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A mechanical model of axial and circumferential bidirectional
deformation for large thin-walled pipes in the process of continuous
and synchronous calibration of roundness and straightness
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Abstract
In this paper, a mechanical model of axial and circumferential bidirectional deformation has been developed by considering two
factors: roller shape and radial reduction. Since the calibration of the roundness and that of the straightness of pipes are currently
separate processes, the established mechanical models are based on a single direction. However, the established bidirectional
mechanical model can describe not only the stress-strain distribution of the pipe in deformation to determine the position of the
stress concentration but also the deformation curve of the pipe in different directions. As a result, it can serve as a theoretical basis
for setting process parameters and optimizing roller shape. A large thin-walled pipe of Al6063 is modeled and then numerically
simulated with FEM software of ABAQUS, and the results are compared with the model. Then, the process is fabricated and
tested experimentally. The results are compared with the mechanical and numerical models. The distribution of equivalent stress
and equivalent strain obtained by the model has a good match with the simulation results, and the maximum relative error is not
more than 25%. The axial and circumferential deformation curve calculated by the mechanical model coincides well with the
simulation and experimental results, and the maximum error is not greater than 3.0 mm. Obviously, both the experiment and the
simulation have verified a superior validity of the model.
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1 Introduction

Natural gas has become the main energy in the world. Large
thin-walled pipes are widely used in oil and gas transportation
in cold zones or deep water [1]. To ensure the strength and
integrity of the design pipeline, Trifonov and Cherniy [2, 3]
proposed a stress-strain analysis model of buried steel pipes
subjected to active fault displacements. To expand the appli-
cation range of spiral welded pipes in oil and gas transporta-
tion, Papadaki et al. [4] studied the structural properties of
large diameter spiral welded steel pipes under pressure bend-
ing numerically. Draper et al. [5] combined beam bending
model and prediction scour formula to simulate the pipeline
lowering on a moving seabed. The model was also used to
estimate the stability of the pipeline using the method of max-
imum design wave. Under the influence of external pressure,
bending, and axial tension, the pipeline was prone to structural
instability due to excessive oxidation, resulting in disastrous
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effects. Chatzopoulou et al. [6] used nonlinear finite element
simulation tools to study the influence of UOE pipeline
manufacturing process on the response and resistance of off-
shore pipeline structures. Subsea pipeline hydrodynamic sta-
bility is one of the most fundamental aspects of pipeline
design. Robertson et al. [7] performed force balance
calculations and complex dynamic finite element analy-
sis, demonstrating that effective and accurate pipeline
stability analysis was critical to avoid potentially high
costs in complex stability solutions.

Due to the fluctuation of the material performance and
some uncertain factors in the forming process, the roundness
and straightness of pipes may not meet the industrial stan-
dards, and the over-standard pipes should be calibrated further
[8]. The present roller calibrated methods, including straight-
ness and roundness, are based on the unidirectional recipro-
cating bending [9], and the roundness calibration and straight-
ness calibration are separate and independent in industrial
practice. Huang et al. [10] carried out a numerical simulation
and experimental study on three-roller continuous setting
round process. Through the above two methods, the round-
ness can be corrected to less than 0.2%. It had a certain guid-
ing significance for the overall rounding process of pipes.
Despite this, there are limitations to the continuous rounding
process of pipes. Wang et al. [11] proposed a three-roller
continuous straightening method, and the straightness can be
calibrated to within 0.2%. But this method can only calibrate
the straightness of pipes, not the roundness. Since the axial
and circumferential deformation of pipes are mutually restric-
tive, it fails to solve the flattening problem of large thin-walled
pipes [12]. It is not easy to adjust the straightness and round-
ness to the optimum level. To address the coordinated regula-
tion problem of roundness and straightness, the three-roller
continuous and synchronous calibrating straightness
and roundness process is developed [13]. In the paper,
the mechanical model of axial and circumferential bidi-
rectional deformation of large thin-walled pipes has
been investigated in the process.

Most of the mechanical models proposed are based on a
single direction. Karamitros et al. [14] derived the axial force
on the pipeline using equations of equilibrium and compati-
bility of displacements, and calculated the developing bending
moment in combination with the elastic beam foundation and
elastic beam theory. Zhao et al. [15] presented a mechanical
model of the static bending stage during the symmetrical
three-roller setting round process. The model was analyzed
for the circular cross-section of pipe. Moreover, the position
of pipe stress concentration can be determined by the distri-
bution of equivalent stress and equivalent strain [16]. It is of
great significance to the actual production. Most of the pro-
posed mechanical models only study the stress and strain in a
single direction. Zhang [17] derived a unidirectional stress-
strain model by using the large deformation kinematics for

thin-walled shells. Taheri-Behrooz et al. [18] deduced the ra-
dial stress-strain distribution of composite pipes. Cheng et al.
[19] built a mechanical analysis model. And only the equiva-
lent stress distribution of the strain neutral layer was analyzed.
Howbeit, the study of the mechanical model of bidirectional
deformation has not yet emerged.

In this paper, a mechanical model of axial and circumfer-
ential bidirectional deformation is developed. This model pro-
vides a theoretical basis for the setting of process parameters
and the optimization of roller shape. The plane strain state of
the deformed element is identified based on the traditional
assumptions in the present research. According to the geomet-
ric deformation characteristics, the axial and circumferential
strain models in the deformation zone are established.
Subsequently, the equivalent stress and equivalent strain equa-
tions are obtained by taking into account the volume-
constancy condition and the linear simple kinematic harden-
ing constitutive model [20]. Finally, the axial and circumfer-
ential deformation curves can be calculated based on the roller
shape and boundary conditions. According to the curva-
ture of axial and circumferential deformations, the
equivalent stress and equivalent strain of the pipe’s
any element in the deformation process can be obtained.
Furthermore, this model is compared and verified by
numerical simulation and physical experiments.

2 Process introduction

As shown in Fig. 1, themainworking parts of the process are three
parallel rollers, including a convex roller (upper roller) and two
concave rollers (lower rollers). Two concave rollers are driven by
servo motors to rotate simultaneously. This causes the pipe and
convex roller to be driven to rotate under the effect of friction. At
the same time, the pipe is fed continuously along the slideway by
the push plate to realize the calibration process.

The schematic diagram of roller shape is shown in Fig. 2.
Stage A is the loading stage, that is, the inlet end of the pipe.
To make the pipe easy to enter the gap between three rollers
and achieve radial reduction, it is designed to be of truncated
cone shape. Stage D is the unloading stage, that is, the outlet
end of the pipe. Its shape is also designed to be truncated cone
to ensure that the pipe can be smoothly unloaded after calibra-
tion. Stage B1 and Stage B2 are the roundness calibration
stages, where the shape is both cylindrical. Stage C is the
synchronous calibrating straightness and roundness stage be-
tween Stage B1 and Stage B2. The upper roller part is convex,
while the lower roller part is concave.

As shown in Fig. 3, during this process, the three rollers
move synchronously the same radial reduction toward the
pipe center. The reduction of each roller is recorded as H.

H ¼ R1 þ R−H j ð1Þ

3810 Int J Adv Manuf Technol (2021) 116:3809–3826



where H is the radial reduction, R1 is the radius of the roller, R
is the radius of the pipe, and Hj is the distance from the pipe’s
center to the center of roller after loading.

3 Mechanical model

The mechanical model is explained in this section. The flow-
chart of theoretical analysis is shown in Fig. 4.

3.1 Basic assumptions

(1) The pipe is continuous, homogeneous, and isotropic. The
linear simple kinematic hardening (LSKH) constitutive
model [20] is adopted, as shown in Fig. 5.

σ ¼ Dεþ σ0 ε > 0

Dε−σ0 ε < 0

(

σ0 ¼ 1−
D
E

� �
σs

ð2Þ

where σs is the yield stress, D is the plastic modulus, and E is
the elastic modulus.

(2) Any cross-section of the pipe is always perpendicular
to the geometric central axis, and remains a plane
during the deformation. There is no tilt or distortion
between the two adjacent cross-sections [21]. So the
shear stress and shear strain are negligible.

(3) The deformation of pipe follows the principle of volume
invariance.

(4) According to the theory of thin-walled shells, the change
of wall thickness is ignored, namely εr = 0.

(5) Because the movement of neutral layer is small for thin-
walled pipe in the deformation process, it can be consid-
ered that the strain neutral layer, stress neutral layer, and
geometric central layer of the pipe are always coincided.

3.2 Plane strain state

According to the above assumptions, the deformation of pipe
can be simplified to a plane strain problem, including the axial
and circumferential deformation. An element is selected at any
position of the pipe, and the meridian coordinate system is

Fig. 1 Schematic diagram of
process

Fig. 2 Schematic diagram of roller shape. Stage (A): loading stage. Stage
(B) (B1 and B2): roundness calibration stage. Stage (C): roundness and
straightness calibration stage. Stage (D): unloading stage Fig. 3 Diagram of loading parameters
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defined. The three-dimensional diagram of the initial state of
the pipe is shown in Fig. 6. σφ and εφ are the stress and strain
along the axial direction of pipe, respectively. σθ and εθ are the
stress and strain along the tangent direction of pipe, respec-
tively. σr and εr are the stress and strain along the radial di-
rection of the pipe, respectively. The geometric relationships
and variables are displayed in Fig. 7 and Fig. 8.

3.2.1 Axial strain model

If the initial state of the element is in tension, it is compressed
during the reverse axial bending process, as shown in Fig. 9.
The initial length l01 of the element along the axial direction
can be expressed as Eq. (3).

l01 ¼ R0⋅dφ ¼ Rρ þ rsinθþ rdθcosθ
2

� �
⋅dφ ð3Þ

R0 ¼ Rρ þ rsinθ
� �þ Rρ þ rsin θþ dθð Þ� �� �

=2 ð4Þ

where r is the radius of the pipe, t is the wall thickness, Rρ is
the initial curvature radius, θ is the angle of the element between
the cross-section and the bending axis, and φ is the angle of the
element between the meridian plane and the end of pipe.

The length lBC(AD) of the element along the axial direction
after the axial bending is obtained as Eq. (5).

lBC ADð Þ ¼ 1

K
⋅dφ1 ð5Þ

where K is the curvature of the element after the axial
bending, and dφ1 is the radian of the element after the axial
bending. The axial strain εφ of the element after the axial
bending can be expressed as follows:

εφ ¼ ln
lBC ADð Þ
l01

¼ ln
2dφ1

2Rρ þ 2rsinθþ rdθcosθ
� �

⋅Kdφ
ð6Þ

Since the initial deflection of the pipe is small, the defor-
mation of the pipe belongs to a small deformation problem
[22]. It can be considered that the projection length of the
element on the geometric central axis does not change before
and after the axial deformation. So Eq. (7) can be obtained.

Rρ⋅dφ ¼ 1

K
0 ⋅dφ1 ð7Þ

where K′ is the curvature at the pipe geometric central axis
after the axial bending. Then, Eq. (7) is introduced into
Eq. (6), the axial strain can be expressed as follows:

Fig. 4 Flowchart of theoretical
analysis

Fig. 5 LSKH constitutive model
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εφ ¼ ln
2RρK

0

2Rρ þ 2rsinθþ rdθcosθ
� �

⋅K
ð8Þ

Based on the geometric relationships as shown in Fig. 8
and Fig. 9, the distance between the element and the cross-
section in which the pipe geometric central axis is located
remains unchanged before and after the axial bending. So
Eq. (9) can be obtained.

1

K
¼ 1

K
0 − rsinθþ rdθcosθ

2

� �
ð9Þ

Substituting Eq. (9) into Eq. (8), the axial strain of the
element can be obtained, such as Eq. (10).

εφ ¼ ln
4Rρ

2þ 2rKsinθþ rKdθcosθð Þ⋅ 2Rρ þ 2rsinθþ rdθcosθ
� � ð10Þ

3.2.2 Circumferential strain model

The pipe before and after the circumferential bending is
shown in Fig. 10. The cross-section, in which the element is
located, is initially assumed circular. According to the stress
state of the pipe, the compressed regions are defined as the
reverse bending regions, and the regions between the two
reverse bending regions are the positive bending regions.
According to the loading condition and symmetry, there are
three equal positive bending regions and three equal reverse
bending regions evenly distributed across the entire pipe
cross-section [10].

The initial length l02 of the element along the circumferen-
tial direction is obtained as Eq. (11).

l02 ¼ r⋅dθ ð11Þ

Fig. 6 Three-dimensional
diagram of the initial state of the
pipe

Fig. 7 Meridian plane of pipe
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The length lAB(DC) of the element along the circumferential
direction after the circumferential bending can be expressed as
Eq. (12).

lAB DCð Þ ¼ 1

K1
⋅dθ1 ð12Þ

where K1 is the curvature of the element after the circumfer-
ential bending, and dθ1 is the radian of the element after the
circumferential bending. The circumferential strain εθ of the
element after the circumferential bending can be expressed as
follows:

εθ ¼ ln
lAB DCð Þ
l02

¼ ln
dθ1

rK1dθ
ð13Þ

According to assumption (5), Eq. (14) can be obtained.

r−
t
2

� �
⋅dθ ¼ 1

K
0
1

−
t
2

� �
⋅dθ1 ð14Þ

where K
0
1 is the curvature of the neutral layer of pipe after the

circumferential bending, and dθ1 is the radian at the neutral
layer of pipe after the circumferential bending. Since the re-
search object is a thin-walled pipe, the wall thickness is ig-
nored. It can be considered that the curvature of the element

after the circumferential bending is equal to that of the neutral
layer of the element. So Eq. (15) can be obtained.

K1 ¼ K
0
1 ð15Þ

Equations (14) and (15) are introduced into Eq. (13); the
circumferential strain εθ can be expressed as follows:

εθ ¼ ln
2r−t

2−tK1ð Þ⋅r ð16Þ

3.2.3 Equivalent strain ε and equivalent stress σ

According to assumption (3), it can be concluded as Eq. (17).

εφ þ εθ þ εr ¼ 0 ð17Þ

Because εr = 0,

εφ ¼ −εθ ð18Þ

Based on reference [23], the equivalent strain can be ob-
tained in Eq. (19).

ε ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εφ−εθ
� �2 þ εφ−εr

� �2 þ εr−εθð Þ2
q

ð19Þ

Fig. 8 Cross-section of pipe

Fig. 9 Before and after the axial
bending of the pipe. (a) Before
bending. (b) After bending
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The equivalent strain ε of the element after deformation can
be described as follows:

ε ¼ 2
ffiffiffi
3

p

3
εφ
		 		 or ε ¼ 2

ffiffiffi
3

p

3
εθj j ð20Þ

By substituting Eq. (20) into Eq. (2), the equivalent stress σ
of the element after deformation can be obtained as follows:

σ ¼ σs 1−
D
E

� �
þ 2

ffiffiffi
3

p
⋅D

3
εφ
		 		 or σ ¼ σs 1−

D
E

� �
þ 2

ffiffiffi
3

p
⋅D

3
εθj j ð21Þ

3.3 Solution of mechanical model

According to the above analysis εφ = − εθ, the equiv-
alent strain of the element can be solved by analyzing the
circumferential strain or axial strain. Each roller can be divid-
ed into five stages as shown in Fig. 2. The roundness and
straightness calibration stage (Stage C) and roundness calibra-
tion stages (Stage B) are mainly analyzed during the deforma-
tion of the pipe, as shown in Fig. 11.

3.3.1 Roundness and straightness calibration stage (Stage C)

Due to the constraints of the upper and lower rollers on the
pipe, the outline of the pipe after deformation along the axial

direction coincides with the shape curve of roller. The coor-
dinates and curvature of the pipe are the same as those of the
roller in the contact zone.

The roller shape curve of Stage C is assumed to be in the
form of Eq. (22), as shown in Fig. 11.

x2

m2
−
y2

n2
¼ 1 ð22Þ

where m and n are constants. The axial curvature of the
element after deformation should meet the following
condition:

K ¼ y″
		 		

1þ y02
� �3=2 ¼ mn4

y2 m2 þ n2ð Þ þ n4ð Þ3=2
ð23Þ

where K is the axial curvature of the element after de-
formation. By substituting Eq. (23) into Eq. (10), the
axial strain of the element can be obtained. The equiv-
alent strain and equivalent stress of the element can be
solved through Eqs. (20) and (21), such as Eqs. (24)
and (25).

ε ¼ 2
ffiffiffi
3

p

3
ln

4Rρ

2þ 2rKsinθþ rKdθcosθð Þ 2Rρ þ 2rsinθþ rdθcosθ
� �

					
					 ð24Þ

σ ¼ σs 1−
D
E

� �
þ 2

ffiffiffi
3

p
D

3
ln

4Rρ

2þ 2rKsinθþ rKdθcosθð Þ 2Rρ þ 2rsinθþ rdθcosθ
� �

					
					

ð25Þ

Fig. 10 Before and after the circumferential bending of the pipe. (R)
Reverse bending region. (P) Positive bending region

Fig. 11 Diagram of the axial deformation of pipe Fig. 12 Circumferential deformation of pipe
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3.3.2 Roundness calibration stages (Stage B)

Because εφ = − εθ, it is convenient to solve the circum-
ferential strain of pipe at Stage B, so as to solve the equivalent
strain of pipe according to Eq. (19).

The circumferential deformation of pipe before and
after loading is shown in Fig. 12. It can be observed
that the curve PQ is in the reverse bending region, and
the curvature decreases gradually from both ends to the
center. The curve WT is in the positive bending region,
and the curvature increases gradually from both ends to
the center.

Reverse bending region Based on the curvature variation law
of the curve PQ, the curvature distribution of reverse bending
region is described mathematically. The deformation curve of
the reverse bending region is shown in Fig. 13.

As shown in Fig. 13, the curve PQ can be described in the
form of Eq. (26).

x12

a12
þ y1

2

b12
¼ 1 a1 > b1 > 0ð Þ ð26Þ

The curvature equation of the curve PQ can be expressed as
follows:

K1 ¼
y″
		 		

1þ y02
� �3=2 ¼ a14b1

a14 þ b12−a12
� �

x12
� �3=2 ð27Þ

The coordinate of point Q under the coordinate system
x1o1y1 is m1; ym1

� �
. Since the curve PQ is symmetrical about

the axis y1, the coordinate of point P can be represented as
−m1; ym1

� �
.

Boundary conditions must be applied to obtain the con-
stants in Eq. (26) and Eq. (27) [24]. As shown in Fig. 13, there
is a boundary condition. That is, if x1 is 0, then
y1 = r − H. By substituting it into Eq. (26), Eq. (28)
can be obtained.

b1 ¼ r−H ð28Þ

Suppose the demarcation point of the positive and reverse
bending regions is unchanged before and after the deforma-
tion, the following two boundary conditions can be obtained.
The first is that if x1 ¼ �m1 m1 > 0ð Þ, y1 ¼ ym1

, then
K1 x1¼�m1j ¼ 1=r. The second is that if x1 ¼ �m1 m1 > 0ð Þ,
then m1

2 þ ym1

2 ¼ r2.
The former is introduced into Eq. (27), and it is given as

follows:

a14b1

a14 þ b12−a12
� �

m1
2

� �3=2 ¼ 1

r
ð29Þ

The latter is introduced into Eq. (27), and it is given as
follows:

a14b1

a14 þ b12−a12
� � a12 b12−r2ð Þ

b12−a12

� �3=2
¼ 1

r
ð30Þ

In that case, the curve PQ can be solved by substituting
Eqs. (28), (29), and (30) into Eq. (26) (see Appendix A for
details) as follows:

x12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r
3

s
−
a
3

þ y1
2

r−Hð Þ2 ¼ 1

−m1≤x1≤m1; ym1
≤y1≤r−H

� �

9>>>=
>>>;

ð31Þ

where

m1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2ð Þ2þ p

3ð Þ3
q

3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q
2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2ð Þ2þ p

3ð Þ3
q

3

r
−a
3

� �
H2−2rHð Þ

r−Hð Þ2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2ð Þ2þ p

3ð Þ3
q

3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q
2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2ð Þ2þ p

3ð Þ3
q

3

r
−a
3

� �
vuuuuut ,

ym1
¼ r2−m1

2ð Þ1=2.
Fig. 13 Deformation curve of the reverse bending region
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The curvature equation of the curve PQ can be expressed as
Eq. (32).

K1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− q

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2 þ p
3

� �3q
3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− q

2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2 þ p
3

� �3q
3

r
− a

3

 !2

r−Hð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− q

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2 þ p
3

� �3q
3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− q

2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2 þ p
3

� �3q
3

r
− a

3

 !2

þ r−Hð Þ2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− q

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2 þ p
3

� �3q
3

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− q

2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2 þ p
3

� �3q
3

r
þ a

3

 !
x12

0
@

1
A

3=2
ð32Þ

It is worth noting that the coordinates and circumferential
curvature of any element of the pipe can be solved in the
reverse bending region according to Eqs. (31) and (32). By
substituting Eq. (32) into Eq. (16), the circumferential strain
can be solved. And the equivalent strain and equivalent stress
of the element can be further obtained through Eqs. (20) and
(21) as follows:

ε ¼ 2
ffiffiffi
3

p

3
ln

2r−t
2−tK1ð Þr

				
				 ð33Þ

σ ¼ σs 1−
D
E

� �
þ 2

ffiffiffi
3

p � D
3

ln
2r−t

2−tK1ð Þr
				

				 ð34Þ

Positive bending region Based on the curvature variation law
of the curve WT, the curvature distribution of positive bend-
ing region is described mathematically. The deformation
curve of the positive bending region is shown in Fig. 14.

As shown in Fig. 14, the curve WT can be expressed as the
form of Eq. (35).

x22−y2
2 ¼ a22 a2≠0ð Þ ð35Þ

The curvature equation of the curve WT can be expressed
as Eq. (36).

K2 ¼
y″
		 		

1þ y02
� �3=2 ¼ a22

2y22 þ a22ð Þ3=2
ð36Þ

The coordinate of point T under the coordinate system
x2o2y2 is xm2 ;m2ð Þ. Since the curve WT is symmetrical about
the axis x2, the coordinate of point W is xm2 ;−m2ð Þ.

As shown in Fig. 12, point Q and point W are coincident;
the curvature of the two points is equal. Thus, a boundary
condition can be obtained, namely if x2 ¼ xm2 , then
y2 ¼ −m2 m2 > 0ð Þ. According to this condition, the follow-
ing equation can be given as follows:

K2 y2¼−m2

		 ¼ 1

r
ð37Þ

The curve WT is obtained as Eq. (38) (see Appendices B
and C for details).

x22−y2
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
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2
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� �3r
3

s
þ
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−
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−
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s
−
e
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ð38Þ

w h e r e a2 ¼ ffi
3
p� −q1

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1
2

� �2 þ p1
3

� �3q
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−q1
2−
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2
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3

� �3q
3

r
− e

3Þ1=2, xm2 ¼ m2
2 þ a22ð Þ1=2, m2 ¼

rsin 2π−6arcsinm1r
6 .

The curvature equation of the curve WT can be expressed
as Eq. (39).

K2 ¼
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ð39Þ

It should be pointed out that, depending on Eqs. (38) and
(39), the coordinates and circumferential curvature of any el-
ement of the pipe are solved in the positive bending region. By
substituting Eq. (39) into Eq. (16), the circumferential strain
can be solved. The equivalent strain and equivalent stress ofFig. 14 Deformation curve of the positive bending region
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the element can be further obtained by Eqs. (20) and (21) as
follows:

ε ¼ 2
ffiffiffi
3

p

3
ln

2r−t
2−tK2ð Þr

				
				 ð40Þ

σ ¼ σs 1−
D
E

� �
þ 2

ffiffiffi
3

p
⋅D

3
ln

2r−t
2−tK2ð Þr

				
				 ð41Þ

The equivalent strain and equivalent stress of the element
can be obtained as follows:

ε ¼

2
ffiffiffi
3
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where K ¼ mn4

y2 m2þn2ð Þþn4ð Þ3=2, b1 = r − H, a = 3b1
2-

− 3 r 2 , b = 3 b 1
4 − 7 b 1

2 r 2 + 3 r 4 ,

c = b1
6 − 3b1

4r2 + 3b1
2r4 − r6, p ¼ b− a2

3 ,

q ¼ 2a3
27 þ c− ab
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4 Numerical simulation and experimental
design

The Al6063 pipe is modeled in ABAQUS software, which
aims to obtain the distribution of equivalent stress and equiv-
alent strain and the coordinates of any element of the de-
formed pipe. Then, the results are compared with those of
the mechanical model. Also, a three-roller bending device is
designed in this section to obtain the deformation curves of the
pipe in different directions. Then, the results are compared
with the simulation results and theoretical result.

4.1 Numerical simulation

The geometric dimension and mechanical properties of the
pipe are shown in Table 1 and Table 2. The geometric dimen-
sion of the roller is shown in Table 3. The deformation process
is simulated. The finite element model is shown in Fig. 15.
The pipe is set as a deformable body, and the upper roller and
lower rollers are set as discrete rigid bodies. The pipe is
discretized by 8-node linear hexagonal incompatible mode
elements. The contact between the pipe and each roller is set
as a pure master-slave and kinematic contact condition, and
the frictional coefficient is 0.2.

4.2 Experimental design

A three-roller bending device is developed, as shown in
Fig. 16. It is mainly composed of an upper roller, two
lower rollers, three sliding blocks, and a rack. The three
rollers are connected to the three sliding blocks fixed on
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the rack by corresponding bearings. The sliding blocks
can slide vertically along the rack by rotating screws to
adjust the radial reduction of three rollers. The geometric
dimension of the three rollers is given in Table 3. The
pipe selected for the experiment is the same as that for
simulation.

The pipe is placed between three rollers. According to the
pre-set process parameters, the radial reduction of the three
rollers is adjusted. Then, the coordinates of the circumferential
and axial outline of the loading pipe are measured by using the
coordinate measuring machine with a measurement accuracy
of 0.01mm.

5 Results and discussion

5.1 Distribution of equivalent stress and equivalent
strain

The equivalent stress and equivalent strain at different stages
and the equivalent stress and equivalent strain of different
regions at the same stage are derived from the numerical sim-
ulation. The results are compared with the theoretical results.
The distribution of equivalent stress and equivalent strain is
shown in Fig. 17.

5.1.1 Roundness and straightness calibration stage (Stage C)

According to the symmetry of deformation, the one-third pipe
is selected for analysis. The equivalent stress and equivalent
strain of the section located at the center of Stage C are derived

from the numerical simulation as shown in Fig. 17. The com-
parison between the theoretical results and simulation results
is presented in Fig. 18. The maximum relative error ηmax be-
tween the simulation results and the theoretical results of
equivalent stress and equivalent strain is 24.87% and
22.39%, respectively. The main reason for the error is that
the constitutive models used in the simulation and theoretical
analysis are different. In the simulation, the kinematic harden-
ing constitutive model is adopted. However, to be solvable,
the linear simple kinematic hardening constitutive model is
adopted in the theoretical analysis, which is between the linear
classical kinematic hardening constitutive model and the lin-
ear isotropic hardening constitutive model [20]. In this model,
the parameters are few and constant, and the influence of
deformation history on subsequent yield stress is ignored.
During the process of reciprocating bending, the yield stress
is always constant, which greatly facilitates the analysis of the
reciprocating bending.

Further observed is that the maximum relative error occurs
in the contact zone between the roller and the pipe. This is
most likely due to a sharp increase in stress and strain caused
by the constraints of the rollers on the pipe. Nevertheless, the
stress-strain distribution solved by the mechanical model is
generally consistent with the simulation results, thus verifying
a good validity of the theoretical analysis of Stage C.

5.1.2 Roundness calibration stages (Stage B)

The curvature distribution in the positive and reverse bending
regions at a radial reduction of 2.0 mm from theoretical results
is shown in Fig. 19. It can be seen that the curvature gradually

Table 2 Mechanical properties of
pipe Material Elastic modulus E (GPa) Yield stress σs (MPa) Plastic modulus D (MPa)

Al6063 70 145 845

Table 3 Geometric dimension of
the rollers Outer

diameter

Dg (mm)

Length

L g

(mm)

Proportion of
rollers

Taper of Stage
A (rad)

Taper of Stage
D (rad)

Kmax

(mm-1)
Roller shape curve
of Stage C

120 600 1:2:4:2:1 0.033 0.025 0.001 0.16x2−0.0004y2−1
=0

Table 1 Geometric dimension of
pipe Outer diameter Dp (mm) Length Lp (mm) Thickness

t (mm)

Initial roundness Initial straightness

140 700 2 5% 10‰
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decreases from both ends to the center in the reverse bending
region, while the curvature gradually increases from both ends
to the center in the positive bending region.

Reverse bending region The equivalent stress and equivalent
strain of the reverse bending region of Stage B are derived
from the numerical simulation as shown in Fig. 17. The com-
parison between the theoretical results and simulation results
of the equivalent stress and equivalent strain in the reverse
bending region is shown in Fig. 20.

As can be found from Fig. 20, the maximum relative error
ηmax between the simulation results and the theoretical results
of the equivalent stress with a radial reduction of 1.0 mm is
12.36%, higher than the maximum relative error (3.78%) of

2 mm of the radial reduction. Similarly, the maximum relative
error between the two results of the equivalent strain with a
radial reduction of 1.0 mm is 18.57%, slightly larger than the
value (12.11%) at a radial reduction of 2 mm. The above
shows that radial reduction has played a role in the distribution
of stress-strain of the pipe and the maximum relative error. In
addition, the two results show a good match; the maximum
relative error is not more than 20%, so that the theoretical
analysis of the reverse bending region is proved to be
available.

Positive bending region The equivalent stress and equivalent
strain of the positive bending region of Stage B are derived
from the numerical simulation as shown in Fig. 17. The com-
parison between the theoretical results and simulation results
of the equivalent stress and equivalent strain in the positive
bending region is shown in Fig. 21. The maximum relative
error ηmax between the two results of equivalent stress is not
much different from the value of the equivalent strain, and
varies in the range of 15 to 21%. From this, it can be found
that the stress-strain distribution obtained by the mechanical
model is consistent with the simulation results, thus
confirming the feasibility of the theoretical analysis of the
positive bending region.

In particular, it should be noted that the distribution of
equivalent stress and equivalent strain, whether in the positive
or reverse bending regions, is gradually steep with the increase
of radial reduction. Consequently, the model provides a guide
for the setting of process parameters.

5.2 Axial and circumferential deformation

To further verify the applicability of the mechanical model,
the deformation curves of the circumferential and axial direc-
tions are compared with simulation results and experimental
results.

5.2.1 Axial deformation

Asmentioned in the previous analysis, the effect of the roller’s
loading and unloading stages on the pipe is ignored, and Stage
C and Stage B are mainly studied. The axial deformation of
the pipe from numerical simulation is shown in Fig. 22. It is
clear that the maximum equivalent stress along the axial di-
rection of the pipe appears in Stage C, with a value of 295
MPa.

The axial deformation of the pipe from the experiment is
shown in Fig. 23. The axial deformation curve is obtained by
fitting the axial contour coordinates of the deformed pipe in
the experiment.

The comparison of the theoretical results, simulation re-
sults, and experimental results about the axial deformation
curve is shown in Fig. 24. Comparing the axial deformation

Fig. 15 Finite element model

Fig. 16 Three-roller bending device
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curve obtained by the mechanical model with the experimen-
tal results, a good match is obtained. However, compared with
the above two results, the deformation curve obtained by sim-
ulation results has a difference of 1.15mm, which is caused by
the contact between rollers and pipes in numerical simulation.

5.3 Circumferential deformation

The circumferential deformation of the pipe from numerical
simulation is shown in Fig. 25. It can be seen that three reverse
bending regions and three positive bending regions are

uniformly distributed in the entire cross-section of the pipe
at Stage B.

The circumferential deformation of the pipe from the ex-
periment is shown in Fig. 26. The circumferential deformation
curve is obtained by fitting the circumferential contour coor-
dinates of the deformed pipe in the experiment.

The comparison of the circumferential deformation curves
is shown in Fig. 27. As above, the circumferential deformation
curve obtained by the mechanical model can be well matched
with the experimental results. Yet the deformation curve ob-
tained by the simulation results is different from the other two

Fig. 18 Comparison of
theoretical results with simulation
results at Stage C. (a) Equivalent
stress. (b) Equivalent strain

Fig. 17 Distribution of equivalent
stress and equivalent strain. (a)
Equivalent stress. (b) Equivalent
strain
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results, and there is still a difference of 2.78 mm. The cause of
this result is consistent with that of the axial deformation.

The axial and circumferential deformation curves obtained
by the mechanical model fit well with the experimental and
simulation results, and the maximum error is not greater than
3.0 mm. It is proved that the mathematical description of axial
and circumferential deformation curves is basically accurate.

Furthermore, the model can predict axial or circumferential
deformation curves based on different roller shapes, thereby
providing a shortcut to optimize the roller shape.

6 Conclusions

Mechanical models have been presented so far for calibrating
roundness and straightness based on unidirectional reciprocat-
ing bending. Apart from these models’ errors concerning the
practical reality, they cannot describe deformation curves in
different directions. The deformation curve of the pipe in dif-

Fig. 19 Curvature distribution of Stage B from theoretical results

Fig. 20 Comparison of
theoretical results with simulation
results in the reverse bending
region. (a) Equivalent stress. (b)
Equivalent strain

Fig. 21 Comparison of
theoretical results with simulation
results in the positive bending
region. (a) Equivalent stress. (b)
Equivalent strain

Fig. 22 Axial deformation of the pipe from numerical simulation
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ferent directions can be depicted by the mechanical model
developed in this paper. Roller shape and process parameters
have been considered in this model. The stress-strain distribu-
tion of the pipe during the deformation process is obtained
using the model. Specifically, Al6063 pipes are simulated
and experimented. The results are compared with the theoret-
ical results. The distribution of equivalent stress and equiva-
lent strain obtained with the model is not much different from
the simulation results. The maximum relative error is not more
than 25%. The distribution of equivalent stress, equivalent
strain, and maximum relative error is all related to the radial
reduction, and the distribution tends to be gentle with the
decrease of radial reduction, which provides guidance for
the setting of process parameters. The pipe stress and strain
concentration occurs at the center of the positive bending re-

Fig. 23 Axial deformation of the pipe from experiment

Fig. 24 Comparison of the axial deformation curves

Fig. 25 Circumferential
deformation of the pipe from
numerical simulation

Fig. 26 Circumferential deformation of the pipe from the experiment
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gions and the center of the reverse bending regions, that is, the
contact zone between the pipe and the rollers. The axial and
circumferential deformation curves calculated by the mechan-
ical model are in good agreement with the simulation and
experimental results, and the maximum error is not greater
than 3.0 mm. Accordingly, the mechanical model developed
in this paper is validated. This study can provide a theoretical
basis for setting process parameters and optimizing roller
shape.

Equation (30) can be simplified as follows:

a16 þ a14 3b12−3r2
� �þ a12 3b14−7b12r2 þ 3r4

� �
þ b16−3b14r2 þ 3b12r4−r6

¼ 0 ð44Þ

If a is made to be 3b1
2 − 3r2, b is 3b1

4 − 7b1
2r2 + 3r4, c is

b1
6 − 3b1

4r2 + 3b1
2r4 − r6, and a1

2 is y, the following equa-
tions can be obtained.

y3 þ ay2 þ byþ c ¼ 0 ð45Þ

By substituting y = x − a/3 into Eq. (45), the form of x3 +
px + q = 0 can be given as follows:
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3

� �
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27
þ c−

ab
3

¼ 0 ð46Þ

where p ¼ b− a2
3 ; q ¼ 2a3

27 þ c− ab
3 . A real number solution is

given by Eq. (46), such as Eq. (47).
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The following conclusions can be drawn, as shown in
Eq. (48).

a12 ¼ y ¼
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The curve PQ can be obtained by substituting Eqs. (48) and
(28) into Eq. (26).
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Substituting Eq. (37) into Eq. (36), andmaking
a2

2 = z, x2
2 = z + m2

2, the cubic
equation with a variable z can be expressed
as follows:

z3 þ z2 6m2
2−r2

� �þ 12m2
4zþ 8m2

6 ¼ 0 ð50Þ

where m2 ¼ rsin 2π−6arcsinm1r
6 (see Appendix C for details).

Similarly, the following can be obtained by making e-
= 6m2

2 − r2, f = 12m2
4, and g = 8m2

6.

z3 þ z2eþ zf þ g ¼ 0 ð51Þ

Let z ¼ x− e
3 and substitute it into Eq. (51); Eq. (52) can be

obtained.

x3 þ f −
e2

3

� �
xþ 2e3

27
þ g−

ef
3

¼ 0 ð52Þ

where p1 ¼ f − e2
3 , q1 ¼ 2e3

27 þ g− ef
3 . A real number solution is

given by Eq. (52), such as Eq. (53).

Fig. 27 Comparison of the circumferential deformation curves
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x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1
2

� �2
þ p1

3

� �3r
3

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1
2

� �2
þ p1

3

� �3r
3

s
ð53Þ

The following conclusions can be drawn, as shown in Eq.
(54).

a22 ¼ z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1
2

� �2
þ p1

3

� �3r
3

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1
2

� �2
þ p1

3

� �3r
3

s
−
e
3

ð54Þ

By substituting Eq. (54) into Eq. (35), the curveWT can be
expressed as follows:

x22−y2
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1
2

� �2
þ p1

3

� �3r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1
2

� �2
þ p1

3

� �3r
3

s
−
e
3

a2≤x2≤xm2 ;−m2≤y2≤m2ð Þ

9>=
>;

ð55Þ

As can be seen from the fact that three
reverse bending regions and three positive
bending regions are evenly distributed
across the circular cross-section of the pipe,
the angle corresponding to the region is also
evenly distributed.

θT þ θF ¼ 2π
3

ð56Þ

where θT is the angle corresponding to the reverse bending
region, and θF is the angle corresponding to the positive bend-
ing region. The geometric relationship can be obtained in Fig.
13 and Fig. 14.

sin
θT
2

¼ m1

r

sin
θF

2
¼ m2

r

9>=
>; ð57Þ

Equation (57) is substituted into Eq. (56), and Eq. (58) and
Eq. (59) can be obtained.

θF ¼ 2π
3
−2arcsin

m1

r
ð58Þ

m2 ¼ rsin
2π−6arcsin

m1

r
6

ð59Þ
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