of the neural network training model,
which lacks complete training for each parameter. In addition,
based on the genetic algorithm, Anarghya et al. [23] proposed
a multilayer perception neural network optimized model to
predict the thrust force, which takes as input the command
feed rate, previous command feed rate, and drill point angles.
The shortcoming of this investigation was the small number of
training samples since the acquisition was from experimental
data, which subsequently caused the prediction results to be
closely matched to the experimental values. Scholars also try
to use numerical analysis models to replace experiments for
sample training. Nevertheless, suitable material failure criteria
models of CFRPs are lacking in FE software, which leads to
the prediction results between the FE model and experiments
not being in good agreement. More importantly, manual mod-
ification of parameters and the extraction of results are re-
quired when the parameters of the corresponding FE model
are updated in the software. Plenty of samples are needed as
the basis in the training of the ANN model. This causes the
entire analysis process to be more time-consuming.

Based on the aforementioned studies, an integrated and
effective methodology, which is coupled with a scale-span
drilling FE model and a revised ANN model, is developed
to rapidly predict the thrust force in the drilling of CFRPs
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using tapered drill-reamer (TDR) under the different machin-
ing parameters. The optimum global mesh size of the scale-
span FE model of CFRPs is optimized to obtain the minimum
calculation time on the premise of ensuring accuracy of the
predicted thrust force, while an order-driven FE computation
approach is developed for the batch solution of samples. The
material property parameters of CFRPs are added as input
parameters, while the initial weight indices of each parameter
are considered in the revised ANN model. The established
well-trained ANN model can be used to predict the thrust
force more rapidly and precisely compared with the conven-
tional ANN method in drilling CFRPs.

2 Mesh size optimization of the scale-span
drilling FE model

According to the established scale-span drilling model in our
previous research, the simulation accuracy depends highly on
the mesh size of the scale-span drilling FE model. The simu-
lation process costs plentiful of simulation time (about 193 h)
even by high-performance computing facility, and hundreds
of samples are needed for training in ANN. If the refinement
mesh size is adopted, it will take more than several years
although the high precision simulation results can be obtained,
such as burr and delamination. However, it is too time-
consuming owing to it taking up lots of disk space and avail-
able computer resources. Thus, exploring the mesh sensitivity
of the scale-span model is an essential task to improve the
simulation efficiency.

2.1 Scale-span FE modeling with different mesh sizes
and mesh styles

Determining the global minimum mesh size, reasonably di-
viding each partition area, refining the mesh size of the contact
area, and making the transition of the mesh of the different
divided areas are necessary in the mesh generation of the
CFRP model. According to the previous research, the scale-
span drilling FE model which adopts the typical machining
parameters (Sr=2000rpm, Sf=0.03mm/rev) and the refined
mesh size (0.05 mm) of CFRPs model is replicated multiple
times. Then, the initial mesh elements of CFRPs model are
removed and each copied model is numbered. Meanwhile, the
scale-span drilling FE model with different global sizes of
refined meshed within a spacing of 0.05 mm in the range of
0.05~0.4 mm is generated using free and structural mesh gen-
eration style.With the change of the global size, the number of
the mesh of each simulation model is not consistent. For in-
stance, the total number of elements is 3382122 when the
global size is 0.05mm, whereas the total number of elements
is only 49983 when the global size is 0.4mm. In other simu-
lation models, the total number of elements is between 49983

and 3382122. Several scale-span models with different mesh
sizes as the samples are shown in Fig. 1.

Because the mesh type and mesh size of each simulation
model have changed, it is also necessary to re-attribute the
material properties, stacking angle and stacking sequence of
elements, while the 0 thickness cohesive elements (CEs),
which is used for delamination simulation, are also regenerat-
ed through the basic mesh of CFRPs. In addition, the ele-
ments, which are located at the contact area, also are required
to be reset, and the damage failure parameters are also modi-
fied slightly to prevent nonconvergence of the simulation
model.

2.2 Comparison of simulation efficiency and accuracy

Figure 2a shows the predicted thrust force variation of the
scale-span FE model with different mesh sizes during drilling.
Apparently, the overall variation trend is almost consistent
because the same boundary conditions are adopted, which is
also close to the experimental results. However, due to the
mesh size of the contact elements being different, the ampli-
tude of variation is not consistent at the same period. The
vibration amplitude of the thrust force increases with the in-
crease of mesh size in the same period. The main reason is that
lots of elements with small mesh size that should be deleted in
refined mesh FEmodel are retained in coarse mesh FEmodel.
There is a lack of interaction between the elements with small
mesh size and the TDR bit model when the elements with
large mesh size have been deleted in coarse mesh FE model.
Therefore, with the increasing mesh size of corresponding
elements, the contract nodes will become coarse, leading to
increase in the oscillation amplitude of the thrust force owing
to that the large size element can be assumed to contain many
small size elements.

Figure 2b shows the predicted thrust force variation of the
scale-span FE model with different mesh styles. Analogously,
there is no obvious difference on the predicted force variation
because the basic mesh size and the number of elements of the
simulation model are almost consistent. Their unique differ-
ence is some small oscillation change during the contact be-
tween the TDRmodel and CFRP model. Nonetheless, there is
almost no greater variation trend on predicted thrust force
because the number of elements located at the contact area is
almost the same, although the different mesh styles are
adopted in CFRP model.

Figure 3 shows the simulation results on interlaminar and
intralaminar damage of the CFRPs with different mesh sizes.
Compared with experimental results, the bearizing phenome-
non has occurred in the simulation model with larger mesh
size owing to the continuity of CFRP mesh. Similarly, other
types of the real damage phenomenon are difficult to be sim-
ulated, while the surface morphology of the hole obtained by
the simulation model is relatively rough as well. On the

2257Int J Adv Manuf Technol (2021) 116:2255–2268



contrary, various damage behaviors can be simulated precise-
ly in the FE model with refinement mesh size, such as pit,
burr, tear, and delamination. But it can be observed that the
damage behavior is closely related to the thrust force.
Therefore, accurately predicting the maximum average thrust
force is an important and necessary strategy to prevent dam-
age [11].

According to the comparative analysis of the predicted re-
sults, the deviation of the maximum average thrust force is
relatively small among all the FE models with different mesh
sizes and mesh styles. The absolute percentage deviations [24]
between the simulation results and experimental results are
introduced to accurately quantify the prediction accuracy of
the scale-span FE model with different mesh sizes and mesh
styles. Similarly, the calculation time of each simulation

model is also collected to optimize the optimum mesh size
for improving the simulation efficiency on the premise of
ensuring accuracy. The statistical results of the prediction ac-
curacy and simulation time of the scale-span FE model with
different mesh sizes and mesh styles are shown in Fig. 4.

As can be seen from Fig. 4, the prediction accuracy for the
thrust force is highest when the structural mesh size of 0.1mm
is adopted, and the maximum deviation is less than 1%.
Simultaneously, the deviation value becomes larger when
the larger mesh sizes are adopted according to the trend anal-
ysis of the absolute deviation. The prediction accuracy of the
scale-span FE model with the global mesh size of
0.05~0.35mm is approximately 5%. However, the deviation
value is more than 15% when the structural mesh size is great-
er than 0.4mm. The total calculation time of each FE model

Fig. 1 Scale-span drilling FE model with different mesh sizes and mesh styles. a Refinement mesh size FE model. b Medium structural mesh size FE
model. c Coarse free mesh size FE model

Fig. 2 Thrust force prediction results of the scale-span FEmodel with different mesh size and mesh style. a Prediction results of the scale-span FEmodel
with different mesh sizes. b Prediction results of the scale-span FE model with different mesh styles
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shows an exponential growth when the mesh size is less than
0.35mm although the prediction accuracy has a slight im-
provement with mesh refining.

Because the calculation time and the accuracy of the pre-
diction results are inversely proportional, the value of the
mesh size, located at the intersection of simulation and abso-
lute deviation, is defined as the most optimized value, which is
used for guaranteeing higher simulation efficiency and accu-
racy in this study. Thus, the mesh size of 0.23mm is the most
optimum mesh. Furthermore, the structural mesh size of
0.35mm is regarded as the most suitable scheme in order to
maximally shorten simulation time on the premise of ensuring
accuracy because of the requirement of more than hundreds of
samples used for training in ANN model. The main reason is
that the deviation is not far apart, as it is shown in Fig. 4.
Finally, the complete calculation time of a simulation model
is approximately 5.5 h on a high-performance computing fa-
cility with two 48 core 8160 platinum processors and 128 GB
RAM.

3 Obtaining the sample set, features
selection, and ANN algorithm

3.1 Data preparation

3.1.1 Input sample set

The effectiveness of the ANNmodel for the prediction of thrust
force is dependent on many samples, which contain a training
sample and checking sample. Sobol’s quasi-random sequence
based on algorithm 659 [25] is adopted in this study consider-
ing the uniformity and the generation efficiency of the samples.

Since the generation of Sobol’s sequence is clearly ex-
plained in previous studies [2, 26], the main points are only
briefly reviewed to indicate the extra data required to generate
the input sample set based on the basic input parameters of the
FE model. First, there is a need to establish a probabilistic
model of the MPPs of CFRPs and the machining parameters.
Then, the statistical characteristics of random parameters are
calculated using the observation of a probabilistic model or
sampling experiments. Thus, an approximation of the target
solution was obtained according to the accurate requirement
of the solution or the number of solutions.

To generate the jth component of the points in Sobol’s se-
quence, a primitive polynomial [27, 28] of some degree sj in the
field needs to be chosen, which can be written as follows:

Psj;aj xð Þ ¼ xs j þ a1; jxs j−1 þ⋯þ as j−1; jxþ 1 ð1Þ

where a1,j… asj-1,j denote the coefficients, and asj,j are either 0 or 1.
These coefficients are used to define a sequence

{m1,j,m2,j…msj,j}, and the sequence is of positive integers
using a recurrence equation [29], which can be written as:

mk; j ¼ 2a1; jmk−1; j⊕22a2; jmk−2; j⊕⋯⊕2s j−1as j−1; jmk−s jþ1; j⊕2s jmk−s j; j⊕mk−s j; j

ð2Þ

Fig. 3 Simulation results of the scale-span FE model with different mesh sizes. a Experimental results. b Simulation results of the FE model with
refinement mesh size. c Simulation results of the FE model with medium mesh size

Fig. 4 Calculation time and the corresponding deviation
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where k is equal to or greater than sj+1; ⊕ denotes the bit-by-
bit exclusive-OR operator.

The initial values m1,j,m2,j…msj,j can be chosen freely if
eachmk,j is a positive odd valueless than 2

k, where k is greater
than 1 and equal to or less than sj. A set of direction numbers
{v1,j,v2,j…vsj,j} are required, which can be defined by

vk; j ¼ mk; j=2
k ð3Þ

Thus, the jth component of the ith point in a Sobol’s se-
quence xi,j, namely, the input sample set that is generated by
the MPs of fiber and matrix, can be obtained by [26, 30].

xi; j ¼ b1v1; j⊕b2v2; j⊕⋯⊕bwvi; j ð4Þ

where bw denotes thewth bit from the right when i is written in
binary, namely (…b2b1)2 is the binary representation of i.

Thus, a corresponding code was developed with the help of
the MATLAB software based on the above inputs [2]. Two
independent samples in the FE model were generated accord-
ing to the initial MPPs (not including the fraction energy be-
cause the value was assumed to be consistent) of unidirection-
al CFRPs and machining parameters. The independent sample
set of each parameter contained 30 data points. Then, each
data set of parameters between two sets of independent sam-
ples was combined and replaced. Finally, 540 input samples
on theMPPs of CFRPs and machining parameters are listed as
examples in Table 1.

3.1.2 Result sample set

According to the optimized scale-span FE model, the thrust
force of each input sample set will be acquired by importing
540 groups of the input parameters respectively, namely the
result sample set. However, performing the entire process

manually is time-consuming because the operation process
of the FE model through the ABAQUS software is complex.
Furthermore, there is a large number of input samples with
different parameters, and the implementation of artificially
modifying parameters and manually submitting jobs one by
one is also difficult in the software.

Aiming at the above problem, an order-driven FE compu-
tation approach is first proposed by developing an ABAQUS
batch file and a Python script file for drilling CFRPs to max-
imize the utilization of available computing resources and
ensure the efficiency of the calculations of the FE model.
The entire analysis process is also conducive to implementing
the output more conveniently and rapidly.

The whole simulation process of the order-driven FE anal-
ysis model with 540 input samples of drilling CFRPs was
based on the Isight software, which is shown in Fig. 5. First,
establishing a scale-span FE drilling model from ABAQUS/
explicit GUI is necessary and vital, as is guaranteeing that the
analysis results files (.rpt) of the FE model can be accessed
when the submitted job is finished. Simultaneously, extracting
and modifying the modeling and analysis process files of the
FE model to ensure all files could be compiled using Python
software, namely the order-driven file, is necessary.
Moreover, a corresponding ABAQUS batch script file is de-
veloped using Notepad++ software. After the above prepara-
tion, the order-driven files (.py), the ABAQUS batch script
file (.bat), and the result files are imported into the Simcode
module of the Isight software respectively, a job submitted to
ensure that the analysis results are consistent with the initial
model before importing 540 input samples. Furthermore, the
data of 540 input samples modeled with different parameters
are imported into the DOE module of the Isight software. The
most important work is to reasonably setup parameters and
debug the corresponding code in the main program module to

Table 1 Several samples of the
input parameter data set No. Elastic parameters of CFRPs (GPa) Machining parameters

E1 E2/E3 v12/v13 v23 G12/G13 G23 Sf(μm/rev) Sr(rpm)

1 140.83 6.081 0.292 0.282 3.348 2.549 19.89 1631.9

2 132.57 7.554 0.209 0.305 2.967 2.110 24.60 2659.0

3 136.45 7.038 0.269 0.339 3.162 2.406 27.31 2237.7

4 134.14 6.575 0.225 0.274 2.528 2.972 12.02 2523.5

5 139.97 7.851 0.240 0.328 2.796 2.740 13.04 2059.4

No. Strength parameters of CFRPs (MPa)

XT XC YT YC ZT ZC SXY/SXZ SYZ
1 1953.25 815.83 32.87 152.34 53.41 134.36 77.99 50.88

2 1738.42 1167.76 45.60 147.49 34.27 173.72 101.27 67.03

3 2292.19 1272.75 53.54 169.33 26.37 126.94 90.47 46.74

4 1381.94 937.43 40.01 130.81 46.33 151.28 88.75 55.46

5 2172.88 1025.90 59.83 140.99 39.69 158.70 95.95 54.95
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automatically modify the parameters of input samples and
submit jobs automatically when calling the kernel of the
ABAQUS software in the background. Based on the above
operation, the analysis result could be accessed conveniently
and rapidly based on the output analysis result files of each
input sample model, namely, the results set.

Finally, the whole calculation of all input samples model
takes more than a month on four same high-performance com-
puters with two 48 core 8160 platinum processors and 128 GB
RAM.

3.2 Acquisition of initial weight indices

Each of the attributes is referred to as a feature in the input data
set, such as the tensile strength of CFRPs and spindle feed rate
of the machine. The primary purpose of feature selection is to
select the feature subset with the greatest correlation with the
output data from the features set of the training samples [31].
Feature selection is a significant step in the data processing of
the ANNmodel because there is a mass of input parameters in
the simulation model. Selecting the greatest relevant subset
from all feature sets is conducive to simplifying the training
model in the ANN model, decreasing the calculation cost of
the training model, and preventing the risk of overfitting.

The entire process of the feature selection generally consists
of two primary steps. One is a subset search, and the other one is
a subset evaluation. A machine learning algorithm is adopted to
combine feature selectionwith the training process. The random-
forests algorithm as a common approach of machining learning
can acquire importance of individual characteristic variables to
gain feature selection [32]. This approach considers the data set
and learns tasks, as well as prevents vast of computation.
Furthermore, the extra-tree forests algorithm is applied for fea-
ture selection after comparing machining learning algorithm in
terms of the ability to acquire individual characteristic variables.

Since the primary purpose of this study is adopting the
scale-span FE model to predict the maximum average thrust
force during drilling, some parameters that have little effect on
the thrust force are ignored in drilling CFRPs, such as the
fraction energy which is assumed to be consistent, etc. Thus,
the basic MPPs of CFRPs and machining parameters are
regarded as the features that should be recognized and all
parameters are defined as the input data. The thrust force data
set from the results sample set is defined as the output data.

To obtain the initial weight indices of each input parameter
for improving the training accuracy of the ANN model, the
corresponding code for feature selection was developed in
Python software in accordance with the flowchart shown in
Fig. 6.

Fig. 5 Implementation flowchart of the order-driven FE computation approach
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According to the feature selection results, the weight indices
of input parameters are shown in Fig. 7. The compression
strength ZC and the shear strength SYZ of CFRPs have a signif-
icant effect on the thrust force, and weight indices of them are
0.12884 and 0.10636 respectively. Other feature effects are
individually smaller. However, the effects of them cannot be
ignored, especially the machining parameters, which play an
essential role in the whole drilling process of CFRPs. Then, the
weight indices of each parameter are adopted in the input layer
of the ANN prediction model to decrease the calculation cost of
the training model and improve the prediction precision.

3.3 Establishment of ANN prediction model

3.3.1 ANN modeling and training

Amultilayer perceptron ANN based on feed forward and error
back propagation is adopted in this study. The implementation

process of the basic learning algorithm mainly includes two
subsequent steps. First, establishing the computer network to
predict the corresponding relationship between the input sam-
ple and the output sample is essential according to the training
samples. The learning results and the prediction results must
be compared after a large number of training epochs to modify
the output error for evaluation the performance of the ANN
model is proved, and themean square error (MSE) is generally
adopted. An ANN model is proved to be a good network
based on which the produced errors are less than 11% for both
training and validation data [33]. Then, the weight indices of
each input parameter are continuously modified to reduce the
errors between the prediction results and the learning results.
The training process will be stopped if the output error is
acceptable or the preset training epoch is reached. The predic-
tion results are achieved when the fresh samples are imported
into the well-trained ANNmodel. The ANNmodel consists of
an input layer, one or more hidden layers, and an output layer.
The number of neurons in each layer can be different.

Based on the aforementioned description, the following
assumption should be satisfied in the established ANNmodel:

i) There are S hidden layers in ANN model.
ii) The total number of samples for training is K.
iii) There areM andH neurons in the input layer and output

layer, respectively.
iv) The weight indices between the input layer and the

hidden layer are W, while the weight indices between
the output layer and the hidden layer are V.

v) The thresholds of the hidden layer and the output layer
are θ and γ, respectively.

vi) Three activation functions namely tanh, relu, and
sigmoid are used to activate neurons [34].

According to the integrated algorithm flowchart shown in Fig.
8, Python software is used for the design of the ANNmodel, and
the complete modeling and learning process are as follows:

Fig. 6 Implementation flowchart
of the feature selection model

Fig. 7 Weight indices of MPPs and machining parameters
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(1) The input vector, the output vector of the hidden layer,
the network output vector of the output layer, and the
expected output vector of the ith sample can be respec-
tively expressed as.

X ið Þ ¼ x1 ið Þ; x2 ið Þ;⋯; xM ið Þ½ �
H ið Þ ¼ h1 ið Þ; h2 ið Þ;⋯; hH ið Þ½ �
A ið Þ ¼ a1 ið Þ; a2 ið Þ;⋯; aN ið Þ½ �
T ið Þ ¼ t1 ið Þ; t2 ið Þ;⋯; tN ið Þ½ �

8
>><

>>:

ð5Þ

(2) All inputs and outputs are normalized within the range 0–1,
and then normalized using the following expression [15].

X norm ¼
X−Xmin

�

Xmax−Xminð Þ ð6Þ

where Xnorm denotes the normalized value, X denotes the ini-
tial value, and Xmin and Xmax denote the minimum and maxi-
mum value of inputs, respectively. Simultaneously, all input
samples X and the corresponding expected outputs T are
imported to the developed code in Python software, while
the value of MSE and the number of the maximum epochs
are also set, respectively.

(3) The output weight indices of the hidden layer and the
output layer in the training model are calculated, while
the expressions are written as.

H j ið Þ ¼ f ∑
m

j¼1
Wjkx j ið Þ−θk

" #

; k ¼ 1; 2; 3;⋯H

Ao ið Þ ¼ f ∑
H

k¼1
VkoH j ið Þ−γo
� �

� �

; o ¼ 1; 2; 3⋯;N

8
>>><

>>>:

ð7Þ

where Wjk denotes the weight indices between the jth input
layer and the kth hidden layer, and Vko denotes the weight
indices between the kth hidden layer and the oth output layer.

(4) The correction errors between the hidden layer and the
output layer are solved, and their expressions are written
as.

δo ið Þ ¼ ao ið Þ 1−ao ið Þ½ � ao ið Þ−to ið Þ½ �
δ j ið Þ ¼ ao ið Þ 1−ao kð Þ½ �δo ið ÞVko

�

ð8Þ

where δk(i) and δo(i) denote node error of hidden layer and
output layer, respectively.

(5) The weight indices of the output layer and the hidden
layer and the threshold of the output layer neurons are
modified, while the modified expressions are written as.

VNþ1
ko ¼ VN

ko þ ηδo ið Þao ið Þ
ΔVko ið Þ ¼ −α

∂e
∂Vko

¼ αδo ið Þαo ið Þ

8
<

:
ð9Þ

γNþ1
o ¼ γNo þ αδo ið Þ ð10Þ

Fig. 8 Algorithm flowchart of the
multi-layer ANN model
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where α denotes the learning rate, 0 <α <1, N denotes the
number of epoch, and η denotes the coefficient which is used
to modify the weight indices.

(6) The weight indices of the input layer and the hidden layer
and the threshold of the hidden layer are modified, and
the modified expressions are written as.

WNþ1
jk ¼ VN

ko þ ηδk ið Þx j ið Þ
ΔWjk ið Þ ¼ −μ

∂e
∂Wjk

¼ αδo ið Þx j ið Þ

8
<

:
ð11Þ

θNþ1
k ¼ θNk þ μδk ið Þ ð12Þ
where μ denotes the learning rate, and 0 <μ <1, and the def-
initions of other parameters are the same as before.

(7) The errors of each neuron are output through the calcu-
lation of Eq. (8), and the number of epochs is updated.
The training is terminated if the value of output error is
less than the preset accuracy or the number of iterations
exceeds the preset maximum in the program. Otherwise,
steps (3) to (6) are required to be repeated.

(8) Based on the renormalization method, parameters (such
as thrust force) can be predicted by inputting fresh sam-
ples into the well-trained ANN model.

3.3.2 Implement of thrust force prediction

Based on the established multi-layer perceptron ANN model,
neurons in the input layer correspond to the elastic and
strength parameters of CFRPs and machining parameters are
reported in Table 1. The output layer corresponds to the max-
imum average thrust force from the result sample set, which is
obtained based on the order-driven FE computation approach
proposed in Section 3.1.2. More than 2 hidden layers are gen-
erally designed in accordance with the input vector size and
the number of input classifications. The number of neurons in
the hidden layer is generally greater than the number of neu-
rons in the input layer to achieve a more precise classification
of the input parameters. The approach of changing the mo-
mentum coefficient, learning rate, number of hidden layers,
and number of neurons in the hidden layer is adopted to de-
termine the suitable architecture of the proposed ANN in this
study. In addition, the MSE is used to evaluate the perfor-
mance of the ANN model.

In the training process of the ANNmodel, the initial weight
indices of each input parameter must be imported into the
ANN model at first according to Fig. 7 (the initial weight
indices in the conventional ANN model are random). With

increasing training times, the weight indices are constantly
modified in accordance with Eqs. (9) and (10). The Adam
algorithm [35] based on gradient descent is adopted to modify
the weight indices in the established ANNmodel. The training
process ends when the calculation error is not greater than the
preset precision.

It is observed from Fig. 9 that 4 hidden layers and 18
neurons in the hidden layers exhibit satisfactory training
which hence are selected eventually. The ANN model with a
16-18-18-18-16-1 architecture is found to be the most suitable
choice in maximum thrust force prediction based on the opti-
mized scale-span simulation model sample through multiple
different training trials. The complete architecture of the
established ANN model contains 16 neurons in the input lay-
er, 4 hidden layers (18 neurons in the first three layers and 16
neurons in the fourth layer), and 1 neuron in the output layer,
as is shown in Fig. 10.

Based on the well-trained ANN model, a series of samples
based on the machining parameter variation of the machine
are regarded as the fresh samples to verify the correctness of
the prediction results.

4 Results and discussion

4.1 Fresh sample set based on Taguchi method

To verify the correctness of the prediction model based on the
well-trained ANN in dealing with new test data set, a series of
sample data set based on the machining parameter variation of
the machine center are regarded as the fresh test data. It is
helpful for experimental verification because the material
property parameters of CFRPs are difficult to modify in the
experiment.

A full factorial design of experiments with two factors
(spindle feed Sf and spindle rotation Sr) based on the initial
material property parameters of CFRPs is treated as the fresh
validation data set in this study [36]. The validation data set of
five levels of spindle feed rate (20, 30, 40, 50, 60mm/min) and
their corresponding spindle rotation (2000, 3000, 4000, 5000,
6000rpm) were carried out. In addition, the predictions of
some extreme machining parameters were also carried out to
ensure the application scopes of the established ANN model
were wider and more accurate, such as Sf =10mm/min and
Sr=8000rpm. Finally, the corresponding prediction results
are shown in Fig. 11a.

4.2 Experimental validation

The experimental setup is consistent with the previous re-
search. Their unique difference is that the unit of the spindle
feed rate is required to be converted. Three T700S-12K/YP-
H26 CFRP laminates specimens were used for the test to
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obtain a satisfactorily measured dataset. The experiments un-
der the same machining parameters were repeated three times
for the sake of improving the accuracy. One of the CFRPs
laminates specimens after drilling is shown in Fig. 11b.

The experimental results for other machining parameters
were also collected by taking the average of each set with
the same machining parameter. To more accurately verify
the accuracy of the predicted results for the well-trained
ANN model, some experiments with extreme machining pa-
rameters were also added in the reserved experimental area of
CFRPs, such as higher spindle rotation speed. Meanwhile, the
reserved area is used to make up some samples with no data
collection. Finally, all of the experimental results are shown in
Fig. 12a.

From the experimental and prediction results, the predicted
value of the thrust force is in close agreement and follows
almost the same trend as the experimental value through the
analysis. To furtherly quantify the precision of the experimen-
tal results and prediction results, the absolute percentage

deviation Ea is introduced again [24], which is written as fol-
lows:

%Ea ¼ Fexp−Fpred

Fexp

�
�
�
�

�
�
�
�*100 ð13Þ

where Fexp denotes the experimental value of maximum thrust
force and Fpred denotes the predicted value of maximum thrust
force based on the well-trained ANN model.

As can be observed from Fig. 12b, the predicted results are
almost consistent with the experimental results, and the max-
imum absolute deviation is only 4.56% among them. The
deviations of prediction results of the extreme machining pa-
rameters in the well-trained ANNmodel are also within 5% of
experimental value. The dominant cause is that there is a de-
viation between the drilling FE model and the experiment
under the same machining parameters, followed by the devi-
ation of the measurement devices. In addition, CFRPs in the
drilling FE model are regarded as the desired material. For

Fig. 9 MSE variation and number of epochs. a MSE of different hidden layers. b MSE of different neurons in hidden layer = 4

Fig. 10 Designed neural networks architecture
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example, the fiber and resin are perfectly combined at the
structural level and without damage. In practice, there may
be a small amount of fiber damage (void and micro-cracks,
etc.) during the preparation of CFRPs under high temperature
and high pressure.

Therefore, the proposed methodology based on the cou-
pling of the scale-span drilling FE model and the ANN model
to predict the thrust force with a TDR under different machin-
ing parameters is correct and effective according to the com-
parison of the prediction results and the experimental results in
this study. Compared with the conventional ANN model, the
influence of the MPPs of CFRPs and the corresponding initial
weight indices of the input parameters is considered in the
prediction of thrust force, which enables predicting the thrust
force in drilling CFRPs more rapidly and precisely using the
well-trained ANN model. More importantly, based on the
well-trained multi-layer ANN model, the thrust force of

CFRPs with different MPPs can also be predicted rapidly
under different machining parameters when a similar bit is
adopted. In addition, similar damage phenomena of holes
can also be predicted using this approach in drilling CFRPs,
such as the delamination factor, which will be the next step of
our research in the future.

5 Conclusion

In the present study, a rapid thrust force prediction method
was proposed by coupling scale-span model and revised
ANN for drilling T700S-12K/YP-H26 CFRPs with a TDR.
First, the optimum mesh size of the scale-span drilling model
of CFRPs was optimized to shorten simulation time on the
premise of ensuring accuracy. An order-driven FE computa-
tion approach was first proposed to implement the parametric

Fig. 11 Experimental scheme and prediction results of ANN. a Prediction results of the well-trained ANN. b Experimental specimen

Fig. 12 a Experimental and prediction results and b deviations
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calculation of the FE model and the automatic extraction of
the simulation results. Subsequently, a multilayer revised
ANN model, which considers the MPPs of CFRPs and the
initial weight indices of the input parameters, was developed
to predict the average maximum thrust force in drilling.
Furthermore, the well-trained ANN model was applied for
the thrust force prediction of the fresh samples, and the corre-
sponding experimental results were used for evaluating the
accuracy via a comparison of the prediction results. Based
on the above studies, the main conclusions are as follows:

(1) The mesh size of 0.23mm is the optimum mesh of the
scale-span drilling FE model to predict the maximum
average thrust force for the sake of guaranteeing higher
simulation efficiency and accuracy. But the structural
mesh size of 0.35mm is regarded as the most suitable
scheme to greatly shorten simulation time on the premise
of ensuring accuracy.

(2) The compression strength ZC and the shear strength SYZ
of CFRPs have a significant effect on the thrust force
during drilling. Their weight indices are 0.12884 and
0.10636, respectively. In addition, the machining param-
eters play an essential role in the drilling process.

(3) The multilayer ANN model with a 16-18-18-18-16-1
architecture is the most suitable for predicting the maxi-
mum average thrust force based on the optimized scale-
span drilling FE model samples. The minimumMSE for
the training data is computed to be 0.00151 through
70000 training epochs in the ANN model.

(4) The maximum average thrust force of CFRPs with pa-
rameters of different materials is rapidly and precisely
predicted under different machining parameters using
the well-trained ANN model. The maximum absolute
deviation is only 4.56% with the comparisons of exper-
iments. The prediction results of some extreme machin-
ing parameters are also possible using the well-trained
ANN model, and the deviations of the prediction results
are acceptable as well.
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