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Abstract
Data-driven methods provided smart manufacturing with unprecedented opportunities to facilitate the transition toward Industry
4.0–based production. Machine learning and deep learning play a critical role in developing intelligent systems for descriptive,
diagnostic, and predictive analytics for machine tools and process health monitoring. This paper reviews the opportunities and
challenges of deep learning (DL) for intelligent machining and tool monitoring. The components of an intelligent monitoring
framework are introduced. The main advantages and disadvantages of machine learning (ML) models are presented and com-
pared with those of deep models. The main DL models, including autoencoders, deep belief networks, convolutional neural
networks (CNNs), and recurrent neural networks (RNNs), were discussed, and their applications in intelligent machining and tool
condition monitoring were reviewed. The opportunities of data-driven smart manufacturing approach applied to intelligent
machining were discussed to be (1) automated feature engineering, (2) handling big data, (3) handling high-dimensional data,
(4) avoiding sensor redundancy, (5) optimal sensor fusion, and (6) offering hybrid intelligent models. Finally, the data-driven
challenges in smart manufacturing, including the challenges associated with the data size, data nature, model selection, and
process uncertainty, were discussed, and the research gaps were outlined.

Keywords Smart manufacturing . Tool condition monitoring . Data-driven manufacturing . Tool wear . Intelligent machining
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1 Introduction to data-driven smart
manufacturing

The manufacturing industry has been dramatically shaped
through integrating with the emergence of concepts such as
Internet of Things (IoT) [1–3], cloud computing [4], mobile
Internet, and artificial intelligence (AI) [5–7]. In this regard,
AI has facilitated the transition from automatedmanufacturing
toward smart manufacturing. The rapidly growing size of data
in the industry and the necessity to deal with big data acqui-
sition, storage, and processing highlight the need for data-
driven manufacturing as an indispensable element of smart

manufacturing. According to Tao et al. [8], the main modules
of data-driven smart manufacturing include the manufacturing
module, the data driver module, the real-time monitor module,
and the problem processing module (Fig. 1). They discussed
that the manufacturing module receives the raw material as
input and offers the finished product as the output. The data
driver module assures implementing the smart manufacturing
approach throughout the different stages of the data lifecycle
and powers the real-time monitoring module and problem-
processing module [8]. Real-time monitoring is a critical step
that enforces quality improvement. It can be used for process
health and condition monitoring and preventive maintenance.
The advancement in intelligent monitoring paves the way for
smart and efficient problem processing and decision-making
in a system.

Intelligent machining is an industrial application in which
the data-driven smart manufacturing approach can be imple-
mented. Machining or subtractive manufacturing has a wide
range of applications in different manufacturing sectors. It
encompasses various traditional processes, including turning,
planning, drilling, sawing, etc., or processes such as electrical
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discharge or abrasive (grinding, etc.) machining. Online mon-
itoring of the machining processes provides insight through
descriptive, diagnostic, or predictive analytics and enforces
smart decision-making. Machining monitoring and its conse-
quent decision-making typically deal with the following
topics (Fig. 2):

– Workpiece condition monitoring, including surface integ-
rity [13], roughness [14], or waviness monitoring [15–17]
during different machining processes.

– Tool condition monitoring [18, 19], including the tool
wear detection and prediction.

– Process-machine interaction [20, 21] and machine stabil-
ity, including its dynamic behavior and chatter detection
[22].

– Process sustainability [23], cleaner production [24], and
energy-efficient manufacturing [25]. This typically in-
cludes reducing the materials footprint, such as the min-
imum quantity lubrication concept [26], or studying the
health and occupational hazard during machining pro-
cesses such as monitoring and minimizing the dust emis-
sion [27] or noise pollution [28].

The data-driven approach has provided unprecedented op-
portunities for the machining processes. Data is the key ele-
ment when embracing an intelligent machining approach.
While the focus of conventional machining monitoring was
on the machining tools and equipment, sensing technology
[29, 30], and signal processing [31, 32], the emerging topics

on big data analytics, information fusion, data mining, ma-
chine learning (ML), and deep learning (DL) have revolution-
ized the state-of-the-art research on intelligent machining
monitoring by making a dramatic shift toward data-driven
approaches. However, much of the advancement in smart
manufacturing is associated with the development in data col-
lection, and despite the unprecedented growth in data acqui-
sition (advanced sensory and imaging techniques) and stor-
age, data processing still tends to be low in manufacturing
sectors [33].

This study is a critical review of the applications, opportu-
nities, and challenges associated with the data-driven ap-
proach applied to intelligent machining and tool monitoring
focusing on DL methods for machining monitoring.
Following the introduction, the manuscript is organized into
five main modules: (1) intelligent monitoring framework, in
which the main steps toward developing a data-driven moni-
toring system are introduced and discussed; (2) machine learn-
ing vs. deep learning, in which the most commonly used ML
and DL models used for machining monitoring are discussed
and compared. Reviews of ML models are covered in other
publications [29, 30, 34]; however, due to growing interest in
adopting DL models in machining and tool monitoring, the
focus of this review will be on DL models; (3) applications of
DL in machining and tool monitoring, in which the state-of-
the-art progress on employing autoencoders (AE), deep belief
networks (DBNs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs) for intelligent machin-
ing and tool monitoring are reviewed and discussed; (4) data-
driven opportunities, in which the opportunities provided by

Fig. 1 The four modules of data-driven smart manufacturing according to
[8]. The data collected from the manufacturing processes should be pre-
processed and analyzed and be used for real-time monitoring of the
manufacturing processes. The running state analysis may provide insight

into the health and condition of the product, equipment, or the process
through descriptive, diagnostic, or predictive analytics, which are used to
enhance the functionality of manufacturing processes
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ML and DL for smart manufacturing and specifically intelli-
gent machining are presented; and (5) data-driven challenges
and prospects, in which the cutting-edge challenges in front of
smart manufacturing and machining industry to fully embrace
the data-driven approach are discussed and the future trends
are outlined.

2 Intelligent monitoring framework

The transition toward intelligent machining processes neces-
sitates developing intelligent systems for process health, tool
condition, and surface integrity monitoring. Developing an
intelligent monitoring framework consists of the following
main steps, as shown in Fig. 3.

2.1 Sensor selection

The most widely used sensors for monitoring the machining
processes are current, sound, vibration, acoustic emission, and
temperature sensors [29]. The machining conditions, the dis-
tance between the sensor and the cutting zone, difficulty in
sensor placement and positioning, the low- vs. high-frequency
nature of the machining process, and the presence of cutting
fluids or dust can impact the sensor selection, e.g., choosing

between the contact and non-contact sensors. Typically, data
collection occurs from different resources using various sen-
sors and machine vision systems with complex data structures
[35], which are challenging to integrate. However, IoT has
enabled the manufacturing industry to use the data collected
from different resources to be used in real-time monitoring
[36, 37].

2.2 Signal processing

Before applying sophisticated feature selection methods and
machine learning models, appropriate signal processing is the
key to enhancing the performance of monitoring systems.
Signal segmentation, de-noising, time and frequency analysis,
and wavelet transform for decomposing the signal into its
high- and low-frequency components have been widely prac-
ticed before extracting statistical features from the processed
signals [38].

2.3 Feature selection

Optimal features are advised to be selected before developing
an intelligent decision-making model. The growing awareness
of the importance of feature engineering on the monitoring
systems’ performance raised the attention to the feature

Fig. 2 Main aspects of machining processes for monitoring and optimization (panels a, b, c, and d are from [9–12], respectively)
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selection techniques. The most widely used feature selection
methods include the filter (correlation, chi-square test,
ANOVA, etc.), wrapper (forward selection, backward elimi-
nation, stepwise selection, etc.), and embedded methods (e.g.,
random forest) [39]. Feature selection can be performed using
combinatorial search algorithms for feature subset selection
[40]. However, despite the effectiveness of optimal feature
selection on enhancing the quality of machining monitoring,
many studies on machining monitoring include feature extrac-
tion by trial and error or by referring to similar literature with-
out conducting in-depth research for optimal feature selection
[29, 41].

2.4 Intelligent model

Choosing the type of intelligent model depends on the moni-
toring purpose, based on which one may select a model for
regression, classification, or clustering. The most widely used
models for decision-making in the machining processes in
ascending order are artificial neural networks (ANNs), fuzzy
models, neuro-fuzzy (ANFIS) models, and Bayesian net-
works [30]. A growing interest has been observed in using
DL decision-making models in the past years [18]. Model
selection depends on the size and complexity of the acquired
data and the level of pre-processing (de-nosing, feature extrac-
tion, etc.) performed on the raw data.

2.5 Decision-making

Intelligent systems have been primarily used for tool condition
monitoring (TCM) [42, 43]; including the tool wear classifi-
cation, flank wear prediction, chatter detection, and tool tem-
perature monitoring [44]. Following the TCM, intelligent

systems were utilized during the machining processes for
monitoring the surface roughness and waviness [45], chip
condition [46] (chip formation, size, and breakage, dust emis-
sion, etc.), machining environment monitoring (e.g., airborne
dust emission), and process condition monitoring (process
fault, variation, state, etc.) [47, 48]. The monitoring scope
defines the type of intelligent decision-making model (e.g.,
using classifiers for tool wear detection vs. regression-based
models for flank wear prediction).

3 Machine learning vs. deep learning

The data-driven approach should satisfy the current industrial
needs in different aspects. Wuest et al. [49] outlined the
manufacturing requirements concerning the data-driven
methods as follows:

– The ability to handle high-dimensional problems
– The ability to reduce possibly complex nature of results

and present transparent and concrete advice
– The ability to adapt to the changing environment with

reasonable effort and cost
– The ability to advance the existing knowledge by learning

from results
– The ability to work with the available manufacturing data

without special requirements toward capturing very spe-
cific information at the start

– The ability to identify relevant processes intra- and inter-
relations and ideally correlation and/or causality

In this regard, ML and DL are among the foremost impor-
tant tools in satisfying the abovementioned requirements.

Fig. 3 Steps in developing a data-driven intelligent monitoring system
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3.1 Machine learning

ML has revolutionized the advanced manufacturing and pro-
cess monitoring systems and is one of the main pillars of
industrial informatics in the transition toward the industry
4.0 concept. By unveiling the hidden patterns in high-
dimensional data, ML has raised attention to concepts such
as multi-sensor utilization and data-driven methods in
manufacturing [5]. ML models can be accurately employed
for classification, clustering, and regression with less subjec-
tivity and human error by understanding the data pattern
through the learning process. Figure 4 lists the main advan-
tages and disadvantages of most ML models.

While the appearance of numerically controlled machine
tools happened in the late 1950s and early 1960s [50], ML
methods such as neural networks were used for tool condition
monitoring in the late 1980s [51] and early 1990s [52, 53].
Using ML methods became popular during the 1990s to de-
termine CNC machining parameters focusing on fuzzy sys-
tems, ANNs, and probabilistic inference approaches [54].
Since then, differentMLmodels such asmultilayer perceptron
(MLP) networks, radial basis functions (RBF), or Kohonen
self-organizing maps (SOM) were utilized for machining
monitoring [55]. A survey in 1997 reported that MLP ANN
trained with back propagation was used in over 60% of re-
searches [55]. ML has been extensively employed for machin-
ing monitoring in the following years. The most widely used
methods were ANNs, fuzzy-based and neuro-fuzzy models,
support vector machines (SVMs), Bayesian networks, and the
hiddenMarkovmodel [29, 30]. The advantages and disadvan-
tages of these models were discussed by Abellan-Nebot and
Subirón [30] and Ademujimi et al. [56] and are listed in
Table 1.

ML has provided unprecedented improvements in data
pattern recognition while keeping high accuracy and ob-
jectivity with less human error. They have also provided
opportunities for handling big and high-dimensional data.
However, the performance of ML models directly de-
pends on the quantity and quality of the acquired data,
which in many cases are limited and costly to collect.
Many ML models are also prone to overfitting issues or
false-positive message alerts and may have generalization
problems. Thus, even with a high accuracy level, many
models still suffer from the acceptable level of precision.
Moreover, many ML models may not be easily interpreted
and are criticized because of their black-box nature (e.g.,
ANNs). Despite the opportunities, ML has provided in
adopting data-driven models in smart manufacturing (in
general) and in machining monitoring (in specific), there
are still challenges associate with it as follows:

1) The main challenges of ML models specifically asso-
ciated with ANNs stem from the model overfitting
and generalization issues. Generalization is the
model’s capability to provide reasonable output from
input data that the model has not seen during the
learning process. Overfitting is the most common
chal lenge associa ted with a network having
backpropagation training algorithms [57]. In this case,
there is always a trade-off between focusing on
“learning” at the expense of temporally ignoring
“generalization” [58].

2) Many ML models, specifically the ANNs, are considered
black-box, which are typically hard to interpret [59].
Some models, such as decision trees or random forest,
offer descriptive analysis by indicating the relative

Fig. 4 The main pros and cons of conventional machine learning models
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importance of features and their contribution to the
model’s performance [60, 61].

3) Another main challenge with ML models in many engi-
neering applications is the size and dimension of the ac-
quired dataset. Typically, the machining experiments are
conducted at a laboratory scale with limited observations.
On the other hand, the data are typical signals acquired
from the force, vibration, acoustic emission, or sound
sensors with a high sampling rate. Thus, the datasets are
usually not very big but are high-dimensional.

The challenge to analyze high-dimensional datasets neces-
sitates employing dimensionality reduction and feature selec-
tion techniques to improve the performance of the MLmodel.
These opportunities and challenges will be covered in more
detail in Sections 5 and 6.

3.2 Deep learning

The conventional MLmodels are typically shallow. In ANNs,
the conventional neural networks (NNs) usually have a max-
imum of two hidden layers with limited data processing capa-
bility in their raw form [62]. In many applications, analyzing
big or high-dimensional data with conventional NNs requires
feature engineering as a priori. Data are usually processed
through dimensionality reduction methods such as principal
component analysis (PCA) or data mapping methods like
SOM [16]. Thus, two or more models should be linked to-
gether to form a hybrid intelligent system capable of analyzing
complex data. While the term deep learning refers to
employing numerous hidden layers in the structure of an
ANN [63], it is mainly different from the traditional ML
models in how representations are learned from the raw data

Table 1 The pros and cons of the
most widely used machine
learning models used in tool
condition monitoring [30, 56]

Model Advantages Disadvantages

ANN -Modeling nonlinear and complex data
behavior

- Challenging to interpret

- Design the model architecture by trial and error
- Modeling datasets with incomplete or

noisy data - No guidance for model hyperparameters tuning

- Modeling with minimal prior
knowledge of data

- Prone to overfitting

Fuzzy - Easy to understand (based on
linguistic model)

- Lack of real-time response

- Not able to handle a high number of input variables
- Handling imprecise data

- High precision and extrapolation
capability

- Lower learning and generalization capability than
ANN

Neuro-fuzzy - Benefiting from both the fuzzy
system and neural structure

- Difficulty in hyperparameter tuning for a large
number of fuzzy sets

- No need for prior knowledge of the
process

- Difficulty in handling a high number of input
variables

- Good generalization capability - Finding rules and membership functions can be
challenging for the user- Works well with small and

medium-size data

SVM - Handling nonlinear datasets using
kernel functions

- Difficulty in selecting the suitable kernel functions
and their parameters

- Less overfitting issue comparing to
ANNs

- Lower learning speed and more computationally
expensive (slow convergence rate for large
datasets)- Good generalization with small

training data

Bayesian - Suitable for modeling stochastic
systems and allow probabilistic
inference

- More arbitrary and subjective than classical
probability

- Number of possible network architectures can
rapidly grow with the number of nodes- Presenting the causal relationships

between variable

- Efficient in avoiding data overfitting - High computational cost
- Handling missing data

- Utilize prior knowledge

Hidden

Markov

- A probabilistic model with a robust
statistical foundation

- Computationally expensive training process

- Handling time-series data - Size of training data cause a challenge
- Handling inputs of variable length
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[64]. A deep model learns representations of data with multi-
ple levels of abstraction [64, 65]. In other words, the learning
process yields a high-level meaning in data through
employing a high-level data abstraction [66]. DLmodels have
more hidden layers than ML ones; however, what makes DL
unique and different from traditional ML is the high-level
feature engineering capabilities of deep models, where com-
plex feature construction and abstraction are performed in the
model structure during the learning process (Fig. 5).

The high-level abstract representation and feature engineer-
ing capabilities make DLmodels robust to data variation [67].
Also, the deep networks’ hierarchical structure enables them
to model the complex nonlinear relationship in big data. On
the other hand, ML models typically face difficulty in analyz-
ing very big and high-dimensional datasets. Thus, feature se-
lection serves as a dimensionality reduction approach en-
abling MLs to process big datasets. The challenge is those
big datasets acquired in real industrial applications are typi-
cally polluted by noises and include outliers and different
types of anomalies, making the feature selection a challenging
task. Table 2 compares the typical characteristics of ML and
DL models.

The most commonly used DL networks in intelligent
manufacturing are autoencoders and their variants, deep belief
networks (DBNs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs) [67].

3.2.1 Autoencoder

Autoencoders (AEs) are unsupervised feed-forward neural
networks, where their output tries to return the input data
(Fig. 6). It comprises encoder and decoder steps, in which
the former transport the input data into a latent representation,

and the latter reconstructs the input from this representation.
Gradient-descent-based algorithms are usually employed to
tune the model’s hyperparameters by minimizing the recon-
struction error. The main variants of AE are de-noising and
sparse autoencoders (SAEs) [67].

3.2.2 Deep Belief Network

Deep Belief Network (DBN) comprises a stacking of mul-
tiple restricted Boltzmann machines (RBMs) [68]. There
is a connection between the layers in DBN but not be-
tween the neurons within a layer. The layer-by-layer
structure of the network provides a hierarchical feature
representation [69], which is used to construct a high-
level representation of input data. During the unsuper-
vised training process, the DBN reconstructs its input
through learning a probability distribution. RBM is a gen-
erative stochastic feed-forward ANN that is an effective
tool for feature engineering. Training a DBN includes
training multiple RBMs, where the hidden layer of the
lower RBM is deemed the model training data, and the
RBM output is used as the training data of the upper
RBM (Fig. 7). After training all RBMs, fine-tuning pro-
cess is performed by applying a backpropagation algo-
rithm with the training data as output [70].

3.2.3 Convolutional neural network

The hidden layer of a convolutional neural network (CNN)
includes a series of convolution layers, which abstracts the
input tensor to a feature map usingmultiple local kernel filters.
Filters are convolved across the width and height of the input
data and generate two-dimensional feature maps. The output

Fig. 5 Machine learning and deep learning difference concerning feature engineering
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of the convolution layer is obtained by stacking the obtained
feature maps for all filters, which are then passed to the next
layer for down-sampling, which is typically a pooling layer
that reduces the spatial dimension of its input (Fig. 8). The
dimension of the data can be further reduced by stacking more
convolutions and pooling layers to achieve more abstracted
features. The obtained feature map may be connected to a
fully connected layer for supervised regression or
classification.

3.2.4 Recurrent neural network

Recurrent neural network (RNN) is a class of feed-forward
ANNs, with the capacity to update the current state based on
the current input data and past states. Thus, it is ideal for
dealing with sequential and time-series data or unsegmented
signals through capturing information stored in sequence in
the previous elements. RNNs benefit from supervised learn-
ing, and model training is performed using Backpropagation

Table 2 Overall comparison between the deep learning and machine learning models

Deep learning Machine learning

Feature
engineering

Minimal or no need for manual feature extraction and selection
as feature engineering is built-in and automatically executed in
a deep model.

Feature extraction and selection requires expert user knowledge
and employing feature engineering techniques.

Dataset size High performance when dealing with big data. Deep models
perform much better with more data. Large-scale data acqui-
sition may not be easy in many fields and restrict
deep models.

Suitable for small- and medium-size data, specifically when big
data acquisition may be challenging.

High-dimensional
data

High-performance when dealing with high-dimensional data
(sensory, image, etc.).

Challenge with high-dimensional datasets. An appropriate di-
mensionality reduction method or feature selection is needed.

Model tuning No standard for training and tuning the deep models. The many
parameters, such as network topology or activation/transfer
functions, are typically tuned by trial and error.

Network tuning is typically done by trial and error. Due to the
fewer number of parameters in a shallow network,
hyperparameter tuning is relatively easier.

Interpretation Hard or impossible to interpret the model due
to the high number of variables in many different layers.

Hard to interpret but less challenging than deep models. The
effect of some parameters in shallow networks or some simple
methods such as linear regression may be studied.

Computational
cost

Computationally expensive for training very large datasets. Typically less computationally expensive models compared to
deep learning.

Fig. 6 Schematic of an
autoencoder network showing the
encoder, decoder, and code layer
used for dimensionality reduction
and feature selection
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Through Time, which suffers from a vanishing gradient. Thus,
the standard RNNs cannot effectively handle long-term de-
pendencies in data and are challenging to be employed when
the gap in the input data is large [71]. Different variants of

RNNs have been developed, among which, long short-term
memory (LSTM) has been widely practiced to address the
abovementioned challenge. A cell in the LSTM unit com-
prises an input, an output gate, and a forget gate, which regu-
late the flow of information in the cell (Fig. 9). Table 3 sum-
marizes the key features of the abovementioned deep models.

4 Applications of deep learning in machining
and tool monitoring

The applications of DL in machine health monitoring are rap-
idly growing [73]. The applications of DL within the context
of intelligent machining are listed in Table 4. It can be seen
that the majority of researches focused on monitoring the tool
wear condition and prediction of the flank wear and the re-
maining useful life (RUL) of the tool. Few studies have also
been performed on employing DL for chatter detection and
surface roughness monitoring. Details on the applications of
DL models for machining and tool monitoring are discussed
in the following sub-sections:

4.1 Autoencoders

An unsupervised condition monitoring approach using AE is
to define and employ an anomaly threshold using the AE
reconstruction error. This monitoring technique’s core con-
cept is that the reconstruction error can reveal whether the tool
condition is changing or not. In this case, the AE is trained
with reference data indicating the base condition (the typically
stable situation with no damage and anomaly), and the recon-
struction error is calculated. In the monitoring phase, the same
AE is fed with new observations, and the reconstruction error
is computed again. The basic assumption is that as long as the
system condition is not experiencing a major change, the re-
construction error should be stable and small. However, if the
reconstruction error goes beyond a defined threshold, then the
state of the tool is changing, and it may experience damage
such as tool wear. Figure 10 illustrates the schematic of such a

Fig. 7 Schematic of a deep belief network that shows a stack of restricted
Boltzmann machines (RBM). The last hidden layer can be linked to a
regression model or a softmax layer for classification

Fig. 8 Schematic of a CNN with two convolution and pooling layers linked to a fully connected layer
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monitoring model. Dou et al. [76] used this approach for tool
wear monitoring using the vibration and force signals in the
milling process. They directly fed the segments of signals to
the SAE model and showed that as tool wear increased, the
reconstruction error became more unstable. They could iden-
tify four tool wear states using the proposed monitoring mod-
el. When more than two states are to be monitored, each state

should be used as a base condition to train an AE and define
another threshold to show the next state’s border. For exam-
ple, three thresholds should be defined to identify the borders
between the healthy, initial wear, steady wear, and extreme
wear states. Kim et al. [77] also used the AE thresholding-
based method to differentiate the new and used tool using the
cutting force and current sensors. However, instead of directly

Table 3 Summary of the key features of autoencoder (AE), deep belief
network (DBN), convolutional neural network (CNN), and recurrent
neural network (RNN)

Model Description Opportunities Key features

AE Unsupervised networks that transport the input
data into a latent representation through
encoding and its output reconstructs the
input through decoding

Can be used for clustering, dimensionality
reduction, data compression, and
information retrieval

- Capturing the most relevant features is not
guaranteed

- Can meaningfully handle test data when they
are similar to the training data. This is used
as a basis for fault detection and state
condition monitoring

DBN Stacking of multiple restricted Boltzmann
machines (RBMs) with the connection be-
tween the layers but not between the neu-
rons within a layer

- More robust to hyperparameter variation
comparing to some other models like MLP
ANN or SVM [70]

- Unsupervised layer-by-layer pre-training

- Backpropagation applied to the pre-trained
model

- The hidden layer of one RBM is the input of
the next RBM

- Addressing the limitations of conventional
backpropagation

- Effective for high-level representation of in-
put data

CNN Feature abstraction through a series of
convolutional and pooling layers

Handling image data (this will allow
researchers in machining and tool
monitoring to directly use images of the tool
or convert the signal to image using
techniques like the wavelet transform
method)

- Designed to process data in the form of
multiple arrays [65]

- Computational cost and challenging
hyperparameter tuning [67]

RNN A feed-forward network that updates the cur-
rent state based on the current input data and
past states by capturing the temporal de-
pendency in sequential data

-Ideal for dealing with time-series data - Consider the temporal dependency in
sequential data

- Can be linked to CNN to make a hybrid
model that captures both sequential and
spatial correlations in data [72]

- Suffers from a vanishing gradient and
problem in handling long-term dependen-
cies in data [65]

Fig. 9 Schematic of a recurrent neural network and long short-term memory (LSTM) ( [72] with permission from Elsevier)
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using the signal segments, theymanually extracted 36 features
from the signals. AE was trained using 80 samples collected
from machining with a new tool. The testing data included 20
samples corresponding to the new tool and 218 samples asso-
ciated with the used tool. Kim et al. [77] showed that the code
size and the network architecture impacted the classification
performance.

A unique characteristic of an autoencoder is that the neu-
rons in its code layer can be used as a low-dimensional repre-
sentation of the data. Thus, the feature selection can be
achieved through dimensionality reduction in the model.
The challenge with employing autoencoder for feature selec-
tion is finding the optimal model architecture (number of hid-
den layers and neurons), especially when dealing with big
data.Moldovan et al. [78] determined the state of the tool wear
using extracted features from the tool image having an input
vector with a dimension of 11,844. The dataset was combined
with an autoencoder, and it was shown that the model testing
success rate increased by 60% when increasing the number of
neurons in the 1st hidden layer to 150. Fine-tuning the
autoencoder structures can be challenging and may require
trial and error or grid-search techniques for optimizing the
model hyperparameters. An approach for feature selection
by dimensionality reduction is using stacked AE. In this meth-
od, the dimensionality reduction is achieved using stacked
autoencoders, in which the code layer of each autoencoder
forms the input layer of the subsequent encoder (Fig. 11).
Ocha et al. [79] used stacked sparse autoencoders (SSAEs)

for tool wear classification in the milling process of aluminum
using force, vibration, and acoustic emission sensors. The
study considered four classes of tool conditions, and the input
dataset comprised a total of 441 sensory data. In this study,
seven sensory features were extracted from the signals as the
input of data. Thus, the SSAE did not directly analyze the
high-dimensional raw signal. Proteau et al. [80] discussed that
AE is effective for dimensionality reduction and 2D visuali-
zation of data and showed a better dimension reduction capa-
bility compared to PCA for cutting state monitoring using
vibration and current signals. AEs have also been used for tool
wear monitoring in milling using the current signals [81, 82]
and yielded higher monitoring accuracy than methods such as
ANN, SVM, or KNN. Ou et al. [82] showed that introducing
noise and using a stacked denoising autoencoder improved
tool condition monitoring performance. Figure 12 shows their
adopted methodology for AE-based tool wear monitoring
using.

The AE concept can be integrated with feature fusion to
better extract the meaningful features of signals. Shi et al. [83,
85] employed this approach for flank wear prediction using
the vibration data acquired during the milling process of alu-
minum and stainless steel. The sensory data can be augmented
using the Fourier and/or wavelet transforms. The time, fre-
quency, and time-frequency data were then separately fed into
SAE for feature selection. The selected features in different
single domains were then combined and fed into a final AE to
yield the input of a nonlinear regression model for tool wear
prediction. It was shown that such a model outperformed the
conventional machine learning models, however, at the ex-
pense of more training and testing time. When a series of
AEs are stacked, other than feature transfer learning, weight
transfer can also be performed between the AEs to enhance
the model performance by improving the weight initialization
process. Sun et al. [86] investigated deep transfer learning
based on sparse AE for the tool’s remaining useful life pre-
diction. AE combined with a hybrid clustering method was
used for chatter detection [87].

4.2 Deep belief neural networks

Yu and Liu [88] employed DBN combined with symbol and
classification rules for surface roughness prediction and
showed that DBNs effectively model complex nonlinear rela-
tionships between the machining process variables. DBN was
successfully employed to build a feature space for cutting state
monitoring (idling, stable cutting, and chatter) using the vibra-
tion data collected during the end milling process [69]. The
vibration signals were segmented into signals with a dimen-
sion of 256. Besides, manual feature extraction was employed
in the frequency (12 features) and wavelet (2 features) do-
mains. The performance of DBN was compared with those
obtained from ANN, SVM, and k-means clustering. It was

Table 4 Applications of deep learning models in machining and tool
monitoring

Model Application References

AE Tool wear state monitoring [74–82]

Flank wear and remaining useful life
prediction

[83–86]

Chatter detection [87]

DBN Surface roughness prediction [88]

Chatter detection [69]

Flank wear prediction [70]

CNN Tool wear state monitoring [89–99]

Flank wear and remaining useful life
prediction

[100–107]

Chatter detection [108, 109]

Surface roughness prediction [110]

RNN Flank wear and remaining useful life
prediction

[111–121]

Chatter detection [122]

Surface roughness prediction [123]

Combined
LSTM-CNN

Tool wear state monitoring [124]

Flank wear and remaining useful life
prediction

[125–134]
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shown that while feature reduction generally improved the
performance of ANN and SVM, DBN was more robust to
the manual feature extraction and yielded lower error than
other models. It was also revealed that comparing to the
PCA, the output of DBN could better separate the three mon-
itoring states with a relatively large margin and thus capable
than PCA in feature engineering from the sensory data [69].

Chen et al. [70] used DBN for tool wear prediction during
the high-speed CNC milling process using the cutting force,
accelerometer, and acoustic emission signals. Maximum,

minimum, average, standard deviation, and the time stamp
indicating the tool wear evolution and wear rate were chosen
as the sensory features and were fed into the DBN. Four DBN
layers were used, and for simplicity, every hidden layer was
set with the same number of hidden neurons ranging from 10
to 15. The DBNwas compared with the support vector regres-
sion (SVR) and MLP NN. They showed that while there was
no significant difference between the three studied models’
performance in terms of coefficient of determination (R2),
ANNs and DBNs required ~60% shorter prediction time than

Fig. 10 Using autoencoder for condition monitoring through threshold definition approach
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the SVR model. Moreover, while the performance of ANN
was fluctuating with changing the number of hidden neurons,
epochs, etc., DBN was more robust to hyperparameter varia-
tion, which thus outperformed the other models.

4.3 Convolutional neural networks

Compared to the autoencoders and DBNs, more research has
been conducted on CNNs for intelligent machining, focusing
on tool wear monitoring [89–107]. It has also been used for
chatter detection [108, 109] and surface roughness prediction
[110]. CNNs are ideal for handling image-based data; howev-
er, time-series data or extracted sensory features can be direct-
ly fed to 1D CNN. Xu et al. [103] employed a 1D CNN to
extract features from the vibration data for tool wear monitor-
ing. Lee et al. [90] also used a 1D CNN for tool condition
monitoring in the grinding process using sound signals. The

authors identified the most critical frequency range of the sig-
nals (using Fourier transform analysis) and trained the 1D
CNN using the audio signals in the time domain, preserving
the critical frequency segment. During the machining process,
the acquired sensory data can be combined with the
experience- and physics-based features from the process to
build low-cost models for process monitoring. Li et al. [104]
developed a model, which relies on physical analysis to ex-
tract useful features to establish a reliable health indicator for
tool condition monitoring utilizing the vibration and acoustic
signals. Then, they developed a deep CNN model using 20
low-cost processes and cut variables to replace the physics-
based model (Fig. 13).

The manually extracted features from different signal chan-
nels can be combined to form a multi-domain feature matrix.
Huang et al. [105] extracted nine features from force and vi-
bration signals in three directions to form a multi-domain

Fig. 11 A sample architecture of
stacked AEs for data reduction
and feature selection. In this
approach, the neurons in each
autoencoder code layer are used
as the next encoder’s input layer.
The last code layer could be
linked to a softmax or regression
layer for machining and tool
condition monitoring
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Fig. 12 The AE-based methodology employed at [82] for tool condition
monitoring. Current signals were acquired from the CNCmachine’s spin-
dle and fed into sparse denoising autoencoders to obtain the low-

dimensional features from the raw current signals. Autoencoders’ outputs
were analyzed by an online sequential extreme learning machine for tool
condition monitoring ( [82] with permission from Elsevier)

Fig. 13 Developing a low-cost surrogate model for tool degradation
monitoring. The model establishes a health index using the statistical-,
experience-, and physics-based features. The established index is then

considered the target of the CNN model, which was trained using low-
cost sensory data ( [104] with permission from Elsevier)
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feature matrix for wear prediction in the milling process using
CNN. Thus, for each sample data, a total of 54 multi-domain
features were extracted to form a column of the original fea-
ture matrix. Zhang et al. [101] showed that feature optimiza-
tion (using recursive feature elimination and cross-validation
(RFECV)–based and Isomap-basedmethods) on the manually
extracted features enhanced the performance of CNN for tool
wear prediction. Motivated by the similarity between the pixel
matrix of high-dimensional image and the raw data matrix of
multisensory time-series signal, Huang et al. [106] introduced
a reshaped time series stage to represent the multisensory raw
signals. Accordingly, the multi-sensory raw signal data were
re-shaped and then fed into CNN for tool wear prediction. The
method based on reshaped time series convolutional neural
network (RTSCNN) was shown to outperform some of the
other advanced ML and DL models for tool wear prediction.

In many applications, the time series sensory data were
used to construct image-based input data before training the
CNN. Reformatting time-series features as images would let
the model learn the temporal dependencies on data [91]. Cao
et al. [92] discussed that compared to the 1D CNN, the 2-D
signal matrix retains more information than a single recon-
structed sub-signal. Its associated CNN resulted in higher ac-
curacy than 1D CNN for tool wear state identification. Thus,
some research emphasized training CNN using constructed
images from the time series sensory data [92–97]. Song
et al. [93] used the spindle current clutter signal for tool wear
state identification using CNN. They used the Fourier series
and the least square method to fit and remove the signal com-
ponents corresponding to the cutting parameter and extracted
the current clutter signal with little dependency on the process-
ing conditions that could best reflect the tool wear condition.
Then, they applied image binarization and used the image of
the signals as the input of the DL model. Other researchers
used mathematical techniques such as Gramian Angular
Summation Fields (GASF) to convert the sensory into image
data [91, 106]. Martınez-Arellano et al. [95] applied time se-
ries imaging on 3-channel force signals using GASF and fed
the obtained images to CNN for tool wear classification and
achieved classification accuracy above 90% (Fig. 14).

Another approach to obtain image-based dataset from time
series sensory data is through time-frequency analysis and
imaging using techniques such as the wavelet transform.
Zheng and Lin [96] constructed an image from the 1D force
signals using the wavelet and short-time Fourier transform.
They designed a CNN using the obtained images and
discussed that higher network accuracy was obtained when
using wavelet transform for image construction from the force
signals. Tran et al. [108] utilized continuous wavelet trans-
form (CWT) on the force signals for chatter detection in the
milling process. They applied CWT to the segments of force
signals acquired during the stable, transitive, and unstable cut-
ting states. The time-frequency images obtained using CWT

were used to train the CNN, and classification accuracy of
99.67% was achieved. Wavelet packet decomposition [97]
and Hilbert envelope analysis [92] have also been used to
convert the 1-D signal into a 2-D signal matrix. The general
finding is that folding the 1-D spectra into 2-D spectral maps
enhances the learning ability of the 2-D CNN [97].

Another approach to train CNN is by directly feeding the
machining processes’ images [107, 109, 110, 135]. Images of
machined surface textures were successfully trained CNNs for
chatter detection [109] and surface roughness prediction
[110]. Tool wear imaging was also used to train CNN for
automatic wear state identification in the face milling process
[107]. The network model was pre-trained using an automated
convolutional encoder (ACE), and its output was set as the
initial value of the CNN parameters (Fig. 15) for tool breakage
identification.

4.4 Recurrent neural networks

There has been increasing attention to using RNNs, specifi-
cally LSTMs, for TCM during machining processes
[111–121]. Recently, LSTM was used for chatter detection
[122] and surface roughness prediction [123]. For tool wear
classification, the hidden state in the model that is the learned
representation of input data can be connected to a softmax
layer. In contrast, for tool wear prediction or remaining useful
life (RUL), prediction regression layers can be linked to the
RNNs. Zhao et al. [113] used a deep LSTM network using
three-layer LSTMs with dropout on raw signal and obtained a
higher performance for tool wear prediction using deep
LSTMs comparing to a basic LSTM. They showed that the
prediction accuracy is sensitive to the LSTM architectures,
which should be defined by trial and error. They also
discussed that when better task-specific LSTMs are desired,
the acquired signals can be processed using the wavelet trans-
formation method to obtain better meaningful or noise-free
signals to be fed into the model. Aghazadeh et al. [114]
employed wavelet transformation on the sensory data and
fed the extracted features from the time-frequency domain to
LSTM for tool wear prediction. They reported that LSTM
outperformed MLP with above 10% in prediction accuracy.
Cai et al. [115] developed deep LSTMs for tool wear predic-
tion inmilling. They combined the temporal features extracted
by LSTMs with the process information to form a new input
vector. Examples of process information are the material,
feed, depth of cut, etc. [90]. They discussed that having the
process information combined with the collected sensory data
can significantly improve the prediction accuracy when the
machining process runs under various operating conditions.
They also reported a higher prediction accuracy using deep
LSTMs compared to SVR, MLP, and CNN. Combining the
process information (working conditions) with the sensory
signals was practiced by Zhou et al. [116] for RUL prediction.
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Hybrid and novel RRN-based networks have been designed to
better extract the meaningful feature for process health and
condition monitoring. For example, Gugulothu et al. [117]
developed an RNN based autoencoder to learn more robust
embeddings from the multivariate input time series. Yu et al.
[118] applied bidirectional RNNs to the RNN-based
autoencoder network for RUL prediction in the milling pro-
cess and showed the competitiveness of the proposed method.
Vashisht and Peng [122] showed that using a low-cost current
sensor and LSTM, chatter detection can be achieved with an
accuracy of 98%. LSTM was also used to predict the surface
roughness in the grinding process using the grinding force,
vibration, and acoustic emission signals [123].

4.5 LSTM-CNN

It has been discussed that while LSTM captures the long-term
dependency in sequential data, its feature extraction capability
is still lower than CNN [127, 128]. This may be an obstacle for
LSTM to directly analyze the raw time series data polluted by
noise. Xu et al. [72] discussed that, unlike the CNNs, the
inherent structure of LSTM does not consider spatial correla-
tion. On the other hand, CNN does not consider the sequential
and temporal dependency [72]. Therefore, to overcome the
mentioned challenge, combined CNN-LSTM networks were
used [124–134]. In these models, the CNN was used for local
feature extraction from the original sequential sensory data.
The combined CNN-LSTM model was shown to yield supe-
rior performance than many other baseline models for tool

wear monitoring [129]. An et al. [127] combined CNN with
a stacked bidirectional LSTM (BLSTM) and uni-directional
LSTM (ULSTM) for RUL prediction in the milling process.
As shown in Fig. 16, CNN was first used for local feature
extraction and dimension reduction from raw data. Then two
layers of BLSTM and one-layer ULSTM were employed to
encode the temporal information. The output of LSTM was
connected to regression layers and predicted the RUL with an
average prediction accuracy of up to 90%. Such a hybrid
model could obtain more in-depth feature engineering with
minimal need for expert knowledge for feature selection. A
similar approach has been practiced for RUL and tool wear
prediction [130, 131]. Niu et al. [130] used a 1D-CNN LSTM
network architecture for RUL prediction. The sensory data
were decomposed using discrete wavelet transform for de-
noising, and statistical features were extracted from each sam-
ple. It was then fed into the 1D CNN-LSTM network for
feature engineering, connected to a fully connected and drop-
out layer for RUL prediction. Zhao et al. [131] also showed
that the performance of RNNs is improved when combined
with CNN for local feature extraction.

Different network architectures can be designed to ad-
dress the process complexity and extract more meaningful
features for process and tool monitoring. Qiao et al. [129]
discussed that the features learned by lower layers of a deep
learning model are the general features, while the features
learned by higher layers are more task-specific and more
suitable for tasks such as TCM. Accordingly, they built a
BLSTM network on top of a multi-scale convolutional long

Fig. 14 Schematic of the model for tool wear monitoring through combining time-series imaging and deep learning. Forces in the three dimensions were
separately encoded using GASF and formed 3-channel images to train CNN [95]
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short-term memory model (MCLSTM) to further extract
features related to the tool wear prediction tasks. It should
be noted that the input data frommulti-sensors encompasses
multi-scale features, which cannot be captured by the tradi-
tional LSTM or traditional CNN due to their lack of multi-
scale feature extraction ability [129, 136, 137]. To address
that, Qiao et al. [129] employed a multi-scale convolutional
long short-term memory model that consisted of different
parallel CNN layers. Xu et al. [72] designed a feature-

fusion-based deep model for flank wear prediction.
Accordingly, they converted the signals from multiple sen-
sors to images with multi-channels as the model input data.
The input data were then fed into different CNNs to extract
features in parallel from the multi-source data. The extract-
ed features were then concatenated for multi-sensor infor-
mation fusion (Fig. 17). The outpour of this process was
then linked into BLSTMs and fully connected layers for tool
wear prediction.

Fig. 15 Tool wear identification process using the tool wear image and CNN [107]
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Fig. 16 The CNN-LSTM model for the tool remaining useful life prediction from vibration signals ( [127] with permission from Elsevier)
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5 Data-driven opportunities

ML and DL have become the core of the data-driven approach
for developing intelligent frameworks to monitor the machin-
ing processes. The two main steps to developing intelligent
monitoring systems that were significantly affected by ML
and DL’s advancement were feature selection and intelligent
decision-making models. ML and DL have provided smart
manufacturing, in general, and intelligent machining, in spe-
cific, with unprecedented tools for in-depth and efficient fea-
ture engineering. The main opportunities that machine learn-
ing may provide for intelligent monitoring are shown in Fig.
18 and summarized as follows.

5.1 Automated feature engineering

Using AI-based methods such as heuristic optimization
models for optimal feature selection has been practiced in
machining monitoring. Methods based on computational in-
telligence, such as genetic algorithm and particle swarm

optimization, can find the optimal subset of features that max-
imizes the monitoring performance. A crucial novelty that ML
provided smart manufacturing is in-depth and automated fea-
ture engineering. Feature engineering can be different from
feature selection as the latter aims to limit the amount of the
extracted features by selecting a subset of features that en-
hance the performance of decision-making models.
However, feature engineering aims to build complex models
from the raw data to better extract meaningful patterns and
information, which cannot be easily achieved using conven-
tional data processing and feature extraction methods. For
example, DL yields a high-level meaning in data through
high-level data abstraction [66]. Feature engineering may in-
clude automatic feature selection. DL-based methods such as
the autoencoders or deep belief networks can be used for high-
level data abstraction. In the meantime, these models can per-
form dimensionality reduction and automated feature selec-
tion, which has many applications in smart manufacturing
[67]. It is also shown in Sections 4.3 and 4.4 that CNNs and
RNNs could perform complex feature engineering on image-

Fig. 17 A feature-fusion-based CNN-LSTM model for flank wear prediction ( [72] with permission from Elsevier)
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based data and time series. Before theML advancement, mon-
itoring a model’s performance highly depended on the type of
signal processing and applying methods such as Fourier or
wavelet transforms. While data pre-processing is still a critical
aspect in achieving an accurate monitoring model, ML and
DL have given more weight to feature engineering in devel-
oping a reliable monitoring model.

5.2 Handling big data

Traditional ML models have resulted in efficient performance
when dealing with small- andmedium-size data. The advance-
ments in deep learning enabled applying data-driven methods
to big datasets that can address real industrial challenges.

5.3 Handling high-dimensional data

More important than the impact of sophisticated ML models
for handling big-size datasets, ML, in general, and DL, in
specific, enabled analyzing the high-dimensional image and
sensory data. Tool condition or surface roughness monitoring
using image-based techniques can be handled by models such
as CNNs. Apart from models such as principal component or
linear discriminant analysis, feature selection and

dimensionality reduction can be directly achieved as part of
the model, such as what is done in CNNs through pooling
layers [65]. Autoencoders, deep belief networks, or self-
organizing maps may pre-process the high-dimensional
datasets and prepare them to be linked to a more simple and
conventional classifier or regression-based decision-making
models.

5.4 Avoiding sensor redundancy

Difficulties in optimal feature engineering may restrict a sen-
sor’s performance for process monitoring, which thus neces-
sitates having more sensors and performing sensor fusion for
better monitoring. However, ML and DL may offer robust
tools for better extracting meaningful information from the
sensory or image-based data. Combining with techniques
such as feature fusion may reduce the need for using multiple
source data and avoid sensor redundancy. For example, Ou
et al. [82] could develop a framework for tool condition mon-
itoring using low-cost current signals processed with sparse
denoising autoencoders. Another example is the CNN model
developed by Li et al. [104] for tool degradation monitoring
using low-cost sensory data. While sensor fusion can be a
powerful means for better understanding a process, it should

Fig. 18 The elements of monitoring systems based on data-driven andmachine learning approaches. The opportunities machine learning provides aimed
at achieving such a system are shown
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not cause sensor redundancy. In other words, sensor fusion
should not be practiced due to poor feature engineering.

5.5 Optimal sensor/feature/decision fusion

When multi-source data are needed, ML may facilitate sensor
or feature fusion. In-depth feature engineering may let using
more simple decision-making models. Decision fusion also
can be done using some ML models such as random forest,
where the final decision is based on the voting system among
a series of weak learners (e.g., decision tree models) [44, 61].
Feature fusion has also been practiced when using DL for
machining monitoring. An example includes applying feature
fusion to TCM using autoencoders [83, 85] or CNN-LSTM
[72].

5.6 Developing intelligent hybrid models

The advancement inML and DL allowed for designing deeper
models for better feature engineering and pattern recognition.
Besides, different models could be combined to make intelli-
gent hybrid models. For example, self-organizing maps could
be used for unsupervised learning and data clustering, through
which tool condition or machine state can be identified. SOM
can also be used for feature processing and data reduction and
feed another ML model, e.g., for supervised learning. The
hybrid SOM-ANFISmodel was successfully used for machin-
ing monitoring [16]. The most recent trend in developing hy-
brid models includes combining CNNs and RNNs to enable
the model to understand both temporal and spatial features in
the dataset [124–134].

6 Data-driven challenges and prospects

There are some challenges (Fig. 19) associated with the data-
driven approach, which can be categorized into four main
groups as follows:

6.1 Data size challenges

Choosing the suitable model and designing its structure de-
pends directly on the size of the data available. Much of the
researches in the literature comprise datasets of small- and
medium-size for machining monitoring. The transition toward
big data acquisition requires emphasizing choosing the right
model and accurate tuning of its hyperparameters. As a rule of
thumb, the number of samples should be at least ten times
bigger than the number of parameters in a deep learningmodel
[64]. Apart from the size of data, high-dimensional data may
need special consideration in terms of feature engineering.
Specifically, high-dimensional small datasets are challenging
to deal with in terms of generalization and overfitting issues;

thus, data pre-processing or manual feature engineering is
needed before using sophisticated ML or DL models for
high-dimensional small datasets. This is why many research
using DL models for machining and tool monitoring still per-
form manual feature extraction in their analysis. Another so-
lution is to apply data fusion (augmentation) methods to the
small acquired data at the early state of machining experi-
ments and estimate the range of data and generate synthetic
data [138], which may not be a suitable approach in many
cases (depending on the nature of the process and its variabil-
ity). Not having access to big data may require performing
manual feature engineering and pre-selection before applying
DL models for tool condition monitoring [138]. Thus, to em-
ploy a fully automated feature engineering approach, intelli-
gent machining needs to embrace data of sufficient size [139].

6.2 Data nature challenges

Data acquisition is a challenging task in manufacturing. In
many applications, sensor placement is not readily possible
or machine vibration and background noises highly pollute
the collected data. Also, many monitoring processes require
multi-sensor data acquisition that is not a trivial task as the
collected data from different resources may not be synchro-
nized and are challenging to integrate that further complicates
utilizing big multi-source data [35]. Another main challenge is
that the acquired data are not clean. Kusiak [139] discussed
that manymanufacturers mistakenly believe that they pose big
data for analysis. However, the quality of data is more impor-
tant than its quantity, since in many cases noisy or irregularly
sampled measurements are of little use [139]. Besides,
datasets used for anomaly and damage detection are imbal-
anced in many cases, and the majority of observations belong
to machine/process normal conditions. This may create bias in
favor of the dominant data group for classification. Up-
sampling may not be readily available, and down-sampling
may create other data size issues. Another practice is to con-
sider the initial cost and modify the loss function before
performing the classification. The classification of imbalanced
data can also be turned into the anomaly detection problem
using unsupervised learning methods and defining anomaly/
damage threshold. In this regard, unsupervised models such as
autoencoders have shown promising results for tool condition
monitoring [76].

6.3 Model challenges

Model selection depends on many factors, including the mon-
itoring objective, the size, and the dimension of the dataset,
the feature engineering work performed on the data, the com-
putation time, and hardware limitations,. Flank wear predic-
tion and surface roughness or waviness estimation are made
using a regression-based model, for which traditional

2703Int J Adv Manuf Technol (2021) 115:2683–2709



supervised ML (logistic regression, multilayer perceptron
neural networks, neuro-fuzzy, etc.) or deep models such as
RNNs or CNNs models can be used. For tool condition mon-
itoring and fault or chatter detection, both supervised and un-
supervised models may be used, depending on labeled data
availability [67]. While ML-based models such as support
vector machines and DL-based models such as CNNs have
been widely used for tool wear classification, k-means, fuzzy
C-means, self-organizing maps, or hierarchical clustering can
be employed for pattern recognition when labeled data is not
available. DL-based models such as autoencoders may be uti-
lized in these applications depending on the size and complex-
ity of the acquired data.

Choosing a traditional ML model may necessitate
performing more in-depth data pre-processing and feature ex-
traction as it may be challenging to apply them to big-size or
high-dimensional data. Depending on the data complexity,
DL models may be applied to the data for feature engineering.
Models such as autoencoders may be directly used for fault
detection and tool condition monitoring [76], or they can be
used for data reduction [80] and feature engineering in a hy-
brid model combined with a supervised regression or classifi-
cation model.

When dealing with time-series data, where data sequence is
critical, RNNs are shown to be a powerful tool [65]. CNNs
have also gained popularity for classification and regression
on image-based data [65]. There is a growing interest in using
DL for intelligent tools and process condition monitoring in
recent years. However, many investigations have focused on
developing intelligent monitoring systems using ML models.
Thus, more focus should be placed on a comparative study

between different ML and DL models in smart manufacturing
and intelligent machining. It should be noted that the potential
superiority of DL over ML models directly depends on the
size and quality of the data. Thus, it is very challenging to
generalize their performance and conclude if one approach
outperforms the other one. It should also be mentioned that
deep models are more difficult to be tuned [67], and the liter-
ature lacks a systematic approach for designing the architec-
ture and hyperparameter tuning of deep models.

Finally, it is worth emphasizing that feature selection
should not be considered a separate step from the intelligent
decision-making model development. An integrated feature
engineering combined decision-making approach, which is
the case for deep models, should be adopted, and data-
driven opportunities applied to automatic feature engineering
should be embraced. It should be considered that thorough
and in-depth feature engineering may eliminate the need for
selecting complex sensory systems or decision-making
models and better unveil the hidden pattern in the acquired
data.

6.4 Uncertainty challenges

The main concern under this category is whether the research
conducted on a laboratory scale to assess a sensing technology
or the effectiveness of a data-driven model can reflect the
process uncertainty widely seen in real-life situations.
Developing a data-driven model using a single source data
may not consider sensor failure. The developed model should
also consider sensor failure and investigate the difference be-
tween the sensor fault and the system fault [140]. Machining

Fig. 19 The challenges associated with the data-driven approach
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under harsh conditions may experience sensor failure, which
could be confused by the process fault. Contact sensors such
as a thermometer or vibration-based transducers may be dam-
aged by the cooling fluid, lubricant, dust, machine motor, or
blade vibration, etc. [141]. Thus, it is critical to consider the
sensor failure and its impact on the performance of the mon-
itoring model. Also, it necessitates investigating the multi-
source data acquisition for monitoring even though it may
cause data redundancy.

Despite the uncertainty associated with the models gener-
ated in laboratory-scale investigations, these models could still
be used as a baseline to develop and train models from the
real-life collected data. Since the data collection is dramatical-
ly growing in size and considering the challenges about un-
certainty in the machine and process health and, consequently,
the veracity of the data used for model generation, incremental
learning should be practiced to extend the existing intelligent
models. Transfer learning can also effectively deal with the
scarcity of labeled prognosis data in industrial setups [142].
Transfer learning has been practiced for defect detection and
fault diagnosis [143–145] and in few studies concerning TCM
[86, 98]. Another factor impacting the veracity of the devel-
oped models is the machine-to-machine interaction in
manufacturing units. The machine-to-machine interaction
may cause data variation, which can affect the veracity of
the developed expert models. Lee et al. [5] argued that expert
models should be assessed so that a developed model does not
interfere with other components in a manufacturing system.

A practical approach to transfer advanced monitoring and
prediction algorithms from the research laboratory to the in-
dustry is through investing in cloud computing due to its en-
hanced computing efficiency and data storage capability in the
cloud center [129]. Caggiano [146] proposed a cloud-based
manufacturing process monitoring framework for tool condi-
tion monitoring during machining. To reduce the network
delay, increase reliability, and defend against security attacks
in cloud computing-based systems, a fog computing layer can
be used in process monitoring systems [129]. Qiao et al. [129]
used a fog computing architecture consisting of an edge com-
puting layer, a fog computing layer, and a cloud computing
layer for TCM and showed that introducing a fog computing
layer reduced the response latency of the monitoring system.
Future studies in cloud and fog computing can further tackle
the uncertainty challenges concerning developing onlinemon-
itoring systems. IoT is paving the way for online monitoring
using multi-source data [35–37] that should be further
highlighted in intelligent machining monitoring.

7 Conclusions

Data-driven methods have transitioned machining moni-
toring into embracing machine learning and deep learning

techniques for developing intelligent systems for process
health and condition monitoring. Machine learning, in
general, and deep learning, in particular, have significant-
ly impacted feature engineering and expert decision-
making by allowing for automated feature selection, han-
dling big and high-dimensional data, and avoiding sensor
redundancy. It also facilitates optimal data fusion and the
development of intelligent hybrid models that can be used
for descriptive analytics for product quality inspection,
diagnostic analytics for fault assessment, and predictive
analytics for defect prognosis.

Despite its huge opportunities, there are still challenges
facing a data-driven industrial approach, especially
concerning the size and quality of the acquired data. The
deep learning concept and its opportunities and limitation
should be further investigated and compared with the tra-
ditional machine learning models. Comparative studies
among different basic deep models and more complex hy-
brid models should be performed. Small data challenges
should be studied by practicing data fusion methods and
comparative studies among machine learning versus deep
learning. The fusion concept at different levels of sensor,
feature, and decision should be assessed and compared.
The gap between the laboratory scale results and real-life
conditions should be emphasized by investigating the pro-
cess uncerta inty and applying cloud computing.
Incremental and transfer learning can play a crucial role
in bridging the gap from the laboratory to the industry.
To fully comprehend the power of data-driven methods,
intelligent machining should focus on big data acquisition.
Also, the crucial role of feature engineering should be ac-
knowledged by developing an attitude that integrates fea-
ture selection and expert decision-making to better unveil
the hidden patterns in data for intelligent monitoring.
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