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Abstract
Chatter is a very common phenomenon in the milling process. The occurrence of chatter will cause chatter marks on the
processed surface, cause the tool to jump, and even bring sharp and harsh noise, making the processed surface unable to meet
the accuracy requirements. Thin-walled parts are more prone to chatter due to their lower stiffness. In order to avoid the
occurrence of chatter, this paper adopts the method of combining theoretical analysis with milling experiments to conduct in-
depth research on the prediction of chatter. Considering the first-order and second-order modal parameters of the tool and thin-
walled part as well as the specific processing parameters, based on the milling dynamics model, a semi-discretization method
based on the improved Runge-Kutta method (IRKM-SDM) is used to draw the chatter stability lobe diagram. Through simulation
and experiments, it is proved that in terms of simulation accuracy and calculation speed, compared with the zero-order analysis
(ZOA), multi-frequency solution (MFS), and the traditional semi-discretization method (SDM), the stability lobe diagram
obtained by the IRKM-SDM is more advantageous. This study is of great significance for optimizing cutting parameters and
suppressing chatter in the actual machining process.
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1 Introduction

In mechanical vibration, the vibration in the metal cutting
process is defined as five situations, free vibration, forced
vibration, random vibration, mixed vibration, and self-
excited vibration [1, 2]. Regenerative chatter is a type of
self-excited vibration. In the normal processing process, after
the last cutter tooth is processed, it will leave chatter marks on
the processing surface. The processing position of the latter
cutter tooth is consistent with the previous cutter tooth, and the
chatter marks are also left. Since the current cutter tooth pro-
cesses the inner surface and the previous cutter tooth processes
the outer surface, the workpiece feed and the rotation of the
tool will cause a phase difference in the chatter marks of the
inner and outer surfaces, thereby causing a change in cutting

thickness. During the milling process, such a phase difference
will be continuously generated to provide continuous and
undecayed energy input for regenerative chatter. Therefore,
it can be said that regenerative chatter is the most direct factor
that causes processing instability. Moreover, among the many
causes of chatter, regenerative chatter is the most harmful.

In view of the chatter phenomenon generated during the
machining process, currently stability lobe diagrams are com-
monly used for prediction to avoid cutting chatter. In 1995,
Altintas and Budak [3] proposed the zero-order analysis
(ZOA) for chatter stability. This method adopted Fourier se-
ries to approximate the time varying dynamic cutting force
coefficients and directly calculated the axial depth of the chat-
ter free axial depth of cuts and the spindle speed from the
proposed linear analytical expression set. Bayly et al. [4] used
the ZOA, time finite element analysis method, and time-
marching simulation method to determine the stable boundary
of the 2 DOF milling process and made a comparison. The
results showed that the ZOA has the fastest simulation speed,
but the accuracy is problematic under the condition of small
radial depth of cut. Compared with the time-marching simu-
lation method, the time finite element analysis method is more
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efficient and can achieve accurate prediction under the condi-
tion of small radial depth of cut. In order to solve the problem
that the ZOA cannot accurately predict the stable boundary of
chatter under the condition of small radial depth of cut,
Merdol and Altintas [5] proposed a multi-frequency solution
(MFS) of chatter stability, considering harmonics of the tooth
passing frequencies. Insperger and Stépán [6, 7] proposed a
semi-discretization method (SDM) for analyzing the stability
of linear delayed systems, and made improvements to this,
and established a stability diagram of a 2 DOF milling model.
Ding et al. [8, 9] proposed a full-discretization method (FDM)
for milling stability prediction based on direct integration
method, discussed the efficiency of the method, and verified
the effectiveness of the algorithm.

Li et al. [10] introduced an extended dynamic model of
milling system considering regeneration, helix angle, and pro-
cess damping into the high-order time domain algorithm for
the processing chatter of titanium alloy thin-walled parts to
ensure the stability of the lobe diagram simulation efficiency
and precision. Liu et al. [11] combined the process damping
model with the ZOA method to establish a stability lobe dia-
gram and verified the correctness of the model through simu-
lation and experiment. The results showed that at low speeds,
considering the effect of process damping, the stable area will
increase significantly. Wu et al. [12] used aluminum alloy
7075-T6 thin-walled parts which fixed at both ends as the
research object, and took the maximum Lyapunov exponent
0.61 of the vibration signal as the nonlinear criterion ofmilling
chatter. The milling contour lines method was used to obtain
the chatter stability critical curve. Ma et al. [13] studied the
influence of cutter runout on the milling stability lobe diagram
when multiple modes occur. Simulation and experimental re-
sults showed that the occurrence of cutter runout can locally
increase the stable region. Based on the finite difference meth-
od and extrapolation method, Zhang et al. [14] proposed a
numerical differentiation method to predict the high speed
milling stability of a two degrees of freedom (DOF) system
and demonstrated the effectiveness and efficiency of the pro-
posed method through experiment. Ozoegwu et al. [15]
established a multiplicity model of radial immersion and
proved that the split of effective radial immersion can cause
the stability boundary curve to shift significantly to a higher
axial depth. Comak et al. [16] used the SDM employing mul-
tiple delays to model and solve dynamics and stability of
variable pitch and helix tools and selected the optimum pitch
and helix angles. According to the stability lobe diagram, the
stability depth of the cut limits could be significantly im-
proved, and the simulation results were verified through chat-
ter experiments. Hajdu et al. [17] based on the concepts of
stability radius and structured singular values, combined with
extended MFS, proposed a frequency domain method to
achieve robust stability lobe diagram simulation to ensure
the stability against bounded uncertainties and perturbations.

Based on the Newton interpolation polynomial and an im-
proved precise time integration (PTI) algorithm, Jiang et al.
[18] proposed a second-order SDM for efficiently and accu-
rately predicting the stability of the milling process and veri-
fied the method from both computational efficiency and accu-
racy. Jafarzadeh et al. [19] incorporated various nonlinear
phenomena in the cutting process related to cutting forces,
friction, and tool geometry and proposed a finite element
model of orthogonal chip formation combined with machine
tool dynamics to study and compare the two major mecha-
nisms of chatter, namely, the regeneration of waviness and
mode coupling. Dai et al. [20, 21] used explicit precise inte-
gration method (PIM) to predict the chatter stability of the
milling process, constructed a stability lobe diagram, and ver-
ified the effectiveness of the method. Zhu and Liu et al. [22,
23] studied regenerative chatter and mode coupling chatter
and proposed a milling chatter detection method based on
variational mode decomposition (VMD) and energy entropy
and based on kurtosis to select number of modes (K) and the
quadratic penalty (α) in VMD decomposition. Simulation and
experimental results showed that this method can effectively
detect chatter. Sun et al. [24] proposed an accurate modeling
method for dynamic milling systems with force-induced de-
formation effects. The extended second-order SDM was used
to predict the chatter stability of the system, and the effective-
ness of the method was verified by milling experiments. Zhou
et al. [25] optimized the fourth-order FDM in consideration of
the helix angle and multi-mode. From the calculation results,
it could be seen that the stability lobe diagrams obtained by
this method are superior to the stability lobe diagrams obtain-
ed by the existing FDMs in convergence speed and calculation
efficiency. Kiss et al. [26] proposed an improved prediction
method, using the modulus of the dominant Floquet multiplier
to estimate the stability lobe diagram and conducted experi-
mental verification. Wan et al. [27] established a dynamic
model with varying time delay caused by the vibration assis-
tance and used a SDM to determine the chatter stability at
different frequencies and amplitudes of vibration assistance.
The simulation results showed that the vibration assistance
does not improve the critical depth of cut but generates new
stability lobes between the original two adjacent lobes corre-
sponding to no vibration assistance. Yang et al. [28] aimed at
the prediction problem of chattering for finishing and semi-
finishing of large thin-walled structures, proposed an effective
decomposition-condensation method to predict the in-process
workpiece (IPW) dynamics, and integrated this method into a
dynamic model. Experimental results showed that, under the
same calculation accuracy, the proposed method reduces the
amount of calculation by twice compared with the existing
chatter prediction methods. Dun et al. [29] proposed a numer-
ical difference method based on Adams-Bashforth scheme
and multi-modal scheme of numerical methods and verified
the critical stability boundaries predicted by analytical and
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numerical methods through milling experiments. Chen et al.
[30] established a micro-grinding force model considering the
nonlinear change of the cutting coefficients caused by the feed
rate and the process damping effect in the shearing-dominant
regimes and verified the accuracy of the proposed model
through experiments.

In this paper, a semi-discretization method based on the
improved Runge-Kutta method (IRKM-SDM) is proposed,
and the stability limit simulation is carried out for aluminum
alloy thin-walled parts, considering the modal parameters of
the tool and the workpiece. Through milling experiments, the
simulation accuracy of the method in this paper is verified.
The simulation and experimental results show that compared
with other methods, the method in this paper has better simu-
lation accuracy and calculation speed.

2 Chatter stability semi-discretizationmethod
based on second-order Runge-Kutta method

2.1 2 DOF milling equation

In order to improve the simulation accuracy and calculation
speed of the lobe diagram, this paper improves the semi-
discretization algorithm of chatter stability based on Runge-
Kutta method. The dynamic model of the 2 DOF milling sys-
tem can be expressed as:
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In Eq. (1), ωn is the natural frequency of the system, ζ is the
damping ratio of the system, mt is the modal mass, and ap is
the axial depth of cut. Generally speaking, for tools, assuming
that the tools are symmetrical, the modal mass of the tools in
the x and y directions are considered equal.

In Eq. (1), hxx(t), hxy(t), hyx(t), and hyy(t) are the four pro-
jections of the specific cutting force coefficient, which can be
expressed as:

hxx tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

sin ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� �þ Knsin ϕ j tð Þ

� �� �

hxy tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

cos ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� �þ Knsin ϕ j tð Þ

� �� �

hyx tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

sin ϕ j tð Þ
� �

−Ktsin ϕ j tð Þ
� �þ Kncos ϕ j tð Þ

� �� �

hyy tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

cos ϕ j tð Þ
� �

−Ktsin ϕ j tð Þ
� �þ Kncos ϕ j tð Þ

� �� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2Þ

In Eq. (2), Kt is the tangential cutting force coefficient, and
Kn is the radial force cutting coefficient. ϕj(t) is the contact
angle of the jth tooth, which can be expressed as:

ϕ j tð Þ ¼
π
60

nt þ j−1ð Þϕp ð3Þ

In Eq. (3), n(rpm) is the spindle speed, and ϕp ¼ 2π
N is the

angle between the cutter teeth. N is the number of cutter teeth.
g(ϕj) is a unit step function, used to judge whether the tool is in

the machining state, which can be expressed as:

ð4Þ

When g(ϕj) = 1, the tool is cutting; when g(ϕj) = 0, the tool
is not cutting. Among them, ϕst and ϕex are the contact angles
when the tool is cut in and out, respectively. When adopting
the method of down-milling, ϕst and ϕex can be expressed as:

ϕst ¼ arccos
2ae
D

−1
� �

ϕex ¼ π

8<
: ð5Þ

When adopting the method of up-milling, it can be
expressed as:

ϕst ¼ 0

ϕex ¼ arccos 1−
2ae
D

� �8<
: ð6Þ

In Eq. (5) and Eq. (6), ae is the radial depth of cut and D is
the tool diameter.

Equation (1) can be rewritten as:

Ẋ tð Þ ¼ A tð ÞX tð Þ þ B tð ÞX t−Tð Þ ð7Þ
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where
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A(t) and B(t) are periodic matrices, with A(t) = A(t + T),
B(t) = B(t + T). T is the time period. For the milling process,
the time delay is equal to the time period, with T = τ. For the
spindle speed n(rpm), the time delay and time period are
τ ¼ T ¼ 60

Nn sð Þ, and the time step is Δt = T/m = 60/(mNn). m
is the discretization number of time.

Based on the idea of the SDM, in the ith semi-discretization
interval, Eq. (1) can be approximated as:
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In Eq. (11),
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For definite integration, according to the special division
method of n equal divisions:
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Therefore, an appropriate value of k can be selected to
obtain:
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Therefore, in the ith semi-discretization interval, Eq. (7)
can be rewritten as:

Ẋ tð Þ ¼ AiX tð Þ þ BiX t−Tð Þ; t∈ ti; tiþ1½ � ð15Þ

In Eq. (15), i = 0, 1, 2, ……, m, the initial condition is
X(ti) = Xi.

2328 Int J Adv Manuf Technol (2021) 115:2325–2342



2.2 Second-order Runge-Kutta method

Compared with the fourth-order Runge-Kutta method used in
the literatures [31, 32], the second-order Runge-Kutta method
reduces the complexity of the algorithm. To use the second-
order Runge-Kutta method to solve Eq. (15), it is necessary to
select the appropriate time discretization numberm to discrete
the time period T. The expression of the second-order Runge-
Kutta method is as follows:

X iþ1 ¼ X i þ Δt
2

K1 þ K2ð Þ
K1 ¼ f ti;X ið Þ

K2 ¼ f ti þΔt;X i þ K1ð Þ

8><
>: ð16Þ

In Eq. (16), Ẋ tð Þ ¼ f t;Xð Þ, Xi = X(ti) = X(iΔt),Xi = X(ti) =
X(iΔt), and i = 0, 1, 2, ……, m.

Compared with the previous Runge-Kutta method, the im-
proved Runge-Kutta considers both X(t) and X(t − T) in Eq.
(15) as a function of time t. After derivation, the formula ofK1

and K2 is as follows:

K1 ¼ AiX i þ BiX i−m
K2 ¼ Aiþ1X iþ1 þ Biþ1X iþ1−m



ð17Þ

Substitute K1 and K2 into Eq. (16) and organize:
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Let Piþ1;1 ¼ I−Δt
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2 Bi,

and Piþ1−m;1 ¼ Δt
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to:
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It should be noted that since the third column and the fourth
column of the matrix Bi and Bi + 1 are both 0, the third and
fourth columns of the matrix Pi −m, 1 and Pi + 1 −m, 1 are both 0.
Similarly, we can know that the third and fourth columns of
the matrix Pi −m and Pi + 1 −m are both 0. Therefore, the calcu-

lation ofXi + 1 depends only on xi + 1, yi + 1, ẋiþ1, ẏiþ1, xi −m, yi −
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Using this vector instead of the 4(m + 1), dimensional vec-
tor vi can reduce the dimension of the discretization map. vi is
expressed as:
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Define the discretization map as:

ziþ1 ¼ Hizi ð23Þ

Among them, (2m + 4) × (2m + 4) dimension matrix Hi is
expressed as follows:
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In Eq. (24), Pi, hl, Pi −m + 1, hl, and Pi −m, hl represent the hth
row and the lth column of the matrices Pi, Pi −m + 1, and Pi −m,
respectively.

Thus, the conversion matrix Φ can be defined as follows:

zm ¼ Φz0 ð25Þ

In Eq. (25), Φ =Hm − 1Hm − 2Hm − 3⋯H1H0.
If the eigenvalues of Φ are in modulus less than one, the

system is stable at the corresponding speed and axial cutting
depth; otherwise, the system will chatter [7].

Introduce the dichotomy method and apply the IRKM-
SDM to draw the chatter stability lobe diagram as follows:

(1) Initialize modal parameters, tool parameters, and cutting
parameters. At the same time, determine the
discretization number m of the period T, the spindle
speed range [nmin, nmax], the axial depth of cut range
[0, apmax], the minimum axial depth of cut difference c,
and definite integral discrete interval number int _ k.

(2) According to the discrete number m of the period T and
the definite integral discrete interval number int _ k, cal-
culate the four projections of the specific cutting force
coefficient hxxi, hxyi, hyxi, and hyyi(i = 0, 1, 2,……,m).

(3) Select the appropriate spindle speed discrete number stx,
starting from the minimum spindle speed, take the medi-
an axial depth of cut, and gradually calculate the

Fig. 1 Simulation flow chart of milling chatter stability lobe diagram based on IRKM-SDM

Fig. 2 Tool-workpiece second-order spring damping system
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corresponding matrix Ai, Ai + 1, Bi, and Bi + 1(i = 0, 1, 2,
……,m) according to the four projections of the specific
cutting force coefficient hxxi, hxyi, hyxi, and hyyi(i = 0, 1, 2,
……,m).

(4) According to the obtained matrix Ai, Ai + 1, Bi, and Bi +

1(i = 0, 1, 2,……,m), generate a transformation matrix
Φ.

(5) Find the modulus of the eigenvalues of matrix Φ. If the
eigenvalues of Φ are in modulus less than 1, the current
axial depth of cut is taken as the minimum value. If the
eigenvalues of Φ are in modulus greater than or equal to
1, the current axial depth of cut is taken as the maximum
value.

(6) Calculate the difference between the maximum and min-
imum axial depth of cut. If the difference is less than the
minimum axial depth of cut difference c, the median

axial depth of cut at this time is the critical axial depth
of cut at the current speed. Otherwise, go back to step (3).

(7) Draw the critical axial depth of cut corresponding to
different spindle speeds together to obtain the chatter
stability lobe diagram.

The simulation flow chart is shown in Fig. 1.

3 Modal experiment and analysis
of tool-workpiece system

When the machining parameters are not selected properly, the
second-order spring damping system composed of tool-
workpiece will chatter due to the regeneration effect. The
modal parameters of the tool-workpiece system have a great

Fig. 3 a Down-milling and b up-milling conditions of the tool

Fig. 4 Experimental equipment
and materials: a thin-walled part
and b glue gun
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Fig. 5 Device and process of the modal experiment

Table 1 Modal parameter identification results

Modal orders Natural frequency (Hz) Stiffness (N/m) Damping ratio (%)

Workpiece point 1 y direction 1st 332 3.6163×105 5.89

Workpiece point 1 y direction 2nd 976.6 3.7464×105 2.00

Workpiece point 2 y direction 1st 332 5.0392×105 5.89

Workpiece point 2 y direction 2nd 1007 4.1786×106 0.99

Workpiece point 3 y direction 1st 332 8.1645×105 5.89

Workpiece point 3 y direction 2nd 1005 2.8826×107 0.99

Workpiece point 4 y direction 1st 332 4.8026×105 5.89

Workpiece point 4 y direction 2nd 965.4 1.0549×106 1.02

Workpiece point 5 y direction 1st 332 4.9252×105 5.89

Workpiece point 5 y direction 2nd 1003 4.9364×105 1.96

Workpiece point 6 y direction 1st 332 6.8865×105 5.89

Workpiece point 6 y direction 2nd 1005 7.3235×106 0.99

Workpiece point 7 y direction 1st 332 3.9057×105 5.89

Workpiece point 7 y direction 2nd 953.1 2.4590×105 2.05

Workpiece point 8 y direction 1st 332 5.0906×105 5.89

Workpiece point 8 y direction 2nd 1005 7.6576×105 1.96

Workpiece point 9 y direction 1st 332 7.7051×105 5.89

Workpiece point 9 y direction 2nd 1005 7.2613×106 0.99

Workpiece point 10 y direction 1st 332 4.4041×105 5.89

Workpiece point 10 y direction 2nd 932.8 6.9147×105 2.09

Workpiece point 11 y direction 1st 332 4.4041×105 5.89

Workpiece point 11 y direction 2nd 989.6 7.2613×105 1.99

Workpiece point 12 y direction 1st 332 6.6027×105 5.89

Workpiece point 12 y direction 2nd 1005 9.2580×106 0.99

Tool x direction 1st 1484 1.0268×107 5.93

Tool x direction 2nd 3450 1.2181×107 1.42

Tool y direction 1st 1592 1.1085×107 7.98

Tool y direction 2nd 3413 1.5353×107 2.86
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influence on the machining stability. By obtaining the modal
of the process system, the stability equation of the system can
be obtained, and the stability boundary can be further solved.
Therefore, it is necessary to conduct modal experiment and
modal analysis. The modal experiment aims to obtain the
modal parameters (natural frequency, stiffness, and damping
ratio) of the tool and the workpiece.

3.1 Relative transfer function

The relative vibration of the tool and the workpiece will
directly affect the machining accuracy of the workpiece sur-
face. Different from general processing, the thin-walled parts
have a thinner wall thickness, and the relative deformation
generated during the processing is relatively large. So, it is
necessary to consider the modal of the workpiece to improve
accuracy. Therefore, for the tool-workpiece second-order
spring damping system where the workpiece is a thin-
walled part, not only the vibration of the tool but also the
vibration of the workpiece must be considered, as shown in
Fig. 2.

For a 2 DOF milling system for thin-walled parts, it can be
expressed as:

::
xþ 2ζxωn;xẋ þ ω2

n;xx ¼
1

mx
Fx xð Þ ::

yþ 2ζyωn;yẏþ ω2
n;yy ¼

1

my
Fy yð Þ



ð26Þ

In Eq. (26), ζx and ζy are the damping ratio of the system in
the x and y directions, respectively, and ωn, x and ωn, y are the
natural frequencies of the system in the x and y directions,
respectively. After Laplace transform, Eq. (26) can be trans-
formed into:

s2 þ 2ζxωn;xsþ ω2
n;x

� �
x sð Þ ¼ 1

mx
Fx sð Þ

s2 þ 2ζyωn;ysþ ω2
n;y

� �
y sð Þ ¼ 1

my
Fy sð Þ

8>><
>>:

ð27Þ

In Eq. (27), the forces Fx(s) and Fy(s) in the x and y direc-
tions are the input of the system, and the displacements x(s)
and y(s) in the x and y directions are the output of the system.
Therefore, the transfer function of a 2 DOF system can be
obtained:

Fig. 6 Transfer function curves of tool and workpiece: a Re of TF of the workpiece point 7, b Im of TF of the workpiece point 7, c Re of TF of the tool,
and d Im of TF of the tool
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Λx sð Þ ¼ x sð Þ
Fx sð Þ ¼

ω2
n;x

kx s2 þ 2ξxωn;x þ ω2
n;x

� �

Λy sð Þ ¼ y sð Þ
Fy sð Þ ¼

ω2
n;y

ky s2 þ 2ξyωn;y þ ω2
n;y

� �

8>>>>><
>>>>>:

ð28Þ

As shown in Fig. 3, the feed directions of down-milling and
up-milling are different. No matter under up-milling or down-
milling, the force of the workpiece is equal to the force of the

tool, and the direction is opposite. The relative displacement
in the y direction of both down-milling and up-milling can be
expressed as the sum of the displacement of the tool and the
workpiece:

Δrelative xxð Þ ¼ Δcutter xxð Þ
Δrelative yyð Þ ¼ Δcutter yyð Þ þΔworkpiece yyð Þ



ð29Þ

Fig. 7 Modal parameter fitting curve of workpiece: a first-order stiffness, b second-order stiffness, c second-order natural frequency, and d second-order
damping ratio

Table 2 Modal parameters used in simulation

Modal orders Natural frequency (Hz) Stiffness (N/m) Damping ratio (%)

Workpiece y direction 1st 332 4.632×105 10.61

Workpiece y direction 2nd 911.1 5.147×106 15.70

Tool x direction 1st 1484 1.0268×107 5.93

Tool x direction 2nd 3450 1.2181×107 1.42

Tool y direction 1st 1592 1.1085×107 7.98

Tool y direction 2nd 3413 1.5353×107 2.86
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Furthermore, the transfer function can be obtained as:

Λrelative xxð Þ ¼
Δrelative xxð Þ
Frelative xxð Þ

¼ Δcutter xxð Þ
Fx

Λrelative yyð Þ ¼
Δrelative yyð Þ
Frelative yyð Þ

¼ Δcutter yyð Þ
Fcutter yyð Þ

þ Δworkpiece yyð Þ
Fworkpiece yyð Þ

¼ Δcutter yyð Þ þΔworkpiece yyð Þ
Fy

8>><
>>:

ð30Þ

Since the transfer function of each order mode of the sys-
tem in the same direction can be superimposed, the relative
transfer function of the 2 DOF system with the q-order mode
of the tool and the w-order mode of the workpiece can be
expressed as:

Λrelative xxð Þ ¼ ∑
q

i¼1
Λi
cutter xxð Þ

Λrelative yyð Þ ¼ ∑
q

i¼1
Λi
cutter yyð Þ þ ∑

w

i¼1
Λi
workpiece yyð Þ

8>><
>>:

ð31Þ
3.2 Tool-workpiece modal experiment and analysis

In order to obtain the required modal parameters, the method
of hammer experiment is used to analyze the modal. The prin-
ciple of the hammer experiment is to generate a force with a
short duration by hammering the object to obtain the displace-
ment response. By analyzing the force and displacement gen-
erated by the hammering, the frequency response function can
be obtained, and the modal parameters can be further
obtained.

The instrument used in the experiment are as follows: the
impact hammer is Kistler 9722A500, the accelerometer is
Kistler 8776B050A, the data acquisition card is the 5922D
dynamic signal acquisition card, and the data acquisition soft-
ware is the DHDAS dynamic signal acquisition and analysis
system. The hammering objects are integral alloy milling cut-
ter MAL-2E-10 (overhang length is 45mm) and aluminum
alloy (6061T6) thin-walled parts (size 100×120×5mm3).
Because the natural frequency and stiffness of each position
of the workpiece are different, this experiment selects twelve
test points on the workpiece, takes the average of the obtained
modal parameters, and performs curve fitting, so as to obtain
the modal parameters of each position in the y direction. The
accelerometer is glued to the tool and the back of the measur-
ing points of the workpiece through a 50-W glue gun. The

Fig. 8 Chatter stability lobe diagrams under different modal parameters

Fig. 9 Three-dimensional stability lobe diagram based on IRKM-SDM

Fig. 10 Stability lobe diagram comparison of different algorithms
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position of the measuring points on the workpiece and the
glue gun used are shown in Fig. 4.

The device and process of the modal experiment are shown
in Fig. 5.

The modal parameters of the tool and workpiece obtained
from the modal experiment are shown in Table 1.

In order to verify the accuracy of the modal param-
eters obtained by the experiment, curve fitting of trans-
fer function is performed on the identified modal param-
eters, and some fitting results are shown in Fig. 6.
Figure 6 a and b are the real and imaginary part curves
of the transfer function (TF) of the workpiece point 7 in

Fig. 11 Stability verification experimental platform

Table 3 Stability verification experiment parameters

Serial number Spindle speed/rpm Axial depth of cut/mm Radial depth of cut/mm Feed rate /(mm/z)

1 1500 0.5 0.5 0.1
2 1500 0.4 0.5 0.1
3 1500 0.3 0.5 0.1
4 2000 0.5 0.5 0.1
5 2000 0.4 0.5 0.1
6 2000 0.3 0.5 0.1
7 2250 0.6 0.5 0.1
8 2250 0.5 0.5 0.1
9 2250 0.4 0.5 0.1
10 2500 0.5 0.5 0.1
11 2500 0.4 0.5 0.1
12 2500 0.3 0.5 0.1
13 3100 0.7 0.5 0.1
14 3100 0.6 0.5 0.1
15 3100 0.5 0.5 0.1
16 3500 0.5 0.5 0.1
17 3500 0.4 0.5 0.1
18 3500 0.3 0.5 0.1
19 4000 0.5 0.5 0.1
20 4000 0.4 0.5 0.1
21 4000 0.3 0.5 0.1
22 4500 0.7 0.5 0.1
23 4500 0.6 0.5 0.1
24 4500 0.5 0.5 0.1
25 4700 1.1 0.5 0.1
26 4700 1.0 0.5 0.1
27 4700 0.9 0.5 0.1
28 5000 0.8 0.5 0.1
29 5000 0.7 0.5 0.1
30 5000 0.6 0.5 0.1
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Fig. 12 Timedomain and frequencydomainwaveformsof cutting force:an=4500rpm,ap=0.5mm,bn=4500rpm,ap=0.7mm, cn=5000rpm,ap=0.6mm, anddn=5000rpm,ap=0.8mm
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the y direction, and Fig. 6 c and d are the real and
imaginary part curves of the transfer function (TF) of
the tool in the y direction, respectively. It can be seen
from Fig. 6 that the fitted curves have good consistency
with the experimental curves. Therefore, the identified
parameters are basically accurate.

The workpiece coordinate system setting is shown in
Fig. 4a. The modal parameters obtained from 12 mea-
suring points of the workpiece are averaged in the x
direction, and then the obtained average of the x direc-
tion are fitted by quadratic polynomial in the y direction
to obtain the modal parameter curve of the workpiece in
the y direction. The curves obtained are shown in Fig.
7.

The formula of fitting curve in Fig. 7 is as follows:

að Þ : fos ¼ 398:1y2−8582yþ 4:632e5 N=mð Þ
bð Þ : sos ¼ 2:373e4y2−7197e5yþ 5:147e6 N=mð Þ
cð Þ : sonf ¼ −0:08961y2 þ 5:902yþ 911:1 Hzð Þ
dð Þ : sodr ¼ 2:373e −3ð Þy2−0:0448yþ 1:507 %ð Þ

8>><
>>:

ð32Þ

4 Chatter stability analysis of thin-walled
parts based on the IRKM-SDM

4.1 Lobe diagram simulation of chatter stability of
thin-walled parts

According to the fitting curve obtained in Fig. 7, the modal
parameters at the top of the workpiece are taken as the modal
parameters for simulation. The modal parameters used in the
simulation are shown in Table 2.

Other parameters for simulation are as follows: number of
tool teethN = 2, tool diameter d = 10mm, the tangential cutting
force coefficient is Kt = 25.8724 × 106(N/m2), and the radial
cutting coefficient is Kr = − 7.66466 × 108(N/m2). Choose
down-milling as the milling method and determine the
discretization number m = 44 of the period T, the minimum
spindle speed nmin = 500 (rpm), the maximum spindle speed
nmax = 6000 (rpm), the maximum axial depth of cut apmax =
100(mm), the minimum axial depth of cut difference c = 5 ×
10−7mm, the definite integral discrete interval number int _
k = 100, and spindle speed discrete number stx = 110. The
modal parameters are shown in the table. The first-order mod-
al mass of the thin-walled part ismwt1 = 0.1061kg, the second-

Fig. 13 Laser measuring
microscope experimental
platform

Fig. 14 Micro machined surface: a n = 5000rpm, ap = 0.6mm and b n = 5000rpm, ap = 0.8mm
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order modal mass of the thin-walled part is mwt2 = 0.1570kg,
the first-order modal mass of the tool is mmt1 = 0.1177kg, and
the second-order modal mass of the tool is mmt2 = 0.0259kg.

The IRKM-SDM is used to draw the lobe diagram, and the
radial depth of cut ae = 0.5mm is taken to obtain the lobe
diagram under different modal parameters, as shown in Fig.
8. Taking the lowest critical depth of cut at the same speed as
the critical axial depth of milling, the chatter stability lobe
diagram of the milling system can be obtained.

Select the radial depth of cut ae = 0.5mm, 1.0mm, 1.5mm,
2.0mm, 2.5mm, and 3.0mm. The first-order and second-order
modal parameters of the tool and the workpiece are coupled,
and the simulated three-dimensional lobe diagram is shown in
Fig. 9. It can be seen from Fig. 9 that as the radial depth of cut
gradually increases, the critical axial depth of cut gradually
decreases, which is consistent with the actual situation.

In order to verify the IRKM-SDM, take the radial depth of
cut ae = 0.5mm and compare the IRKM-SDM with the ZOA,
MFS, and traditional SDM. The simulated lobe diagram is
shown in Fig. 10.

It can be seen from Fig. 10 that the trends of the lobe
diagrams simulated by different methods are different. The
lobe diagram simulated by the IRKM-SDM is similar in value
and trend to the traditional SDMmethod andMFS (directional
coefficient is 3), but it is far different from the ZOA and MFS
(directional coefficient is 1 or 2). Therefore, it is necessary to
verify the method of this paper through milling experiments.

4.2 Verification of the chatter stability of the IRKM-
SDM

This verification experiment uses the tools and aluminum al-
loy thin-walled parts used in the previous modal experiments,
and the tool overhang length is maintained at 45mm, which is
consistent with the previous modal experiments. The experi-
ment uses the dynamometer Kistler 9257B and the mechanical
analysis software DynoWare to collect the force signal and
applies the fast Fourier transform to analyze the force signal
to determine whether chatter occurs. The construction of the
experimental platform is shown in Fig. 11.

According to the simulation results, each set of experi-
ments will start cutting from the top of each workpiece. The
experiment parameters are shown in Table 3.

Figure 12 shows the time domain diagram and frequency
domain diagram of the force signal in the y direction measured
by the experiment. When the spindle speed is 4500rpm, the
base frequency is 4500/60Hz; when the spindle speed is
5000rpm, the base frequency is 5000/60Hz. The base frequen-
cy and its integer multiples are shown in red dotted lines in
Fig. 12. If there is a frequency close to but not equal to the
frequency of the main structure of the machining system in the
force spectrum, it indicates that chatter has occurred during the
milling process [29]. It can be seen from Fig. 12 a and c that
there is no chatter frequency at this time; and from the black
circle in Fig. 12 b and d, it can be seen that at this time, an
obvious unknown frequency appears at the position close to

Fig. 15 Stability lobe diagram of cutting experiment

Fig. 16 Comparison results of different methods: a accuracy and b simulation time
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the integral multiple of the base frequency of the spindle, so it
can be judged that chatter occurs at this time.

In order to further verify whether chatter vibration occurs,
after cutting the processed workpiece, use a 3D measuring
laser microscope for surface observation. The model of the
laser microscope is OLS4100, and the experimental equip-
ment is shown in Fig. 13. The observed surface topography
is shown in Fig. 14.

It can be seen from Fig. 14a that when chatter does not
occur, a stable cutting trace can be observed from the surface
of the workpiece, and the overall surface is relatively smooth.
And as can be seen fromFig. 14b, the surface of the workpiece
with chatter is obviously different from the surface of the
workpiece without chatter. On the surface of the workpiece
with chatter, no stable cutting trace can be observed, and the
surface is relatively rough.

According to the final experimental results, the lobe dia-
grams simulated by different methods are compared in terms
of simulation accuracy and calculation speed. Since the sim-
ulation results of the ZOA and the MFS (directional coeffi-
cient is 1 or 2) are far from those of other methods, only the
IRKM-SDM, the traditional SDM, and the MFS (directional
coefficient is 3) are compared here. The final experimental
results are shown in Fig. 15, and the comparison results of
different methods are shown in Fig. 16.

It can be seen from Fig. 16 that the IRKM-SDM is higher
than other methods in terms of simulation accuracy and cal-
culation speed. It is worth noting that due to the small critical
axial depth of cut obtained by the simulation, some of the
selected experimental parameters are very close to the critical
axial depth of cut, as shown in point A (4700, 1. 0) and point B
(5000, 0. 7) in Fig. 15. Therefore, at these points, the incon-
sistency between the experimental results and the simulation
results is a normal error.

5 Conclusion

In this paper, the semi-discretization method based on the
improved Runge-Kutta method (IRKM-SDM) is used to pre-
dict the milling stability. The aluminum alloy thin-walled
parts are taken as the research object. The modal parameters
of the tool and the workpiece are obtained through modal
analysis. After coupling the parameters of the workpiece and
the cutter, the chatter stability lobe diagram is obtained, which
is verified by milling experiments. According to theoretical
analysis, simulation, and experimental results, the conclusions
are as follows:

(1) The modal parameters of each position of the thin-walled
part are different. The modal parameters obtained from
different measuring points of the workpiece are averaged
in the x direction, and the obtained average of the x

direction is fitted in the y direction by a quadratic poly-
nomial to obtain the modal parameters of each position
of the workpiece in the y direction.

(2) Chatter is prone to occur when machining thin-walled
parts. As the radial depth of cut increases, the critical
axial depth of cut gradually decreases. Therefore, in or-
der to ensure the stability during processing, it is neces-
sary to control the axial depth of cut.

(3) In the milling system, the lobe diagrams obtained by the
modal parameters of the workpiece and the tool are dif-
ferent. Therefore, in order to ensure the accuracy of the
lobe diagram, it is necessary to couple the modal param-
eters of the workpiece and the tool.

(4) According to the results of simulation and experiment,
compared with other methods, the simulation accuracy
of the lobe diagram simulated by the IRKM-SDM is
80%, and the calculation time is only 26. 72032s. In
comparison, the simulation accuracy of the traditional
SDM is 76. 67%, and the calculation time is 174.
3309s; the simulation accuracy of the MFS (directional
coefficient is 3) is 50%, and the calculation time is 374.
7030s. Therefore, considering the simulation accuracy
and calculation speed comprehensively, in the process-
ing of thin-walled parts, the IRKM-SDM has advantages
over the ZOA, the MFS, and the traditional SDM.

Nomenclature ωn, The natural frequency of the system; ζ, The damping
ratio; mt, The modal mass; ap, The axial depth of cut; h(t), The projection
of the specific cutting force coefficient; Kt, The tangential cutting force
coefficient; Kn, The radial cutting force coefficient; ϕj(t), The contact
angle of the jth tooth; n, The spindle speed; ϕp, The angle between the
cutter teeth; N, The number of cutter teeth; g(ϕj), The unit step function;
ϕst,ϕex, The contact angles when the tool is cut in and out, respectively; ae,
The radial depth of cut; D, The tool diameter; A(t),B(t), The periodic
matrices; T, The time period; τ, The angular frequency of the spindle;
Δt, The time step; m, The discretization number of time; Φ, The conver-
sion matrix; c, The minimum axial depth of cut difference; int _ k, The
definite integral discrete interval number; Fx,Fy, The forces in the x and y
directions; Λ, The transfer function; Δ, The relative displacement; fos,
The first-order stiffness; sos, The second-order stiffness; sonf, The
second-order natural frequency; sodr, The second-order damping ratio

Availability of data and materials The data that support the findings of
this study are available from the corresponding author upon reasonable
request.

Author contribution Muxuan Guo and Lida Zhu conceived the idea.
Muxuan Guo and Boling Yan performed all the experiments. Muxuan
Guo drafted the manuscript, and Muxuan Guo, Lida Zhu, Boling Yan,
and Zhihong Guan interpreted, discussed, and edited the manuscript.
Muxuan Guo and Zhihong Guan finalized the manuscript, including pre-
paring the detailed response letter. Lida Zhu supervised the work.

Funding This work was supported by the National Natural Science
Foundation of China (51975112) and Fundamental Research Funds for
Central Universities (N180305032) and supported by Liao Ning
Revitalization Talents Program (XLYC1807063).

2340 Int J Adv Manuf Technol (2021) 115:2325–2342



Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication The manuscript is approved by all authors for
publication. I would like to declare on behalf of my co-authors that the
work described was original research that has not been published previ-
ously, and not under consideration for publication elsewhere, in whole or
in part.

Competing interests The authors declare no competing interests.

References

1. Totis G, Sortino M (2020) Polynomial Chaos-Kriging approaches
for an efficient probabilistic chatter prediction in milling. Int J Mach
Tools Manuf 157:103610. https://doi.org/10.1016/j.ijmachtools.
2020.103610

2. Yang Z, Zhu L, Zhang G, Ni C, Lin B (2020) Review of ultrasonic
vibration-assisted machining in advanced materials. International.
Journal of Machine Tools and Manufacture 156:103594. https://
doi.org/10.1016/j.ijmachtools.2020.103594

3. Altintaş Y, Budak E (1995) Analytical prediction of stability lobes
in milling. CIRP Ann 44(1):357–362. https://doi.org/10.1016/
s0007-8506(07)62342-7

4. Bayly PV, Mann BP, Schmitz TL, Peters DA, Stepan G, Insperger
T (2002) Effects of radial immersion and cutting direction on chat-
ter instability in end-milling. In: ASME International Mechanical
Engineering Congress and Exposition:351–363. https://doi.org/10.
1115/imece2002-39116

5. Merdol SD, Altintas Y (2004) Multi frequency solution of chatter
stability for low immersion milling. J Manuf Sci Eng 126(3):459–
466. https://doi.org/10.1115/1.1765139

6. Insperger T, Stépán G (2002) Semi-discretization method for de-
layed systems. Int J Numer Methods Eng 55(5):503–518. https://
doi.org/10.1002/nme.505

7. Insperger T, Stépán G (2004) Updated semi-discretization method
for periodic delay-differential equations with discrete delay. Int J
Numer Methods Eng 61(1):117–141. https://doi.org/10.1002/
nme.1061

8. Ding Y, Zhu L, Zhang X, Ding H (2010) A full-discretization
method for prediction of milling stability. Int J Mach Tools
Manuf 50(5):502–509. https://doi.org/10.1016/j.ijmachtools.2010.
01.003

9. Ding Y, Zhu L, Zhang X, Ding H (2010) Second-order full-
discretization method for milling stability prediction. Int J Mach
Tools Manuf 50(10):926–932. https://doi.org/10.1016/j.
ijmachtools.2010.05.005

10. Li Z, Sun Y, Guo D (2016) Chatter prediction utilizing stability
lobes with process damping in finish milling of titanium alloy
thin-walled workpiece. Int J Adv Manuf Technol 89(9-12):2663–
2674. https://doi.org/10.1007/s00170-016-9834-3

11. Liu B, Zhu L, Dun Y, Liu C (2016) Investigation on chatter stability
of thin-walled parts in milling based on process damping with rel-
ative transfer functions. Int J Adv Manuf Technol 89(9-12):2701–
2711. https://doi.org/10.1007/s00170-016-9431-5

12. Wu S, Li R, Liu X, Yang L, Zhu M (2016) Experimental study of
thin wall milling chatter stability nonlinear criterion. Procedia CIRP
56:422–427. https://doi.org/10.1016/j.procir.2016.10.075

13. Ma Y, Wan M, Zhang W (2016) Effect of cutter runout on chatter
stability of milling process. Procedia CIRP 56:115–118. https://doi.
org/10.1016/j.procir.2016.10.034

14. Zhang X, Xiong C, Ding Y, Ding H (2016) Prediction of chatter
stability in high speed milling using the numerical differentiation
method. Int J AdvManuf Technol 89(9-12):2535–2544. https://doi.
org/10.1007/s00170-016-8708-z

15. Ozoegwu CG, Ofochebe SM, Omenyi SN (2016) A method of
improving chatter-free conditions with combined-mode milling. J
Manuf Process 21:1–13. https://doi.org/10.1016/j.jmapro.2015.
10.008

16. Comak A, Budak E (2017) Modeling dynamics and stability of
variable pitch and helix milling tools for development of a design
method to maximize chatter stability. Precis Eng 47:459–468.
https://doi.org/10.1016/j.precisioneng.2016.09.021

17. Hajdu D, Insperger T, Bachrathy D, Stepan G (2017) Prediction of
robust stability boundaries for milling operations with extended
multi-frequency solution and structured singular values. J Manuf
Process 30:281–289. https://doi.org/10.1016/j.jmapro.2017.09.015

18. Jiang S, Sun Y, Yuan X, Liu W (2017) A second-order semi-
discretization method for the efficient and accurate stability predic-
tion of milling process. Int J AdvManuf Technol 92(1-4):583–595.
https://doi.org/10.1007/s00170-017-0171-y

19. Jafarzadeh E, Movahhedy MR (2017) Numerical simulation of in-
teraction of mode-coupling and regenerative chatter in machining. J
Manuf Process 27:252–260. https://doi.org/10.1016/j.jmapro.2017.
05.008

20. Dai Y, Li H, Xing X, Hao B (2018) Prediction of chatter stability
for milling process using precise integration method. Precis Eng 52:
152–157. https://doi.org/10.1016/j.precisioneng.2017.12.003

21. Dai Y, Li H,Wei Z, Zhang H (2018) Chatter stability prediction for
five-axis ball end milling with precise integration method. J Manuf
Process 32:20–31. https://doi.org/10.1016/j.jmapro.2018.01.008

22. Liu C, Zhu L, Ni C (2018) Chatter detection in milling process
based on VMD and energy entropy. Mech Syst Signal Process
105:169–182. https://doi.org/10.1016/j.ymssp.2017.11.046

23. Zhu L, Liu C (2020) Recent progress of chatter prediction, detection
and suppression in milling. Mech Syst Signal Process 143:106840.
https://doi.org/10.1016/j.ymssp.2020.106840

24. Sun Y, Jiang S (2018) Predictive modeling of chatter stability con-
sidering force-induced deformation effect in milling thin-walled
parts. Int J Mach Tools Manuf 135:38–52. https://doi.org/10.
1016/j.ijmachtools.2018.08.003

25. ZhouK, Zhang J, Xu C, Feng P,Wu Z (2018) Effects of helix angle
and multi-mode on the milling stability prediction using full-
discretization method. Precis Eng 54:39–50. https://doi.org/10.
1016/j.precisioneng.2018.04.016

26. Kiss AK, Hajdu D, Bachrathy D, Stepan G (2018) Operational
stability prediction in milling based on impact tests. Mech Syst
Signal Process 103:327–339. https://doi.org/10.1016/j.ymssp.
2017.10.019

27. Wan S, Jin X, Maroju NK, Hong J (2019) Effect of vibration assis-
tance on chatter stability in milling. Int J Mach Tools Manuf 145:
103432. https://doi.org/10.1016/j.ijmachtools.2019.103432

28. Yang Y, Zhang W-H, Ma Y-C, Wan M, Dang X-B (2019) An
efficient decomposition-condensation method for chatter prediction
in milling large-scale thin-walled structures. Mech Syst Signal
Process 121:58–76. https://doi.org/10.1016/j.ymssp.2018.11.013

29. Dun Y, Zhu L, Wang S (2020) Multi-modal method for chatter
stability prediction and control in milling of thin-walled workpiece.
Appl Math Model 80:602–624. https://doi.org/10.1016/j.apm.
2019.12.003

30. Chen Q, Li W, Ren Y, Zhou Z (2020) 3D chatter stability of high-
speed micromilling by considering nonlinear cutting coefficients,
and process damping. J Manuf Process 57:552–565. https://doi.org/
10.1016/j.jmapro.2020.07.016

2341Int J Adv Manuf Technol (2021) 115:2325–2342

https://doi.org/10.1016/j.ijmachtools.2020.103610
https://doi.org/10.1016/j.ijmachtools.2020.103610
https://doi.org/10.1016/j.ijmachtools.2020.103594
https://doi.org/10.1016/j.ijmachtools.2020.103594
https://doi.org/10.1016/s0007-8506(07)62342-7
https://doi.org/10.1016/s0007-8506(07)62342-7
https://doi.org/10.1115/imece2002-39116
https://doi.org/10.1115/imece2002-39116
https://doi.org/10.1115/1.1765139
https://doi.org/10.1002/nme.505
https://doi.org/10.1002/nme.505
https://doi.org/10.1002/nme.1061
https://doi.org/10.1002/nme.1061
https://doi.org/10.1016/j.ijmachtools.2010.01.003
https://doi.org/10.1016/j.ijmachtools.2010.01.003
https://doi.org/10.1016/j.ijmachtools.2010.05.005
https://doi.org/10.1016/j.ijmachtools.2010.05.005
https://doi.org/10.1007/s00170-016-9834-3
https://doi.org/10.1007/s00170-016-9431-5
https://doi.org/10.1016/j.procir.2016.10.075
https://doi.org/10.1016/j.procir.2016.10.034
https://doi.org/10.1016/j.procir.2016.10.034
https://doi.org/10.1007/s00170-016-8708-z
https://doi.org/10.1007/s00170-016-8708-z
https://doi.org/10.1016/j.jmapro.2015.10.008
https://doi.org/10.1016/j.jmapro.2015.10.008
https://doi.org/10.1016/j.precisioneng.2016.09.021
https://doi.org/10.1016/j.jmapro.2017.09.015
https://doi.org/10.1007/s00170-017-0171-y
https://doi.org/10.1016/j.jmapro.2017.05.008
https://doi.org/10.1016/j.jmapro.2017.05.008
https://doi.org/10.1016/j.precisioneng.2017.12.003
https://doi.org/10.1016/j.jmapro.2018.01.008
https://doi.org/10.1016/j.ymssp.2017.11.046
https://doi.org/10.1016/j.ymssp.2020.106840
https://doi.org/10.1016/j.ijmachtools.2018.08.003
https://doi.org/10.1016/j.ijmachtools.2018.08.003
https://doi.org/10.1016/j.precisioneng.2018.04.016
https://doi.org/10.1016/j.precisioneng.2018.04.016
https://doi.org/10.1016/j.ymssp.2017.10.019
https://doi.org/10.1016/j.ymssp.2017.10.019
https://doi.org/10.1016/j.ijmachtools.2019.103432
https://doi.org/10.1016/j.ymssp.2018.11.013
https://doi.org/10.1016/j.apm.2019.12.003
https://doi.org/10.1016/j.apm.2019.12.003
https://doi.org/10.1016/j.jmapro.2020.07.016
https://doi.org/10.1016/j.jmapro.2020.07.016


31. Niu J, Ding Y, Zhu L, Ding H (2013) Runge–Kutta methods for a
semi-analytical prediction of milling stability. Nonlinear Dynamics
76(1):289–304. https://doi.org/10.1007/s11071-013-1127-x

32. Li Z, Yang Z, Peng Y, Zhu F, Ming X (2015) Prediction of chatter
stability for milling process using Runge-Kutta-based complete

discretization method. Int J Adv Manuf Technol 86(1-4):943–
952. https://doi.org/10.1007/s00170-015-8207-7

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2342 Int J Adv Manuf Technol (2021) 115:2325–2342

https://doi.org/10.1007/s11071-013-1127-x
https://doi.org/10.1007/s00170-015-8207-7

	Research on the milling stability of thin-walled parts based on the semi-discretization method of improved Runge-Kutta method
	Abstract
	Introduction
	Chatter stability semi-discretization method based on second-order Runge-Kutta method
	2 DOF milling equation
	Second-order Runge-Kutta method

	Modal experiment and analysis of tool-workpiece system
	Relative transfer function
	Tool-workpiece modal experiment and analysis

	Chatter stability analysis of thin-walled parts based on the IRKM-SDM
	Lobe diagram simulation of chatter stability of thin-walled parts
	Verification of the chatter stability of the IRKM-SDM

	Conclusion
	References


