
CRITICAL REVIEW

A state-of-the-art review on sensors and signal processing systems
in mechanical machining processes

Mustafa Kuntoğlu1
& Emin Salur2 & Munish Kumar Gupta3,4,5 & Murat Sarıkaya6 & Danil Yu. Pimenov5

Received: 29 March 2021 /Accepted: 3 June 2021
# The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Sensors are the main equipment of the data-based enterprises for diagnosis of the health of system. Offering time- or frequency-
dependent systemic information provides prognosis with the help of early-warning system using intelligent signal processing systems.
Therefore, a chain of data-based information improves the efficiency especially focusing on the determination of remaining useful life
of amachine or tool. A broad utilization of sensors inmachining processes and artificial intelligence–supported data analysis and signal
processing systems are prominent technological tools in the way of Industry 4.0. Therefore, this paper outlines the state of the art of the
mentioned systems encountered in the open literature. As a result, existing studies using sensor systems including signal processing
facilities in machining processes provide important contribution for error minimization and productivity maximization. However, there
is a need for improved adaptive control systems for faster convergence and physical intervention in case of possible problems and
failures. On the other hand, sensor fusion is an innovative new technology that makes decisions using multi-sensor information to
determine tool status and predict system stability. It is currently not a fully accepted and practiced method. In a nutshell, despite their
numerous advantages in terms of efficiency, time saving, and cost, the current situation of sensors used in the industry is not a sufficient
level due to the investment cost and its increase with additional signal acquisition hardware and software equipment. Therefore, more
studies that can contribute to the literature are needed.
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1 Introduction

In general saying, sensors are devices which detect changes in
physical environment and convey the measured data in differ-
ent forms [1]. While the input is a kind of energy such as
movement, temperature, or sound, sensors produce signals
as the output. The outcome calculated in unit time or

frequency is transferred over some specialized transmitters
to a computer or machine eventually. In today’s rapidly
emerging technologies, sensors become an essential element
in daily life especially for the applications of robotics, auto-
motive, and aerospace [2, 3]. In the scope of this paper, sen-
sors, signal acquisition, and signal processing applications in
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machining operations are comprehensively investigated in the
light of state-of-the-art technology.

As being the final operation of a part produced, machining
processes require to be supported from external sources to
control the system for taking precautions and observing the
momentary alterations [4, 5]. Therefore, an improved final
part quality can be achieved by preserving the pre-
determined conditions between tool and workpiece and de-
sired chip shape [6]. Depending on the mechanics of the ma-
chining system, the type of materials and expectations, several
types of sensors are needed to be integrated for different pur-
poses [7]. For example, chatter is a challenging issue during
internal turning or boring which shows the necessity of keep-
ing under control the mechanical vibrations [8]. Or, hard ma-
terials are difficult to deform and in turn produce excessive
heat and cutting force during machining which explain the
vitality of dynamometer and temperature sensor [9–11].
Also, in green manufacturing, minimum time and energy con-
sumption are expected for environmental and health concerns
which demonstrates the importance of measurement of cutting
power [12–17]. However, using multiple sensors within the
frame of the opportunities of a research or application may
provide extra information for confirmation of the collected
data which constitutes the basis of sensor fusion technique
[18–22]. Sensors are extensively utilized in the machining
operations that belong to several areas for different objectives
which are listed in Table 1.

Machining systems cover a great deal of process parame-
ters extending from tool and workpiece specifications to ma-
chine tool and cutting parameters [50, 51]. These factors have
an important role separately on machining variables such as
tool wear, surface roughness, cutting forces, tool vibrations,
cutting temperatures, and components surface morphology
and dimensional accuracy [52–55]. Since numerical modeling
is a difficult problem due to the high number of parameters
and complexity of tool wear mechanisms, sensor-based sys-
tems are preferred in the machining industries for tens of years
[56, 57]. The expectation from the sensors is to being a con-
nection between human and computer-controlled machine
tools. Specific features of sensors provide to sense the changes
in the mechanical systems. Besides, it is aimed from the sen-
sors to replace the human beings not only for the mechanical
systems, i.e., machine tools, but also being capable of moni-
toring any environmental variations for the purpose of un-
manned companies. In this way, industries want to develop
effective systems for zero error, being capable of preventing
unexpected interruptions, prolonged tool life [58]. By this
way, it is possible to prevent waste of resources and deforms
on workpiece material.

In the way of Industry 4.0, one of the main requirements
from the machining systems is to develop cyber-physical sys-
tems integrated into machine tools [59]. These systems are
defined as transformation tools for fully controlled

manufacturing area which can be performed by managing
mechanical assets and software facilities [60]. Actually, the
main purpose in these systems is to rule the numerous data
obtained, also known as big data [61, 62]. On the other hand,
these systems pave the way for a concept, named digital twin
which is directly related with Industry 4.0 [63]. In here, it is
aimed to create a digital object reflecting the behavior of ac-
tual object. The technology can be successfully applied in
prediction, decision-making, reconfiguration, etc. [64]. Cost,
resource, and time savings bring many critical advantages
with the improvement of efficiency. Integration of these types
of systems opens new doors in productivity and makes easier
to reach the Industry 4.0 target [65, 66]. Also, internet of
things helps for this development which is supported mostly
by sensorial data [61, 62]. Industry 4.0 on the other hand, is
accepted as the future of industrial revolution includes the
integration of industry and technology [67, 68]. It is actually
a strategic plan for the companies all over the world applying
new-generation software and hardware systems [69, 70].
Increasing competition in the world and globalization requires
fast and précisedmanufacturing withminimum error and costs
[71].

As outlined, sensors express a particular energy condition
and its time-dependent change on mechanical machining pro-
cesses. It is aimed to procure the most accurate information
from sensor signals which entails following signal processing
procedure. While signal acquisition is an important part of the
sensor applications, signal conditioning has as much as im-
portance for better recognition of the complications [72].
Signal preprocessing covers the regulation of the collected
sensor signals by amplifying, normalizing, and decomposing
methods which works as classifiers for separating the unwant-
ed sensor signals [73]. Signal processing enables to extract
and select the useful features for better understanding the re-
lationship between sensor signal and process behavior [7].
The whole procedure deals with the acquisition of signals
from physical surrounding to digitize for managing with dif-
ferent ways. Figure 1 represents the mechanical machining
processes handled in this study.

This study presents a state of the art on sensors and signal
processing systems utilized in turning, milling, drilling, and
grinding operations. The mechanisms in the conventional
machining operations are explained in detail at first. Then,
sensors preferred in the previous studies belong to specific
areas such as tool condition monitoring, tool health moni-
toring [74], determination of remaining useful lifetime,
condition-based maintenance system, prognostic health
management [75], and sensor fusion are summarized.
Lastly, signal preprocessing and processing methods are
outlined conceiving mostly preferred and effective ones
in the open literature. In a nutshell, this work is the first
attempt incorporating the emerging technologies for sen-
sors and signal-processing methods.
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1.1 Significance of the study

Sensor systems and their applications are included in a multi-
disciplinary research field concerning mechanical, electrical,
and computer engineering. Nevertheless, it is inevitable to
exclude from the sensors in estimating the process condition

in terms of healthiness and also improve the quality indicators.
In the field of machining, the most referred machine
tool/operation types such as turning, milling, grinding, and
drilling are handled and discussed about their preference in
the open literature. The state-of-the-art sensor systems for
measuring of force, vibration, temperature, power, etc. in

Table 1 Utilized sensors under the specific areas of machining systems

Areas Ref. Utilized sensors Operation Main objectives

Tool Condition
Monitoring

[23] Accelerometer Turning Detection of chipping, tool fracture, and
tool deflection

[18] Accelerometer, dynamometer, acoustic emission sensor, current
sensor, temperature sensor

Turning Flank wear and tool breakage prediction

[24] Dynamometer, accelerometer Drilling Determination of hole quality

[25] Acoustic emission sensor, microphone Turning Tool wear prediction

[26] Dynamometer Turning Flank wear monitoring

[27] Accelerometer Milling Flank wear monitoring

[28] Acoustic emission sensor Grinding Tool wear and sharpness monitoring

[29] Acoustic emission sensor Grinding Tool wear and sharpness monitoring

[30] Accelerometer Drilling Breakage, chipping, and oscillation
monitoring

[31] Force sensor Drilling Tool wear monitoring

[32] Acoustic emission sensor Turning Tool wear and plastic deformation
monitoring

[33] Accelerometer Turning Surface roughness monitoring

[34] Accelerometer, force sensor, acoustic emission sensor Turning Tool flank wear prediction

[35] Dynamometer Milling Tool wear prediction

[36] Dynamometer Milling Tool wear monitoring

Tool Health
Monitoring

[37] Accelerometer, dynamometer Turning Tool wear prediction

Condition-Based
Maintenance

[38] Temperature sensor, microphone, accelerometer Turning Failure control

Prognostic Health
Management

[39] Current sensor, vibration sensor Machine
Tools

Tool wear monitoring

[40] Power sensor Milling Abnormal condition detection

[41] Accelerometer, dynamometer, acoustic emission sensor Milling Tool wear prediction

[42] Acoustic emission sensor, accelerometer Milling Tool wear monitoring

Sensor Fusion [43] Acoustic emission sensor, current sensor, accelerometer Milling Flank wear prediction

[44] Acoustic emission sensor Milling Determination of the best sensor location
for signal acquisition

[18] Accelerometer, dynamometer, acoustic emission sensor, current
sensor, temperature sensor

Turning Flank wear and tool breakage prediction

[45] Dynamometer, accelerometer Milling Observing frequency bandwidths

[46] Dynamometer, accelerometer Milling Recognition of machining

[47] Accelerometer, dynamometer, acoustic emission sensor Milling Tool wear prediction

[48] Acoustic emission sensor, dynamometer, accelerometer Turning Surface quality control

[37] Accelerometer, dynamometer Turning Tool wear prediction

Remaining Useful
Lifetime

[43] Acoustic emission sensor, current sensor, accelerometer Milling Flank wear prediction

[41] Accelerometer, dynamometer, acoustic emission sensor Milling Tool wear prediction

[49] Accelerometer, dynamometer, acoustic emission sensor, Milling Tool wear prediction

[39] Current sensor, vibration sensor Machine
Tools

Tool wear monitoring

[42] Acoustic emission sensor, accelerometer Milling Tool wear monitoring
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machining are outlined systematically in the light of tool con-
dition monitoring, tool health monitoring, remaining useful
lifetime, condition-based maintenance, prognostic health
management, and sensor fusion approaches. An important
compilation of different types of sensor signals for this pur-
pose is selected and highlighted from the past studies. Signal
preprocessing and signal processing methods utilized in ma-
chining operation are summarized including their applications
and models. This paper is the first of its kind in overviewing
the mentioned systems in detail. It is believed that it will be
useful for the young researchers to plot a route and for col-
leagues and industry to use the paper as a source in the field.

2 Machining systems utilized from sensors

The complexity of machining systems arises from events oc-
curring in a small area where the tool and workpiece are in
contact. High pressure and temperature composing at this area
produce three deformation zones which define the mecha-
nisms between chip, workpiece, and cutting tool surfaces
[76]. Ultimately, after finishing operation, wear patterns com-
pose on the cutting tool surfaces, a workpiece surface
emerges, and certain shaped removed chips occur [77].
Primarily, it is aimed to monitor the progressive tool wear,
to prevent the tool failure, and to obtain desired surface rough-
ness and workpiece dimensions [78]. Utilization from sensor
systems is generally about improving the workpiece quality

and examining the tool condition [79]. However, interaction
between the process parameters and the system variables
make the sensorial components significant in order to under-
stand the underlying mechanism of machining. Therefore, it
becomes important to discuss the process mechanism of ma-
chining systems for understanding the behavior of the sensor
signals during metal removing processes. The most attempted
four basic machining operations will be handled here consid-
ering the applicability of sensors with the light of the state-of-
the-art studies on sensor systems.

2.1 Turning

Lathe machines operate the process with rotating the work-
piece and feeding the cutting tool which enables to settle the
sensors around the carriage. As a result of the turning process,
chips are formed and because of the continuous contact be-
tween tool and workpiece, chip breaking becomes important
to avoid the long and tangled shaped metals. These types of
chips already lead to highmechanical and thermal loads on the
cutting tool and produce excessive wear and poor surface [80].
However, at the sensor-based monitoring, the possibility of
the chip tangling as a result of continuous chips may lead to
be damaged of a sensor especially for the ones which placed
as close to the cutting area. In addition, this situation may
cause large defects on surface integrity of the workpiece after
tool failure. The process is convenient to machine the
cylindrical-shaped parts which help manufacturers to evaluate

Fig. 1 Mechanical machining
processes handled in this study
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for higher quality especially for fabrication of this type of
components [81]. Theoretically, the mentioned mechanism
generates constant signals which allow observing the abnor-
mal conditions with instantly increasing signal amplitudes.

2.2 Milling

Milling mechanism depends on the metal removing with
multi-toothed cutter from a plane surface material which fas-
tened to the platform [4]. The intermittent cutting due to the
consecutive entry and out of the cutting tool leads to hammer-
ing effect and creates fatigue cycle. This phenomenon pro-
duces mechanical and thermal load which affect the residual
stress on the workpiece and growing tool wear types on cut-
ting tool surfaces. The fixation of the various sensors is much
more suitable on the carriage or on the workpiece directly if
possible. However, non-contact sensors can be easily adapted
to milling head [35]. As being a different way to deform the
material from turning, milling produces discontinuous signals
required to investigate in parts by eliminating the times which
contact is over between tool and workpiece. In the recent past
of the sensor applications in machining, milling has been in
the second place after turning, but it is increasingly preferred
in the last years. For machining of the plane parts, milling is
the first choice which requires being further researched with
intelligent systems for supporting the industrial enterprises
used this type of parts.

2.3 Drilling

In drilling, drill bits are utilized to form the circular cross-
section in the material using helical spline or more commonly
known as twist-drill tools. The operation starts with the one
point contact between tool and workpiece at the beginning and
continues with two helical cutters to the end. Therefore, it
differs from the other cutting mechanisms which appear chal-
lenges in monitoring with sensor systems [82]. Crushing or
breaking of chips in the flute may cause inadequate chip evac-
uation and unbalanced force distribution and further tool
breakage. In addition, since the drill tip is responsible for
crushing of the material, instant failure can be possible in the
condition of excessive mechanical loads. All of these events
give rise to poor hole quality and discarded part. Because of
the mentioned reasons, monitoring of drilling with sensorial
signals shows great importance to maintain the operation with
safety. Drilling is an attractive and frequently appealed oper-
ation but rarely encountered in the open literature about
sensor-based monitoring.

2.4 Grinding

Grinding is a micro-scale multiple and continuous contact
machining operation depending on the abrasive wear

performed with the help of hard grains placed on the tool.
According to the grain size and hardness, the cracking mech-
anism induced by abrasive wear shows different characteris-
tics and leads to change in scraping effect [28]. High compres-
sive stress on the workpiece and residual stress located in the
subsurface produce hard and good-shaped surface and mate-
rial structure. Grinding is also preferred for the last operation
in precision manufacturing and it is different from other oper-
ations particularly in mechanism of chip generating [83].
Because of the similarity of continuous contact between tool
and workpiece, the signal pattern is similar to turning. On the
other hand, deformations on the grinding wheel show itself in
micro-scale and hard to detect compared to other types of
cutting inserts. It is more convenient to settle a sensor around
the workpiece; however, this situation becomes difficult in
cylindrical grinding. Apparently, grinding is the least applied
machining operation among the handled quart in this paper. In
Fig. 2, frequencies of the application of operations based on
sensor usage are demonstrated.

3 Sensors and its types

The reason of the existence of a sensor may be widened due to
the prospect in obtaining favorable surface finish, longer tool
life, stable cutting conditions, well-formed chips, minimized
vibration, and less power consumption in any conventional
machining operation. In this perspective, a variety of sensors
powered by developed signal processing algorithms have
been implemented into both CNC and conventional machine
tools in the past. As outlined in Table 1, tool wear–based
studies are the most preferred due to the benefits of the tool
changing at the proper time which further provide cost saving
can increase up to 40% [84]. In addition, 20% of the machine
tool downtime and losses from this reason such as time and
cost can be conserved with monitoring of the cutting tool [85].

One of the significant efficiency factors is the localization
of the sensors as it influences the capability of catching the
minor changes of the objective variable. In addition to the
expertise of the operator or researcher in the field and specifi-
cations of the utilized sensors, proximity and positioning of
the sensing element have direct impact on the success of the
measurement. Therefore, each sensor needs to be analyzed in
detail according to the manufacturer’s recommendations con-
sidering its operating conditions such as temperature, humid-
ity, and impact. Also, the response time of the sensor and
auxiliary equipment are the determinative factors to interfere
the operation in advanced applications [86]. In Fig. 3, an ex-
ample of sensor locations including acoustic emission, tem-
perature, dynamometer, and accelerometer can be seen in
turning operation. Here, it is important to adapt the sensors
into the system for catching the changes with increased reli-
ability and also minimum loss.
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A handful of sensors have been integrated into the mechan-
ical machining systems in the recent past. They contain main-
ly the measurement of released energy from the machine tool
such as vibration, heat, cutting force, sound, and acoustic
emissions. In this direction, a great deal of sensors designed
which enclose more than one type to answer someone’s pur-
pose. Here, it is aimed to address each of them with their
advantages, drawbacks, and reason for preference by exem-
plifying from the literature. It is noteworthy to mention that
different types of sensors serve as measuring the same mag-
nitudes are handled in here such as cutting force (strain gauge
or piezoelectric) or temperature (infrared temperature sensor
or pyrometer). To separate their specifications for clear under-
standing of utilization provides an outline for the future works
as it is listed in Table 2. Accordingly, each type of sensor has
been integrated into different machine tools. Besides, stereo-
typed sensors in the market have been used several times
which pave the way for novel material applications. Figure 4
lists the sensors with numbers utilized in machining
operations.

3.1 Strain gauge–based force sensor

Dynamometer is the most known cutting force measurement
device including different techniques in machining. One of the
force measuring methods is strain gauge depending on the
deformation of spring element. Strain gauges placed on the
spring element are connected by Wheatstone bridge and cal-
culate the cutting force. Strain gauges show elongation and
shortening behavior as a result of force applying with chang-
ing their resistance. The output voltage fed to the bridge is
proportional to cutting force [119, 120]. Basically, cutting
force signals are identified with N, demonstrating increasing
trend in time, mostly because of the progressive tool wear. By
means of the high sensitivity, they can provide enormous data

which enables reflecting the cutting condition. The drawback
of this method tends to be affected from low stiffness and their
low-frequency bandwidth [121]. In Fig. 5, raw dynamometer
signals are depicted in different axis and according to wear
condition. That is why they have been widely preferred for
tracking tool wear in machining operations.

3.2 Piezoelectric force sensor

Cutting forces can be calculated or measured directly or indi-
rectly with several ways such as theoretical models, capaci-
tive, optoelectronic, strain gage, and motor currency methods
[122]. Piezoelectric measurement utilizes from special crystals
for converting the mechanical pressure into electrical energy
in theory. Compared to other techniques, piezoelectric force
sensor provides good accuracy, sensitivity, and high stiffness
which make this method prominent [121]. In Fig. 6, schematic
and exploded view of the triaxial sensor and its integration
into tool holder system is demonstrated. The negative side
during application of piezoelectric force sensor is necessary
to design the tool holding components again for robust and
sensitive measurement. However, fragmental design leads to
vacancies reducing stiffness which may cause chatter vibra-
tions in time.

3.3 Acoustic emission sensor

Acoustic emission describes the stress wave propagation
when a material is exposed to external load and plastic defor-
mation occurs in the material structure [44]. However, plastic
deformation is only a description to express the deformation,
because some events such as friction on the contact surfaces,
tool wear, tool breakage, chipping, chip formation, chip colli-
sion, and chip breakage lead to acoustic emission as well
[123]. To demonstrate acoustic emission sources
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Fig. 2 Frequency of the
application of operations based on
sensor usage
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schematically, a representative grinding operation is shown in
Fig. 7. As a result, there are two types of acoustic emission
signals that occurs which can be separated for better definition
of the developing events, burst or transient type and continu-
ous type. Figure 8 demonstrates the transient and continuous
types of acoustic emission signals. Some events referred to
major deformations, namely breakage compose burst type,
while friction or wear produces continuous type. Acoustic
emission can be measured and presented according to data
acquisition technique and the evaluation method can be in
the form of volt (V) and frequency (kHz). As demonstrated
in Fig. 4, acoustic emission has been consulted many times
recently because of the sensing capability of both deformation
mechanisms and breakage event during metal cutting.

3.4 Accelerometer

Vibration is not desired in the machining environment be-
cause of its negative effect on the life of the part, reducing
the surface quality, damaging the tool geometry, and causing
failures. Measurement of vibration can be performed via ac-
celerometer sensors which are capable of determining dynam-
ic acceleration on the tool as voltage. The main advantage of
accelerometer is linearity over a wide range of frequency
which provides to identify the condition of cutting operation.
The drawback of this sensor is lower sensitivity and data
loss at high frequency levels. Vibration acceleration can
be measured as the gravity (g), acceleration (m/s2), and
frequency (Hz). Acceleration signals according to time
and frequency are represented in Fig. 9. According to
frequency graph, the amplitude of the signal gives infor-
mation about the severity of the vibration while time
graph provides displacement from the balance point.
Machining operations need this sensor due to its detection
capability of tool wear and surface roughness [33]. It is
demonstrated in Fig. 10 that with increasing vibration,
flank wear increases gradually in time. In general, two

types of accelerometer can be preferred, namely single
axis and triaxial. Lateral, transverse, and orthogonal axis
can be determined by triaxial accelerometers which can
provide to compose 3d vector of the acceleration.
Accelerometers use piezoelectric method for measuring
vibration acceleration and can be mounted mechanically,
magnetically, and adhesively to the mechanical process.

3.5 Ampere meter

During metal cutting, machine tools draw current to transmit
the required energy into the spindle. According to the machine
tool specifications, operation type, and cutting parameters,
required power is determined by current draw. Current can
be measured by the main current cables feeding the spindles
of machine tool. Current sensor, ampere meter, or ammeter is
a special designed device to measure the current as it is dem-
onstrated in Fig. 11. Herein, a Hall Effect principle–based
sensor covers the cable and the magnetic field around the
cable produces voltage. The measurement of the voltage gives
indirectly the current. One of the main advantages of the am-
meter is that it allows researchers to calculate the cutting pow-
er with the help of measured current. By this way, consumed
energy and environmental effects of the operation can be cal-
culated. In fact, major changes appear at the cutting zone and
close-by which pushes the manufacturers to place the sensors
around this area. The distinct disadvantage of ampere meter is
that the location exists inevitably away from the cutting area.
This situation causes loss of sensitivity and reliability and
reduced reaction time in the situation of adaptive control. In
the past, it was compared with the accelerometer and acoustic
emission for the detection of tool breakage and the results
showed that current sensor becomes the last in reaction time
and severity (Fig. 12). On the other hand, it was reported that
ampere meter provides clear advantage in the way of sustain-
able manufacturing [125].

Fig. 3 Some sensors utilized in a
turning operation
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Table 2 Some sensors representing the state of the art with specifications in different machine tools

Sensor Ref. Operation range Machine tool Specifications

Dynamometer [48] 0–35 kN Turning Kistler 9021A, Piezoelectric, One component force sensor

Accelerometer [48] (±) 500 g Turning Kistler 8763 B500BB, Triaxial accelerometer

Acoustic emission [48] 50–400 kHz Turning Kistler 8152 B111, Piezotron, Acoustic emission sensor

Acoustic Emission [25] 50–800 kHz Turning Beijing Shenghua SR800

Microphone [25] 10–20000 Hz Turning Hangzhou Aihua AWA14423

Accelerometer [23] 500 g Turning PCB Piezotronic 353B03

Accelerometer [27] (±) 50 g Milling PCB-356A15, triaxial piezoelectric accelerometer

Accelerometer [49] - Milling Mukun Tech, Wireless triaxial accelerometer

Accelerometer [18] (±) 50 g Turning Kistler 8692C50

Dynamometer [18] 1200 N Turning TELC 3D, 3 axial force sensor

Pyrometer [18] 300–800 °C Turning TELC 3D, InGaAs radiation measurement

Acoustic Emission [18] 50–400 kHz Turning Kistler 8152B111

Current [18] Up to 16 A Turning Weidmüller WAS2 CMA 5/10A

Dynamometer [87] (±5) kN Milling Kistler 9257B Piezoelectric sensor

Acoustic emission [88] 50 kHz to 1 MHz Turning Kistler 8152B AE-piezoelectric sensor

Accelerometer [88] 1 Hz to 50 kHz Turning Kistler 8762A50 tri-axial accelerometer

Acoustic emission [82] 100 kHz to 1 MHz Drilling Pico, Piezoelectric transducer

Acoustic emission [32] 50 kHz to 1 MHz Turning, Grinding Kistler 8152B piezoelectric sensor

Dynamometer [31] (±5) kN Drilling Kistler 9257 B type 3-component dynamometer

Dynamometer [89] (±5) kN Grinding Kistler 9272

Acoustic emission [28] Up to 1 MHz Grinding Sensis DM-42

Accelerometer [90] (±) 50 g Turning PCB 356A15

Accelerometer [91] (±) 500 g Grinding Kistler 8763 A500 triaxial accelerometer

Dynamometer [91] - Grinding Kistler 9254 three component dynamometer

Acoustic emission [91] 50–400 kHz Grinding Kistler piezotron AE sensor

Dynamometer [24] (±250 N) Drilling Kistler Minidyn 9256C2

Dynamometer [92] - Milling Kistler 9255 B

Dynamometer [26] - Turning Kistler 9257A

Accelerometer [34] (±) 6 g Turning Montronix Spectra Pulse

Acoustic emission [34] 50–400 kHz Turning Montronix BV100

Dynamometer [34] Up to 6 kN Turning Montronix FS1xCXK-x-ICA

Dynamometer [37] (±5) kN Turning Kistler 9257B Piezoelectric sensor

Accelerometer [37] 0.1–8400 Hz Turning Bruel Kjaer 4386

Dynamometer [93] (±5) kN Grinding Kistler 9257 dynamometer

Pyrometer [94] 250–1200 °C Turning Original design

Dynamometer [94] (±5) kN Turning Kistler 9257B Piezoelectric sensor

Dynamometer [95] (±5) kN Grinding Kistler 9257B Piezoelectric sensor

Acoustic emission [96] 50–400 kHz Turning Kistler 8152B211

Dynamometer [97] −10 to +10 kN Milling Kistler 9129AA three-dimensional dynamometer

Acoustic emission [97] 50 kHz to 1 MHz Milling Kistler 8152, Piezoelectric sensor

Acoustic emission [98] 100–1000 kHz Turning -

Acoustic emission [99] 50–400 kHz Turning Kistler 8152B211, Piezoelectric sensor

Dynamometer [99] (±5) kN Turning Kistler 9121, Piezoelectric sensor

Acoustic emission [100] 70–1000 kHz Milling PAC

Dynamometer [101] (±5) kN Milling Kistler 9257B, Piezoelectric sensor

Dynamometer [102] (±5) kN Drilling Kistler 9257B, Piezoelectric sensor

Accelerometer [103] - Turning IMI industrial accelerometer

Acoustic emission [103] 30–1000 kHz Turning MSAE-L2

Acoustic emission [104] 15–180 kHz Turning D9241, Piezoelectric sensor
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3.6 Power meter

There are several contributors to consumed energy from ma-
chine tool and surroundings during idle and in-process dura-
tions. From main spindles to cooling units, from tool maga-
zines to sub-spindles, many components consume energy dur-
ing operations which is determinative on ecological effects of
machining [126–128]. Basically, power meter utilizes use of
current measurement and transforms the obtained data to con-
sumed power [129]. The expected outputs from the power
meter produce similar results to the ampere meter as it places

far away from the cutting operation. In addition to previous
explanations, it is noteworthy to mention that easy connection
provides without spoiling the tooling and fixtures in the appli-
cation of power and current sensors. Also, after implementa-
tion, there is no hazard for the sensor that depends on the high
temperatures, chip collision, etc. as being away from the cut-
ting area. Cutting power can be calculated and compared with
the measurement of cutting forces in the future for testing the
reliability of this method. In Fig. 13, including current trans-
formers, power lines, and converter, power meter placement at
the machine tool can be observed.

Table 2 (continued)

Sensor Ref. Operation range Machine tool Specifications

Acoustic emission [104] 100–1000 kHz Turning WD, Piezoelectric sensor

Dynamometer [105] - Grinding, Drilling Kistler 9254, Piezoelectric sensor

Thermal camera [105] −40 to 2000 °C Grinding, Drilling InfraTec, Variocam

Dynamometer [106] (±5) kN Turning Kistler 9272, Piezoelectric sensor

Dynamometer [107] (±5) kN Turning Kistler 9257B, Piezoelectric sensor

Dynamometer [108] (±5) kN Grinding Kistler 9272, Piezoelectric sensor

Dynamometer [109] (±5) kN Drilling Kistler 9253B23, Piezoelectric sensor

Dynamometer [110] (±5) kN Turning Kistler 9257B, Piezoelectric sensor

Thermal camera [111] 300 to 2000 °C Milling Flir A615 infrared camera

Dynamometer [111] (±5) kN Milling Kistler9272 stationary sensor

Thermal camera [112] −20 °C to +1200 °C Milling Fluke Ti400

Dynamometer [112] - Milling Kistler 9123C, Piezoelectric sensor

Accelerometer [113] 0.25–3000 Hz Turning DeltaTro cubic triaxial accelerometer (type A 4524B-001)

Dynamometer [113] (±5) kN Turning Kistler 9257B, Piezoelectric sensor

Accelerometer [114] - Drilling Laser Doppler Vibrometer

Thermometer [115] −58 to 2822 °F Milling Amprobe IR750 infrared thermometer

Dynamometer [115] (±5) kN Milling Kistler 9257B-Piezo sensor

Dynamometer [116] (±5) kN Milling Kistler 9257B, Piezoelectric sensor

Dynamometer [117] (±5) kN Milling Kistler 9257B 3-component dynamometer

Dynamometer [118] (±5) kN Turning Kistler, 9257B Piezoelectric sensor

Accelerometer [118] (±) 50 g Turning PCB, 356A16

0 5 10 15 20 25 30 35 40 45

Vibration, 22

Force, 39

Acoustic 
Emission, 25

Temperature, 7

Microphone, 2

Current, 3

Power, 1

Number of Paper

Fig. 4 Some sensors with
numbers utilized in machining
operations
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3.7 Microphone

In the very first applications of machining, operators trusted
machining sound to decide about the condition. Over the
years, sensor-based approaches substitute ear-based observa-
tion. Microphone and acoustic emission sensors are similar in
some way, but they represent different range of sound. The
main differences between acoustic emission and microphone
are the sensor placement and frequency ranges. The range of
acoustic emission sensor is about 10 kHz to 10 MHz and the

range of a microphone is about fromHertz to 100 kHz. On the
other hand, acoustic emission sensor needs to be mounted
around the cutting area while microphone is placed away from
this area [44, 130]. With the increase of cutting tool wear,
material deformation becomes hard due to high cutting forces
and changing tool geometry may cause chatter vibrations. All
of these events lead to higher cutting sound in addition of the
effect of high cutting speed and pressure. This phenomenon
provides an opportunity to monitor the cutting tool’s condition
with a microphone.

Fig. 5 Cutting force signals in
grinding operation [91]
(Copyrights reserved)

Fig. 6 (a) Schematic view of the piezoelectric force sensor and (b) view of operation [121] (Copyrights reserved)
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3.8 Infrared temperature sensor

Infrared temperature sensor uses thermographic or thermal
camera to detect the radial heat from cutting tool and work-
piece for determination of the temperature. To compensate the

errors, calibration of the emissivity of cutting tool and work-
piece needs to be done [131]. It is theoretically/experimentally
proved that most of the heat transferred to chip during metal
cutting which make it easier to prevent the tool and workpiece
from excessive temperatures that lead to poor surface integrity

Fig. 7 Some acoustic emission sources in grinding operation

Fig. 8 Transient and continuous acoustic emission signals [32] (Copyrights reserved)
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[132]. Therefore, some idealized approaches asserted pur-
poses to control the heat dissipation and conduction between
the materials [133]. An example for monitoring the cutting
zone with infrared sensor during drilling operation shows heat
generation and dissipation around this area. In this technique,
remote sensing brings important advantage but requires high
sampling rate to catch the minor changes. If the emissivity,
transmittance, and reflections keep constant during measure-
ment, relative differences can be compensated in true temper-
ature [134]. In Fig. 14, experimental setup of infrared temper-
ature sensor and measurement moment can be seen.

3.9 Pyrometer

Pyrometer is a device designed for non-contact temperature
measurement from the surface of the body [94]. Pyrometer
uses the technique of radiation to determine the dissipated heat
from the body and to detect the temperature. There can be
optical and infrared types of pyrometers which use current
and heat respectively for determining the temperature. One
of the advantages of the pyrometer is that there is no need
for integration into the cutting process, which is different from

other types of sensors in mechanical machining systems. This
method is safe for measuring the temperature without physical
contact which is especially important for high-degree temper-
atures. The fast response of the sensor provides continuous
use even at high temperatures in manufacturing area. The
main disadvantage of the method is determining the appropri-
ate emissivity value of the material which may affect the sen-
sitivity [135, 136].

3.10 Thermocouples

Due to the considerable effect on tool wear and occurring
phenomena afterwards, the cutting temperature is an impor-
tant and challenging subject because of the unknown behavior
of hard-to-cut and new-generation materials, heat generation,
and dissipation mechanism at different phases during machin-
ing [137]. There are three methods for temperature monitoring
mentioned in this paper and thermocouples offer physical
contacted way different from others. Thermocouples are ver-
satile sensors that placed cutting tool and can be modified
according to the design preparations. They are sensitive to
measure the temperatures at interfaces between cutting tool

Fig. 9 Acceleration signals
during machining in time and
frequency [124] (Copyrights
reserved)

Fig. 10 Vibration signals with
different flank wear
developments [27] (Copyrights
reserved)
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and workpiece [138]. Mainly, owing to easy application and
changeability, they are feasible to widely use especially think-
ing of the narrow area at metal cutting operations. However,
small structure produces low volts which are hard to detect
due to the noise if good isolation is not obtained. Recently,
thin-film thermocouples are preferred to place at the cutting

tool which needs distinct cleaning, rigorous preparation for
reliable temperature measurement [139].

3.11 Voltmeter

Voltmeter conducts the similar strategy with current sensor
which comes from the equation that consumed energy de-
pends on motor current and voltage. By this way, the mea-
surement can be converted into power easily [140] which
makes this method preferable. On the other hand, voltmeter
is used for the determination of temperature for the sensors’

Fig. 11 Current sensor integration [18] (Copyrights reserved)
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Fig. 13 Power meter connection to the machine tool [129] (Copyrights
reserved)
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work on the principle of non-contacted, infrared, or radial
techniques [141].

3.12 Sensor fusion

Above mentioned sensors have great importance and applica-
tion area in manufacturing processes which belongs to ma-
chining process. In addition, these sensors also find
implementing area on the machine tools, which are not men-
tioned here. However, due to the complexity of the machining
processes which intensify with unexpected tool wear develop-
ments, it leads to wrong or delayed statements from the ob-
tained sensorial signals. This can be stem from the abrupt
increase in cutting force or momentary alteration in vibration
as well. These developments make hard to define the tool
condition especially for machining with new cutting tool or
workpiece materials. Therefore, to prevent the catastrophic
failures, it is needed to verify different sensor signals simulta-
neously to be sure with the tool condition. Sensor fusion tech-
nique recommends utilizing the different featured signals such
as vibration and cutting force, acoustic emission, and temper-
ature for making decision about the surface quality, tool wear,
or oncoming tool breakage. The procedure aims to validate the
sensor data for the decision. There have been many works in
the recent past focusing the sensor fusion approach [18, 20,

34, 37, 38, 44, 46, 48, 142–145] which shows the increasing
importance of the method.

3.13 Summary of the sensors

When it is outlined, there are total six main sensor signals that
have been collected from sensors according to the reviewed
literature. Accordingly, Table 3 represents the general view of
the capabilities of sensors in adaptability, cost, and signal
accuracy with application areas. Herein, several machining
mechanisms are referred to indicate the availability of the
use of each sensor. Therefore, it can be said that there is a
reverse ratio between adaptability and signal accuracy. The
difficulty of adaptability explains cause change the structural
integrity of machine tool which makes easier the collection of
signals because the sensor became a part of the machine tool.
It is noteworthy to mention that high investment cost indicates
the accuracy of the sensor signal.

4 Signal preprocessing in machining

All of the signal preprocessing steps need expertise for the
purpose of the application area, capable of setting the connec-
tion between mechanical and electrical systems for better

Fig. 14 (a) Experimental setup and (b) measurement area during drilling [105] (Copyrights reserved)
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experimental analysis. This comes from the reality that hard-
ware and software systems have different natures and signal
conditioning needs to be arranged considering the cutting
mechanism. Four steps of the signal preprocessing are
outlined in the following.

4.1 Amplification

Increasing the voltage of the signal enables the digitization
process which needs to be determined at a level for data ac-
quisition device. By this way, the equipment can be calibrated
according to the signal easily. Amplification is performedwith
devices called amplifier and collect the signals from power
supply. As being the first layer of the signal conditioning, a
variety of amplifiers has been applied to signals such as cur-
rent, voltage, and resistance. In addition, amplifier covers
many specifications such as gain, band width, linearity, and
noise. [146, 147].

4.2 Filtering

Signal filtering provides to reduce and smoothen the high-
frequency noise which brings clear identification for post
processing of the signal. For example, low pass, high
pass, and band pass types of filters are utilized according
to the frequency band of the investigated signal and some-
times they are placed in order [148, 149]. Also, with re-
spect to the application area, filtering classifications can
be implemented based on linearity, time-dependency, etc.

The main aim is to remove the undesired sensor features
partially or completely according to the condition and
expectations from the sensor signal. Another alternative
is suppression of some parts of the band for further
analysis.

4.3 Normalization

Normalization transforms the signals into a logical level with
keeping their amplitude in a same ratio. This procedure is
applied after amplification and filtering to normalize their
scale for the identification process. Basically, the method
includes raw data before normalization and it applied
some coefficients of equations to reduce their value down
to a determined level. After this organizing approach, dis-
ambiguation can be eliminated and existing data become
ready for further processing step. Figure 15 shows the
signal conditions after normalization process which can
be seen that the resolution of the signals looks high and
available for further analysis.

4.4 Denoising

Denoising refers to the elimination of the noise in the signal as
benefits the name. In other words, the process aims to remove
unwanted or unnecessary information for clear description.
Thresholding is the most known denoising method based on
the determination of a signal amplitude level which provides
the minimum probability from the observed data. By this way,

Table 3 Sensors according to
sensor signals for specifications
and application areas

Ref. Sensor Difficulty of
adaptability

Level of
investment cost

Extent of signal
accuracy

Application area

[18]

[31]

[89]

[111]

Dynamometer ■ ■■■■■ ■■■■■ Tool wear,

Tool breakage

[18]

[27]

[48]

[114]

Accelerometer ■■■■ ■■■■ ■■■ Surface roughness,

Tool wear,

Tool breakage

[18] [25]

[97]

[91]

Acoustic
emission

■■■ ■■■■ ■■■ Tool breakage,

Tool wear

[18] Current/power ■■■■■ ■ ■ Tool wear,

Tool breakage

[18]

[134]

[132]

[139]

Temperature ■■■■ ■■■ ■■ Tool wear

[44] [25] Sound ■■■■■ ■ ■ Tool wear
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errors occurring due to the external factors such as noise can
be eliminated [151, 152]. In Fig. 16, the contamination and
ambient noise on the signals, and then de-noised vibration
signals are demonstrated. After the procedure, signals can be
identified more clearly.

5 Signal processing in machining

Basically, signal processing methods use algorithms within
the form of equations to decompose the signals first, and then
select the most suitable samples including the useful

Fig. 15 Signals for cutting force
(a), (b) normal force and (c), (d)
normalized amplitude [150]
(Copyrights reserved)

Fig. 16 Raw and after de-noising process of the vibration signals [153] (Copyrights reserved)

2726 Int J Adv Manuf Technol (2021) 116:2711–2735



information for the investigated feature. For this purpose, sev-
eral approaches have been developed for machining data.
Since there are many types of sensor data, large amount of
signal processing method can be adapted. Therefore, in here,
the most popular signal processing methods are briefly ex-
plained with the application of sensor signals in the literature
[123, 154]. Table 4 represents and outlines the signal process-
ing methods with application area and utilized sensors.

5.1 Statistical moments

The mean, variance, skewness, and kurtosis are the main com-
ponents of statistical moments [161, 162]. These factors pro-
vide remarkable information about the data and its distribution
according to time or frequency domain. Mean defines the
central tendency of the distribution according to averaged da-
ta. Variance defines the deviation from the mean value which
is applied in machining as analysis in statistical methods.
Skewness explains the asymmetric tendency of the data which
can be left or right. Lastly, kurtosis identifies the fatness
and peakedness at the same time for the distributed
data. The explanations that belong to these moments
are identified. In Fig. 17, prominent statistical moments
are depicted schematically to demonstrate their forms in
the statistical language.

5.2 Fourier analysis

Fourier analysis uses transform of the equations for decompo-
sition of the functions based on spatial or temporal frequen-
cies. The main aim in here is to obtain the frequency space of

the signals using the Fourier transformation equations. In
Fig. 16, an example from cutting forces is showed and
time-dependent signals are transformed into frequency-
based form. It is the widely referred method in machining
analysis especially for the vibration, cutting forces, and
acoustic emission signals [163, 164].

5.3 Wavelet analysis

There is need to select the main or more commonly known as
key function for decomposing of the signal into the packets in
the form of the scaled and shifted in wavelet analysis [48].
Wavelet analysis is capable of showing the signals in both
time and frequency representation. Wavelet defines an oscil-
lated wave in the form of increasing and decreasing curve
which is performed for obtaining the useful properties from
this transition [165]. The characteristic wavelet forms are
demonstrated in Fig. 18 with showing the scale of the signal.

5.4 Time series modeling

Timer series modeling is a data processing approach also uti-
lized in pattern recognition, statistics, and many fields in en-
gineering. The main approach in here is to collect data in
determined and equal spaced in time and presenting them as
discrete time. It is a model at the samewhich enables to predict
the unknown points on the time graph. Especially for the big
data units, time series analysis provides easy and applicable
approach. In machining, for example, surface roughness is
hard to detect for accepting according to standard when the
target surface is wide. To determine the surface roughness

Table 4 The outline of the signal
processing methods Ref. Signal processing method Application area Used sensor

[155] Statistical moments Tool wear monitoring Dynamometer, accelerometer, acoustic
emission

[156] Statistical moments Tool wear estimation Dynamometer

[157] Statistical moments Tool wear monitoring Dynamometer, accelerometer, acoustic
emission

[155] Fourier analysis Tool wear monitoring Dynamometer, acoustic emission,
accelerometer

[150] Fourier analysis Path deviation Dynamometer

[158] Wavelet analysis Surface roughness -

[159] Time series modeling Surface roughness -

[158] Surface roughness -

[160] Automatic feature
extraction

Tool condition
identification

Accelerometer

[159] Automatic feature
extraction

Surface roughness -

[160] Representation learning Tool condition
identification

Accelerometer

[159] Representation learning Surface roughness -
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value at these situations, time series shows capability to pre-
dict the averaged and boundary values. In addition, sensors
used in machining may produce thousands of data during
short times. Therefore, this technique can be successful in
application of many sensor signals in machining operations
[158, 159, 166].

5.5 Automatic feature extraction

For making specific observations and evaluate data in some
way, it is needed to determine useful features to define the

sensor signal in the best way. This makes it easier to analyze
the measured sensor and reflect the desired outcomes for bet-
ter presentation. There are several features embedded in the
sensor signals. By this method, new features can be produced
by combining and some features transform to another one.
The most important contribution of the method is the capabil-
ity of reducing the amount of unnecessary data without elim-
inating the important ones [160, 167]. Automatic feature ex-
traction needs to be supported with artificial intelligence–
based algorithms for using in pattern recognition and image
processing applications.

Fig. 17 Statistical moments such as (a) skewness, (b) kurtosis, (c) variance, and (d) mean

Fig. 18 Typical wavelets and scale of the wavelet [165] (Copyrights reserved)
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5.6 Representation learning

Representation learning or feature learning presents a method
for engineering the features to discover the features and clas-
sify them [168, 169]. This method requires implementing the
artificial intelligence techniques to automatically operate the
machine to find new features and use them for specific targets.
The prominent specification of this method is its capability to
reproduce new features; however, this procedure can be han-
dled without machine learning instead performing with dis-
covering the features.

6 Discussions

In this paper, it is purposed to highlight the sensors and signal
processing systems in machining applications considering the
state-of-the-art technology. For this purpose, popular
condition–based systems including the sensors and signal pro-
cessing systems are handled and a hierarchy is developed for
understandable summarization. For better presentation of the
state-of-the-art work, papers published in the last 5 years are
considered mostly. Main topics of the study are discussed
below:

& There are many challenges in the machining field special-
ized according to the operation type and selected mate-
rials. The complexity of these operations prevents to gen-
erate mathematical models. This comes highly from the
unexpected situations such as excessive wear, instant tool
breakage, and developments triggered by the non-
homogeneity in material structure. Therefore, prognostic
sensor-based techniques need to be integrated into me-
chanical machining systems.

& Turning and milling are the popular operations compared
to drilling and grinding as serving to wider application
area in engineering. In addition, since their chip removal
capabilities are more than the others, they are employed
more in total. Also, the complexity of the operation orig-
inated from the relative motion between tool and work-
piece leads to hard-to-control chip removing, rapidly
changing surface roughness due to tool condition. All of
the mentioned reasons make turning and milling attractive
in this field.

& Grinding and drilling are often situated at the end of the
manufacturing chain performing the final shaping on the
workpiece part. Therefore, they have potential to bring
burden the manufacturing cost considering the prior oper-
ations if any accidents appear during the processes. It may
raise catastrophic failures in terms of the produced part
and waste in retrospective labor and time. In this manner,
it is considerable to integrate the sensor systems into these

machine tools for complete achievement of manufacturing
chain.

& Dynamometer, accelerometer, and acoustic emission sen-
sors are generally the most preferred ones. Cutting forces
have significant effect on tool wear and they can be de-
tected due to the location allows to directly measure the
displacement of the cutting tool. Vibrations become effec-
tive when the stability of the cutting is lost and causes
damages on tool and workpiece which push the re-
searchers to utilize the accelerometers in machining.
Acoustic emission detects wide range of changes and ab-
normalities all in one, namely chip breakage, chip colli-
sion, tool wear, tool breakage, which make the sensor
preferable in the machining.

& Other types of sensors may contribute to several monitor-
ing areas for various purposes. For example, cutting power
provides an important part of the consumed energy to
measure the environmental factors. Motor current can be
converted into cutting power and evaluate for the same
purposes. Also, temperature at the cutting area informs
about the wear condition of cutting tool. Sensor fusion is
an emerging method that combines the information from
different sensors and provides reliable and robust
decision-making system.

& Sensor integration into machine tools requires understand-
ing both mechanical system and working principles of
the sensors. Therefore, this field demands an embed-
ded expertise for fully accepted application specialized
for the machine tool and signal processing. The liter-
ature review presents a comprehensive argument for
the researchers allowing the monitoring of process
steps to implement sensor integration, signal prepro-
cessing, and processing software. Signal preprocessing
and signal processing are required to be applied for
organizing, preparing, and conditioning of the handled
data for clear understanding and analysis. Sensor sig-
nals have been exposed to preprocessing procedure for
eliminating from noise and to get rid of contamination
at first. At this stage, amplification, filtering, and nor-
malization processes have been applied to signals.
After that, more complex approaches, i.e., wavelet,
Fourier, and amplitude analyses, have been imple-
mented according to the type of signal and system
requirements.

& Each sensor has unique properties for reflecting the devel-
opments in the machining area. It has been concluded that
there are many initiatives for using a certain sensor for
many different purposes. This situation brings diversity
in sensor usage for different types of machine tools and
process variables. With the wider application of signal
processing systems, the implications made from the data
obtained has become more important and understandable.
Proper integration of accurate sensor systems and signal
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processing methods is of paramount importance in the
field.

& Statistical moments, time series modeling, Fourier analy-
sis, wavelet analysis, automatic feature extraction, and
representation learning are the most popular and preferred
methods for signal processing. They are available for the
application to data collected from many different types of
sensors. This providesmultiplicity and great advantage for
the different trials. In addition, there is a significant poten-
tial in machining systems in order to reach to upper level
in condition monitoring with the inexperienced sensor-
processing method pairs.

7 Conclusion and future works

The present paper gave information about the state of the art
on sensors and signal processing systems. In the following,
the conclusions and future prospects in the perspective of the
authors are summarized.

& Despite their numerous advantages in terms of efficiency,
time saving, and cost, the current situation of sensors used
in the industry is not a sufficient level mostly due to the
investment cost and its increase with additional signal ac-
quisition hardware and software equipment.

& Sensor-based systems may provide reliable information to
decrease time with optimum cutting conditions. It is also
beneficial to obtain comprehensive data using these sys-
tems to maximize productivity on machine tools during
machining operations on the one hand, and to reduce en-
ergy consumption and protect operator health, on the oth-
er. Moreover, as being tool health monitoring systems,
they protect the tool from failures and the workpiece from
undesirable damages.

& Sensor systems present an infrastructure for intelligent,
digital, and smart manufacturing that appeared as the im-
portant parts of Industry 4.0. Basically, robotics equip-
ment need sensor systems for their communications and
telerobotics applications which are widened recently in the
machining industry. Therefore, it can be concluded that
these systems are inevitable for the future of machining.

& Current studies using sensor systems including signal pro-
cessing facilities in machining processes provide impor-
tant contribution for error minimization and productivity
maximization. Adaptive control is a more complex, effec-
tive, and robust approach to upgrade the system capabili-
ties. However, it is needed to learn and describe signal
behaviors and how to manipulate operation conditions
for next step to obtain optimum parameters for the appli-
cability. In a nutshell, there is a need for improved

adaptive control systems for faster convergence and phys-
ical intervention in case of possible problems and failures.

& Sensor fusion is an innovative new technology that makes
decisions using multi-sensor information to determine tool
status and predict system stability. However, it is currently
not a fully accepted and practiced method. For better def-
inition of the system condition and prognostics of health
management, different types of sensorial data need to be
composed. Useful information can be extracted and com-
pared for final decision about the system condition by this
technique. There is a need for more study for developed
software to define better the sensor fusion.

& In the way of Industry 4.0, many technological approaches
have been introduced to the industrial companies includ-
ing tool condition monitoring, sensor fusion and predic-
tive maintenance, digital twins, and internet of things.
Each provides significant contribution to the field for the
improved productivity, reducing costs, wastage, and time.
Sensor systems can be integrated into these technological
tools easily and provide important quality. Especially for
the sustainable manufacturing route, sensor-based systems
explained are the primary building stone.

& Despite there have been many sensors utilized in the field,
some of them remain in the background as it can be seen
when the comparative tables are investigated in the current
work. The controversial situation between difficulty of
adaptability and investment cost causes less application
of these types of sensors. It would be much more useful
to balance these specifications for each sensor in order to
increase applicability.

& Automated manufacturing is an important part of the fu-
ture’s industrial infrastructure. For faster recognition and
intervention with developed robotic systems supported
manufacturing area, there will be a need for sophisticated
sensor innovations must be introduced in the engineering
field. New sensors can be developed with common knowl-
edge of mechanical, computer, and electrical engineering,
applying new materials and state of art software systems.
With the improvement of artificial intelligence methods,
establishing the product quality has become a reasonable
task for the manufacturers. Therefore, it is highly recom-
mended to utilize these systems irrespective of capital
costs since machining fundamentals carry a fortune for
the industrial companies.
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