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Abstract
In this work, an analytical methodology to minimize the energy expenditure of mechatronic systems performing point-to-
point (PTP) trajectories based on well-known motion primitives is developed and validated. Both PTP trajectory profiles
commonly used in industrial motor drives and more complex ones are investigated. Focusing on generic 1-DoF mechatronic
systems moving a constant inertia load (e.g., elevators, cranes, CNC machines, Cartesian axis) and possibly equipped or
retrofitted with regenerative devices, the consumed energy formulation is firstly derived. Then, the analytical optimization
considering all the selected PTP trajectory profiles is computed and a generic closed-form solution is determined.
Finally, numerical and experimental evaluations are done showing the effectiveness of the theoretical results and proposed
methodology. In addition, all the different trajectories are compared with respect to energy consumption.

Keywords Motion-planning · Trajectory optimization · Energy efficiency · Mechatronics

1 Introduction

The minimization of energy consumption in manufacturing
and industrial processes is becoming an important objective
of an engineering design process [1–3]. Indeed, in the recent
years, topics such as environmental issues as well as increase
of energetic costs have driven politics and public opinion to
take solid and challenging actions toward a more sustainable
production [4]. The European Union has committed itself to
bind a target of saving 20% of primary energy consumption
(in reference to 2007 consumption) by 2020 [5]. This policy
has been then extended and a new binding energy efficiency
target of 30% energy savings until 2030 for the European
Union has been subscribed [6].

The more attention on this topic can be demonstrated by
the increasing number of published works in this area, as
reviewed in [7] where different methods and technologies for
enhancing the energy performance of mechatronic systems
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have been classified in three main categories: hardware,
software, and mixed approaches.

The hardware approaches consider the modification of
parts of existing systems or the design of new ones to cre-
ate more energy-efficient mechatronic devices. In particular,
the availability of new lighter and strength materials makes
possible the design of lighter robotic arms [8–11] and com-
ponents [12, 13]. Lightweight structures are as well obtained
by reducing the moving masses: actuators are moved next
to the robot base and the motion is transmitted through
a system of pulleys and timing belts [14, 15]. Hardware
approaches include also technologies for increasing the
components efficiency [16], and for implementing energy
recovery [17, 18] and distribution strategies [19]. These
allow for new scenarios of reduced energy consumption and
therefore less environmental impact.

The software approach, conversely, carries out the energy
consumption reduction by optimizing the motion planning
phase as well as scheduling the operations. Machines and
robots are often operated to maximize production outputs
(i.e., minimization of time); this causes both high energy
losses at high velocities and surpluses in deceleration.
Therefore, the speed motion profile in a PTP operation
can be changed [20–26] as well as the path profile in a
multi-point trajectory [27, 28] in order to use less energy.
In literature, focusing only on PTP motions, several works
dealing with the optimization and comparison between
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different PTP trajectory profiles, from the most common
in industrial application such as the trapezoidal speed
profile [29, 30] to more complex ones [20–22], can be
found. Richiedei et al. [21] propose an analytical method
to improve the energy efficiency of 1-DoF constant inertia
systems, by selecting both the best motion law for the
application and the optimum cycle time. In [23], the
PTP trajectory planning of the excavating process of a
large cable shovel has been considered: polynomial curves
of different degrees have been numerically optimized to
reduce the energy consumption per volume unit of dig
material and compared in terms of excavating performance
with the conventional S-curve. Liu et al. [26] propose
a trajectory planning optimization strategy, based on 4-
3-3-4 degree polynomial interpolation, for Delta 3 robot
performing high-speed handling operations. In [24], the
kinematic redundancy is exploited as a tool to enhance the
energetic performance of a robotic cell, while Ayten et al.
[25] consider two PTP trajectory optimization methods for
redundant/hyper-redundant manipulators. The first method
considers the kinematic and dynamic constraints in a
sequential manner to avoid running the inverse dynamics,
while in the second one a new concept of virtual link is
introduced to replace the redundant links and eliminate
the impossible configurations before running the inverse
dynamic model.

Finally, the mixed approach considers hardware and
software modifications of the mechatronic system working
in synergy. This is the case of trajectory optimization in
systems equipped with regenerative drives to maximize the
energy regenerated and stored in the capacitors [31, 32].
Further methods use compliant elements inserted, in parallel
or in series, to the actuators, in combination with a proper
trajectory optimization to exploit the free vibration response
of the system performing cyclic tasks [33–36]. Scalera et al.
in [37] present a detailed review of these methods.

This work focuses on the study of the energy consump-
tion and minimization of a generic 1-DoF mechatronic
system moving a constant inertia load (e.g., elevators,
cranes, CNCmachines, Cartesian axis) possibly equipped or
retrofitted with regenerative devices (i.e., mixed approach).
As a matter of fact, these kinds of systems cover a wide
range of applications in production, packaging, and logistic
plants.

Although the motion planning optimization to increase
the energy efficiency of such a systems is common in
literature, few works (e.g., [21–23]) address the problem
from an analytical point of view. Following this approach
would represent a clear advantage allowing to obtain the
solution in a quick and direct way relying only on the
knowledge of few system physical parameters. In particular,
this would be important for an implementation of the
method in an embedded mechatronic system (e.g., motor

servo drive), where the computational power is generally
limited. With this idea in mind, in this work, different
PTP trajectory profiles have been investigated including
both motion primitives commonly used in industrial motor
drives (e.g., trapezoidal speed profile and double-S profile)
and more complex ones (e.g., cycloidal and polynomial
profiles). In particular, the developed approach considers the
analytical minimization of the energy for all the considered
PTP trajectory profiles, thus deriving closed-form solutions.
In addition to other similar works, beyond of considering
different motion primitives and optimizing the time required
to execute a task, this method analyzes and optimizes
also the shape of the motion profile (i.e., non-symmetrical
profile with non-fixed acceleration and deceleration times
are considered). Moreover, an experimental validation of the
method has been carried out.

The paper is organized as follows: in Section 2, the model
of the 1-DoF generic mechatronic system is presented; it is
then exploited in Section 3 to derive the generic formulation
of the energy consumption, independent from the motion
profile. Afterward, in Section 4, the mathematical definition
of all the considered trajectories is derived and substituted
into the energy formulation to obtain the consumed
energy for each motion profile as well as the optimum
solution that minimizes the energy consumption in closed-
form (Section 5). After that, in Section 6, the different
trajectories are compared and evaluated. Finally, numerical
and experimental analysis and validation are reported in
Sections 7 and 8.

2Mechatronic systemmodel

The methods presented in this work are meant to be applied
on a generic 1-DoF mechatronic system moving a constant
inertia load. In Fig. 1, an example of a possible application,
e.g., a Cartesian robot axis, is shown: an electric motor
(e.g., DC motor or permanent magnet synchronous motor
— PMSM) moves a payload on an inclined plane (by an
angle ϑ) over a distanceL, by means of a toothed belt with a
reduction ratio equal to τ . The model takes into account the
load inertia, the system Coulomb, and viscous frictions, as
well as the resistive losses in the motor windings. Motor iron
losses and stray losses are not directly taken into account by
the model. Anyway, as stated in [21], they can be fictitiously
included by increasing the viscous friction and the motor
resistance terms, respectively. Whereas, motor inductance
here is not considered since in a point-to-point motion, no
dissipation occurs through it [21].

This test-case has been chosen for the derivation and
validation of the developed methods. However, there is no
loss of generality as methods can be easily adapted to any
1-DoF mechatronic systems with a constant inertia load.
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Fig. 1 Model of the mechatronic
system under evaluation

The motor torque Tm needed to move the payload is then
described by the following:

Tm(t)

τ
=

(
jm

τ 2
+ m

)
al(t) + D vl(t) + m g sinϑ + Fc (1)

where al(t) and vl(t) are the load acceleration and velocity,
respectively, jm the motor moment of inertia, m the load
mass, g = 9.81m/s2 the gravitational acceleration, D the
viscous friction coefficient, and Fc the dynamic friction.
Therefore, the instantaneous current and voltage in the
motor phase are:

i(t) = Tm(t)

Kt

= b1 + b2 vl(t) + b3 al(t) (2)

e(t) = R i(t) + Ke

τ
vl(t) = b4 + b5 vl(t) + b6 al(t) (3)

where R is the motor winding resistance, Kt the motor
torque constant, Ke the motor back-EMF constant, and the
terms bi are defined as:

b1 = (m g sinϑ + Fc)
τ
Kt

b4 = R b1

b2 = D τ
Kt

b5 = R b2 + Ke

τ

b3 =
(

jm

τ
+ m τ

)
1
Kt

b6 = R b3

(4)

The system consumed energy, less the recovered braking
energy, is then calculated by integrating the instantaneous
power P(t) = e(t) i(t) over the time period T :

E =
∫ T

0
P(t)dt =

∫ T

0
e(t) i(t)dt (5)

In this work, it is assumed that the system is equipped with a
regenerative device able to recover all the braking energy net
of joule effect losses (i.e., super-capacitor with negligible
losses).

3 Energy formulation

By substituting Eqs. 2 and 3 into Eq. 5, it holds:

E = b1b4T +(b1b5+b2b4)

∫ T

0
vl(t)dt + b2b5

∫ T

0
vl(t)

2dt

+ (b1b6 + b3b4)

∫ T

0
al(t)dt + b3b6

∫ T

0
al(t)

2dt

+ (b2b6 + b3b5)

∫ T

0
al(t)vl(t)dt

Being the initial and final motion conditions known (i.e.,
v(0) = 0, v(T ) = 0, s(0) = 0, and s(T ) = L), the
following results apply:∫ T

0
al(t)dt = 0

∫ T

0
vl(t)dt = L

Moreover, by integrating by parts the mixed term, it holds
that:∫ T

0
al(t)vl(t)dt = vl(t)

2

2

∣∣∣∣
T

0
= 0.

The final formulation of the energy equation becomes:

E = b1b4T + (b1b5 + b2b4) L + b2b5ω + b3b6α (6)

where α = ∫ T

0 al(t)
2dt and ω = ∫ T

0 vl(t)
2dt . More in

details, four terms contribute to Eq. 6:

– A term, b1 b4T , that linearly increases with the cycle
time T by a factor mainly dependent on the system
load (i.e., with a longer cycle time, the motor has to
counteract the friction and the gravity, adsorbing current
and generating heat for longer).

– A constant term, (b1 b5 + b2 b4) L, that depends only
on system parameters and path length.

– Two motion-dependent terms, α and ω, on which the
choice of the trajectory profile and the motion primitive
has effect.
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As it will be shown in the next sections, this last consid-
eration can be helpful in the energy expenditure evaluation
for a PTP motion.

4 PTP industrial trajectory profiles

In a PTP pick&place task, where only the initial and final
points are fixed, different trajectory profiles can be chosen.
Usually, industrial motor drives implement a trapezoidal
speed profile (trap) thanks to its simplicity and capability
to reach low task cycle time. It is made of three motion
phases (Fig. 2a), i.e., constant acceleration, constant speed,
and constant deceleration. One of the main drawbacks of
this motion profile regards the acceleration and deceleration
phases in which the jerk reaches ideally an infinite value
[38]. To avoid such a problem, modern motor drives imple-
ment a double-S or 7-segments motion profile (2s). It con-
sists of 7 time blends (Fig. 2b), where the maximum acceler-
ation and deceleration are gradually reached in order to have
a finite jerk value. Motor drives rarely show the option to
select other motion profiles and, among these, the cycloidal-
S and polynomial profiles are here selected and considered.
The cycloidal-S profile (cycl), shown in Fig. 2c, can be
considered an evolution of the previous ones and it is char-
acterized by an initial acceleration and a final deceleration
phase with a cycloidal profile that leads to finite jerk values,
whereas the central phase is at constant speed.

Concerning the polynomial primitives, the 3rd- (poly3),
5th- (poly5), and 7th (poly7)-order ones (Fig. 2d, e, and f,
respectively) have been considered.

In Appendix A.1, the equations that define the displace-
ment s(t), velocity v(t), and acceleration a(t) profiles of all
the considered motion primitives are reported.

5 Energy computation andminimization

Starting from Eq. 6, the energy formulation for each of the
different trajectory profiles is obtained by computing and

substituting the integral terms α and ω reported in Table 1.
This allows evaluating the minimum energy conditions
for the different trajectory profiles, compare them, and,
eventually, have a closed-form solution for the problem.

5.1 Trapezoidal speed, cycloidal-S, and double-S
profiles

In the case of trapezoidal speed, cycloidal-S, and double-S
trajectory primitives, the acceleration t1 and the deceleration
t3 times as well as the total cycle T time have been selected
as optimization parameters.

The time blends tja and tjd in the double-S profile
(Fig. 2b), instead, have not been considered. In fact, it can
be demonstrated (Appendix A.2) that they have to be zero to
minimize the consumed energy (i.e., the profile degenerates
in a trapezoidal speed one). Consequently, in this work, the
fixed values tja = t1/3 and tjd = t3/3 have been used.
Therefore, from now on, “2s” will refer to the double-S
trajectory with such as assumptions.

Two different optimization cases with practical applica-
tion have been then studied:

– 1st case: t1 and t3 optimized and T fixed;
– 2nd case: t1, t3 and T optimized.

Starting from the analytic definition of the energy
Eq. 6 and considering the optimization parameters, the
stationary points (i.e., minima or maxima of the function)
are determined by looking at all the points in which the
energy gradient is null, thus:

∇E =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂E

∂t1
= b2 b5

∂ω

∂t1
+ b3 b6

∂α

∂t1
= 0

∂E

∂t3
= b2 b5

∂ω

∂t3
+ b3 b6

∂α

∂t3
= 0

∂E

∂T
= b1 b4 + b2 b5

∂ω

∂T
+ b3 b6

∂α

∂T
= 0

(7)

where the partial derivatives of the terms α and ω that
depend on the specific motion primitive assume the values
reported in Table 2.

a b c d e f

Fig. 2 Trajectory profiles: a trapezoidal speed profile, b double-S profile, c cycloidal-S profile, d 3rd-order polynomial profile, e 5th-order
polynomial profile (continue line) and 5th-order polynomial profile with acceleration conditions (dashed line), and f 7th-order polynomial profile
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Table 1 Trajectory profiles integral terms

Traj α =
∫ T

0
al(t)

2 dt ω =
∫ T

0
vl(t)

2 dt

trap
4L2 (t1 + t3)

(2T − t1 − t3)
2 t1t3

4L2
(
− 2

3 t1 + T − 2
3 t3

)
(2T − t1 − t3)

2

cycl
L2 π2 (t1 + t3)

2 (2 T − t1 − t3)
2 t1 t3

4L2
(
− 5

8 t1 + T − 5
8 t3

)
(2 T − t1 − t3)

2

2s

4L2

den

(
3 t1

2 t3 − 4 t1
2 tjd + 3 t1 t3

2 − 6 t1 t3 tja+
−6 t1 t3 tjd + 8 t1 tja tjd + 3 t1 tjd

2 − 4 t3
2 tja+

+3 t3 tja
2 + 8 t3 tja tjd − 4 tja

2 tjd − 4 tja tjd
2 )

Where den = 3
(
t1 − tja

)2 (
t3 − tjd

)2
(t1 − 2 T + t3)

2

L2

5 den

(−40 t1
3 t3

2 + 80 t1
3 t3 tjd − 40 t1

3 tjd
2 − 40 t1

2 t3
3 + 90 t1

2 t3
2 tja+

+90 t1
2 t3

2 tjd + 60 T t1
2 t3

2 − 180 t1
2 t3 tja tjd − 65 t1

2 t3 tjd
2+

−120 T t1
2 t3 tjd + 90 t1

2 tja tjd
2 + 16 t1

2 tjd
3 + 60 T t1

2 tjd
2+

+80 t1 t3
3 tja − 65 t1 t3

2 tja
2 − 180 t1 t3

2 tja tjd − 120 T t1 t3
2 tja+

+130 t1 t3 tja
2 tjd +130 t1 t3 tja tjd

2+240 T t1 t3 tja tjd − 65 t1 tja
2 tjd

2+
−32 t1 tja tjd

3 − 120 T t1 tja tjd
2 − 40 t3

3 tja
2 + 16 t3

2 tja
3+

+90 t3
2 tja

2 tjd + 60 T t3
2 tja

2 − 32 t3 tja
3 tjd − 65 t3 tja

2 tjd
2+

−120 T t3 tja
2 tjd + 16 tja

3 tjd
2 + 16 tja

2 tjd
3 + 60 T tja

2 tjd
2
)

If the time blends tja and tjb are fixed to tja = t1/3 and tjd = t3/3:

5L2 (t1 + t3)

(2 T − t1 − t3)
2 t1 t3

L2 (449 t1 − 720 T + 449 t3)

180 (2 T − t1 − t3)
2

poly3
12L2

T 3

6L2

5 T

poly5
4

35 T 3

(
105L2 + 45 T 10 c5

2 + 35 T 9 c4 c5 + 7 T 8 c4
2
) 378

315 T

(
L2 + 9L T 5 c5 + 38 T 10 c5

2 + 30 T 9 c4 c5 + 6 T 8 c4
2
)

poly5b
120L2

7 T 3

10L2

7 T

poly7
120L2

7 T 3
− 2

7
L T 4 c7 + 272

385
T 11 c7

2 + 2

5
T 10 c6 c7 + 2

35
T 9 c6

2 10L2

7 T
− 2

231
L T 6 c7 + 16

1001
T 13 c7

2 + 1

110
T 12 c6 c7 + 1

770
T 11 c6

2

To determine whether the zeros of the functions cor-
respond to local maxima or minima, the Hessian matrix
should be considered. However, its computation is not here
necessary since from Eq. 6 it could be seen that the function
is convex and it has only a point of minimum since all the
terms are positive.

5.1.1 First optimization case (t1 and t3 optimized, T fixed)

A closed-form solution is here found by considering the first
two equations of the system (Eq. 7). Firstly, subtracting the
second equation to the first:

b2 b5

(
∂ω

∂t1
− ∂ω

∂t3

)
+ b3 b6

(
∂α

∂t1
− ∂α

∂t3

)
= 0 (8)

and substituting the terms in Table 2, after some simplifi-
cations, and whatever motion primitive is considered (i.e.,
trapezoidal speed, cycloidal-S, or double-S profile), the
following equation is obtained:(
t1
2 − t3

2
)

(2T − t1 − t3) = 0 (9)

Since 2T −t1−t3 is always positive, the condition is satisfied
only when t1 = t3. Therefore, the solution is determined
by the first equation of system (Eq. 7), where t3 = t1

and where the terms in Table 2 are substituted. After some
simplifications, third-order equations can be obtained for
the three trajectory profiles:

trap : −2 t1
3 + T t1

2 + 9 b3 b6

b2 b5
t1 − 3 b3 b6 T

b2 b5
= 0 (10)

cycl : −5 t1
3 + 3 T t1

2 + 3π2 b3 b6

b2 b5
t1 − π2 b3 b6 T

b2 b5
= 0 (11)

2s : −449t1
3 + 271 T t1

2 + 2700 b3 b6

b2 b5
t1 − 900 b3 b6 T

b2 b5
= 0 (12)

and an explicit solution can be found.
An effective way to study the energy behavior is to intro-

duce and evaluate the term λ1 = t1/T into Eqs. 10, 11, and
12. Rearranging and simplifying the equations, the follow-
ing “final” solutions for the trapezoidal speed, cycloidal-S,
and double-S profiles, respectively, are obtained:

trap : (1 − 2λ1) λ1
2

3 (1 − 3λ1)
= b3 b6

T 2 b2 b5
(13)

cycl : (3 − 5λ1) λ1
2

π2 (1 − 3λ1)
= b3 b6

T 2 b2 b5
(14)

2s : (271 − 449λ1) λ1
2

900 (1 − 3λ1)
= b3 b6

T 2 b2 b5
(15)
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Table 2 Gradient partial derivatives

trap cycl 2s
∂α

∂t1

4L2
(
2t12 + 3t1t3 + t3

2 − 2T t3
)

t12t3 (2T − t1 − t3)
3

L2 π2
(
2 t1

2 + 3 t1 t3 + t3
2 − 2 T t3

)
2 t12 t3 (2 T − t1 − t3)

3

5L2
(
2 t1

2 + 3 t1 t3 + t3
2 − 2 T t3

)
t12 t3 (2 T − t1 − t3)

3

∂α

∂t3

4L2
(
t1
2 + 3t1t3 − 2T t1 + 2t32

)
t1t32 (2T − t1 − t3)

3

L2 π2
(
t1
2 + 3 t1 t3 − 2 T t1 + 2 t3

2
)

2 t1 t32 (2 T − t1 − t3)
3

5L2
(
t1
2 + 3 t1 t3 − 2 T t1 + 2 t3

2
)

t1 t32 (2 T − t1 − t3)
3

∂α

∂T
− 16L2 (t1 + t3)

t1 t3 (2 T − t1 − t3)
3

− 2L2 π2 (t1 + t3)

t1 t3 (2 T − t1 − t3)
3

− 20L2 (t1 + t3)

t1 t3 (2 T − t1 − t3)
3

∂ω

∂t1

8L2 (−t1 + T − t3)

3 (2T − t1 − t3)
3

L2 (−5 t1 + 6 T − 5 t3)

2 (2 T − t1 − t3)
3

L2 (−449 t1 + 542 T − 449 t3)

180 (2 T − t1 − t3)
3

∂ω

∂t3

8L2 (−t1 + T − t3)

3 (2T − t1 − t3)
3

L2 (−5 t1 + 6 T − 5 t3)

2 (2 T − t1 − t3)
3

L2 (−449 t1 + 542 T − 449 t3)

180 (2 T − t1 − t3)
3

∂ω

∂T

4L2 (5t1 − 6T + 5t3)

3 (2T − t1 − t3)
3

2L2 (3 t1 − 4 T + 3 t3)

(2 T − t1 − t3)
3

L2 (269 t1 − 360 T + 269 t3)

45 (2 T − t1 − t3)
3

poly3 poly5 (ci = c4, cj = c5) poly5b poly7 (ci = c6, cj = c7)
∂α

∂ci
– 4 c5 T 6 + 8

5
c4 T 5 –

2 T 9

35
(2 c6 + 7 c7 T )

∂α

∂cj
–

72

7
c5 T 7 + 4 c4 T 6 –

544

385
c7 T 11 + 2

5
c6 T 10

− 2
7 L T 4

∂α

∂T
−36L2

T 4
4 T 4 (c4 + 3 T c5)

2 − 36L2

T 4
−360L2

7 T 4
18 T 8 c6

2

35 + 4 T 9 c6 c7+
− 1800L2+40L T 7 c7−272 T 14 c7

2

35 T 4

∂ω

∂ci
–

2 T 7

105
(2 c4 + 5 c5T ) –

T 11

770
(2 c6 + 7 c7 T )

∂ω

∂cj
–

T 4

315

(
76 c5 T 5 + 30 c4 T 4 + 9L

)
–

32

1001
c7 T 13 + 1

110
c6 T 12

− 2
231 L T 6

∂ω

∂T
− 6L2

5 T 2
2 T 6 c4

2

15 + 16 T 7 c4 c5
21 + −10L2

7 T 2
T 10 c6

2

70 + 6 T 11 c6 c7
55 +

+−126L2+12L T 5 c5+114 T 10 c5
2

105 T 2 − 1100L2+40L T 7 c7−160 T 14 c7
2

770 T 2

where on the right-hand side there are constant terms that
do not depend on λ1.

In Fig. 3, the trends for the considered trajectory profiles
are shown: for each value of the constant b3 b6

T 2 b2 b5
that

depends on the system parameters and on the total period
T , an optimum λ1 value exists. In particular for a higher
value of b3 b6

T 2 b2 b5
(i.e., inertial terms have more importance),

the optimum tends to λ1 = 1/3 (i.e., asymptote). For values
less than 0.1 (i.e., viscous terms have more importance), the
optimum of λ1 drops rapidly to zero.

5.1.2 Second optimization case (t1, t3, and T optimized)

In this second optimization case, also the third equation of
the system Eq. 7 is considered. Thus, it holds:

3 b1 b4 (T − t1)
3 t1 + L2 b2 b5 (−3 T + 5 t1) t1+ (16)

−12L2 b3 b6 = 0

2 b1 b4 (T − t1)
3 t1 + L2 b2 b5 (−2 T + 3 t1) t1+ (17)

−π2 L2 b3 b6 = 0

Fig. 3 First optimization case
result

10 -6 10 -4 10 -2 10 0 10 2
0

0.1

0.2

0.3
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180 b1 b4 (T − t1)
3 t1 + (18)

+L2 b2 b5 (−180 T + 269 t1) t1 − 900L2 b3 b6 = 0

for the trapezoidal speed, cycloidal-S, and double-S
profiles, respectively.

At the same time, the results of the previous optimization
case (i.e., Eqs. 13, 14, and 15) are still true and they are used
to determine the optimum T value:

trap : T =
√

3 b3 b6 (1 − 3 λ1)

b2 b5 λ1
2 (1 − 2 λ1)

(19)

cycl : T =
√

π2 b3 b6 (1 − 3 λ1)

b2 b5λ1
2 (3 − 5 λ1)

(20)

2s : T =
√

900 b3 b6 (1 − 3 λ1)

b2 b5λ1
2 (271 − 449 λ1)

(21)

Equations 19, 20, and 21 are then substituted into the
third equation of the systems (i.e., Eqs. 16, 17, and 18),
as well as λ1 = t1/T . The following equations are thus
obtained:

trap : 14 λ1
4 − 13 λ1

3 + 3 λ1
2

9
(
3 λ1

2 − 4 λ1 + 1
)2 = b1 b3 b4 b6

L2 b2
2 b5

2
(22)

cycl : 20 λ1
4 − 22 λ1

3 + 6 λ1
2

4π2
(
3 λ1

2 − 4 λ1 + 1
)2 = b1 b3 b4 b6

L2 b2
2 b5

2
(23)

2s : 80371 λ1
4 − 88919 λ1

3 + 24390 λ1
2

81000
(
3 λ1

2 − 4 λ1 + 1
)2 = b1 b3 b4 b6

L2 b2
2 b5

2

(24)

where on the right-hand side there are only terms that are
constant and do not depend on λ1.

From Eqs. 19, 20, and 21, it can be noted that values
of optimum λ1 higher than 1/3 are not possible (i.e., the
numerator of the argument of the square root becomes
negative).

In Fig. 4, the trends of the functions are shown for the
selected profiles: for each value of the constant b1 b3 b4 b6

L2 b2
2 b5

2

that depends on the system parameters, an optimum λ1
value exists. Once this λ1 value is determined, the optimum

motion time period Topt is calculated through Eqs. 19, 20,
and 21.

5.2 Polynomial profiles

If the polynomial trajectory profiles are focused, the opti-
mization relies on the choice of some of their coefficients ci

and on the total time period T . Similar optimization cases
to the previous analysis have been considered:

– 1st case: ci optimized and T fixed;
– 2nd case: ci and T optimized.

Thus, the energy gradient becomes:

∇E =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂E

∂ci

= b2 b5
∂ω

∂ci

+ b3 b6
∂α

∂ci

= 0

∂E

∂cj

= b2 b5
∂ω

∂cj

+ b3 b6
∂α

∂cj

= 0

∂E

∂T
= b1 b4 + b2 b5

∂ω

∂T
+ b3 b6

∂α

∂T
= 0

(25)

where the partial derivatives of the terms α and ω that
depend on the specific motion primitive assume the values
as reported in Table 2.

5.2.1 First optimization case (ci optimized, T fixed)

A closed-form solution is here found by substituting in the
first two equations of the system (Eq. 25) the results of
Table 2. This solution exists only in the case of 5th- and 7th-
order polynomial profiles, since in the other cases all the
coefficients are imposed by the initial and final conditions
on the speed, velocity, and, possibly, the acceleration. More
in details, the following optimum results are obtained:

poly5 :

⎧⎪⎪⎨
⎪⎪⎩

c4,opt = 45L b2 b5

2
(
b2 b5 T 4 + 90 b3 b6 T 2

)
c5,opt = − 9L b2 b5

b2 b5 T 5 + 90 b3 b6 T 3

(26)

poly7 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c6,opt = − 1820L
(
b2 b5 T 2 + 33 b3 b6

)
3

(
3 b2 b5 T 8 + 260 b3 b6 T 6

)
c7,opt = 520L

(
b2 b5 T 2 + 33 b3 b6

)
3

(
3 b2 b5 T 9 + 260 b3 b6 T 7

)
(27)

Fig. 4 Second optimization case
result
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5.2.2 Second optimization case (ci and T optimized)

All the equations of the system (Eq. 25) are here considered.
Focusing on the 5th- and 7th-order polynomial profiles, the
solution of the first two system equations leads to the same
result of Eqs. 26 and 27, respectively. Thus, substituting the
gradient terms (Table 2) and Eqs. 26 and 27 into the third
equation of the system (Eq. 25) allows for determining the
optimum motion time period T by solving:

poly5 : 14 b1 b2
2 b4 b5

2 T 8 +
+

(
2520 b1 b2 b3 b4 b5 b6 − 15L2 b2

3 b5
3
)

T 6 +
+

(
113400 b1 b3

2 b4 b6
2 − 3690L2 b2

2 b3 b5
2 b6

)
T 4 +

−226800L2 b2 b3
2 b5 b6

2 T 2 − 4082400L2 b3
3 b6

3 = 0

(28)

poly7 : 891/10 b1 b2
2 b4 b5

2 T 8 +
+

(
15444 b1 b3 b4 b6 b2 b5 − 105L2 b2

3 b5
3
)

T 6 +
+

(
669240 b1 b4 b3

2 b6
2−24164L2 b2

2 b3 b5
2 b6

)
T 4 +

−1501500L2 b2 b3
2 b5 b6

2 T 2−28108080L2 b3
3 b6

3=0

(29)

Considering the poly3 and poly5b profiles, the system
(Eq. 25) comes down to a single equation (i.e., third
equation of the system), since all the coefficients ci are
defined. Substituting the terms of Table 2, the optimum
motion time results:

poly3 : T =
√

L
√

L2 b2
2 b5

2 + 100 b1 b3 b4 b6 + L2 b2 b5

5/3 b1 b4

(30)

poly5 :

T =
√√

5L
√

5L2 b2
2 b5

2+504 b1 b3 b4 b6+5L2 b2 b5
7 b1 b4

(31)

6 Energy comparison

In this section, the different trajectories are compared in
terms of energy expenditure. In order to do so, they are
supposed to be applied on the same mechatronic system
moving the same load on the same path and in the same
cycle time. In addition, the optimum parameters of each
motion primitive that minimizes the energy consumption
are considered. In this way, the problem of how to treat
equations with dissimilar parameters (e.g., the trapezoidal
speed trajectory is defined by the acceleration and
deceleration times t1 and t3, whereas polynomial trajectories
are defined by the polynomial coefficients ci) is overcome.

Starting from the general energy equation (Eq. 6), the
contribution of the two terms b1 b4 T and (b1 b5 + b2 b4) L

can be ignored for the comparison purpose, since they are
always in common. Moreover, the integral terms α and
ω are calculated by substituting the optimum solution of
each trajectory profile (Table 1), obtaining αopt and ωopt

(Table 3). Therefore:

EI = b2 b5 ωopt + b3 b6 αopt (32)

Collecting and highlighting the common terms (Table 3),
the energy equation can be rewritten as:

EII = b2 b5
L2

T
fω + b3 b6

L2

T 3
fα (33)

where fω = T

L2 ωopt and fα = T 3

L2 αopt . Finally, dividing by

b2 b5 L2/T , it results:

EIII = fω + b3 b6

T 2 b2 b5
fα (34)

The difference in energy consumption between the motion
primitives depends, thus, only on the constant b3 b6

T 2 b2 b5
(i.e.,

bi and T are assumed fixed) and the two terms fα and fω.
Note that these terms depend in turn on the same constant

b3 b6
T 2 b2 b5

(Table 3).

In Fig. 5, the ratio of EIII
i , with i = trap, cycl, 2s,

poly3, poly5, poly5b, and poly7, over EIII
trap is computed in

function of b3 b6
T 2 b2 b5

. Different behaviors occur depending on

the b3 b6
T 2 b2 b5

value. As a first result, the 5th-order polynomial
trajectory with imposed initial and final acceleration (i.e.,
poly5b) is always more energy-intensive than the others.
It consumes up to more than the 40% of the part of
energy related to the motion primitive, with respect to
the trapezoidal speed profile, when b3 b6

T 2 b2 b5
is small. The

trapezoidal speed profile results the more efficient when
b3 b6

T 2 b2 b5
< 0.001. For higher values of b3 b6

T 2 b2 b5
, the 5th-

order polynomial and the 3rd-order polynomial have a better
behavior (i.e., they consume about the 10% less).

7 Numerical evaluation

A hoist mechanism, visible in Fig. 6, is considered as a
test-case for applying the developed method.

It consists on a motor coupled with a planetary gear-train
that drives a spool to lift a suspended weight. In addition, the
system is able to recover the braking energy and store it in
the drive capacitors. Referring to Section 2, and in particular
to Fig. 1, the following considerations are done: ϑ = π/2
and τ = τ ′d/2 with τ ′ the transmission ratio of the gearset
and d the spool diameter. Moreover, the equivalent inertia

338 Int J Adv Manuf Technol (2021) 116:331–344



Table 3 Optimized trajectory profiles integral terms

Traj. αopt = ∫ T
0 al(t)

2 dt

∣∣∣
opt

ωopt = ∫ T
0 vl(t)

2 dt

∣∣∣
opt

trap∗ L2

T 3

2

λopt

(
λopt − 1

)2 L2

T

− (
4 λopt − 3

)
3

(
λopt − 1

)2
cycl∗ L2

T 3

π2

4 λopt

(
λopt − 1

)2 L2

T

− (
5 λopt − 4

)
4

(
λopt − 1

)2
2s∗ L2

T 3

5

2 λopt

(
λopt − 1

)2 L2

T

− (
449 λopt − 360

)
360

(
λopt − 1

)2
poly3

L2

T 3
12

L2

T

6

5

poly5
L2

T 3

15

[
1 + 180 b3 b6

T 2 b2 b5
+ 9072

(
b3 b6

T 2 b2 b5

)2]

14
(
1 + 90 b3 b6

T 2 b2 b5

)2 L2

T

15

[
11 + 1008 b3 b6

T 2 b2 b5
+ 45360

(
b3 b6

T 2 b2 b5

)2]

7
(
1 + 90 b3 b6

T 2 b2 b5

)2

poly5b
L2

T 3
120

L2

T

10

7

poly7
L2

T 3

280

[
71 + 7722 b3 b6

T 2 b2 b5
+ 334620

(
b3 b6

T 2 b2 b5

)2]

99
(
3 + 260 b3 b6

T 2 b2 b5

)2 L2

T

70

[
15 + 2600 b3 b6

T 2 b2 b5
+ 121836

(
b3 b6

T 2 b2 b5

)2]

99
(
3 + 260 b3 b6

T 2 b2 b5

)2

*λopt = f
(

b3 b6
T 2 b2 b5

)
.

of the spool (i.e., jl τ
′2) is considered within the motor

inertia jm. Table 4 summarizes all the system parameters in
accordance with Fig. 2.

In this study, only the ascend motion of the load is
studied. Anyway, the same approach and analogous results
can be retrieved for the descend movement.

By applying the optimization approach through the
equations derived in Section 5 for all the motion primitives,
the results in Table 5 are obtained.

Considering the first optimization case, where a motion
time period T = 4 s is selected and b3 b6

T 2 b2 b5
= 8.893 · 10−5,

it can be noted how the optimum acceleration/deceleration
times (i.e., λ1) are at relatively short time periods and, thus,

10 -6 10 -4 10 -2 10 0 10 2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Fig. 5 Comparison between consumed energy by a generic mecha-
tronic system using different trajectories

at the left side in Fig. 3 in the case of non-polynomial
profiles. This could represent a problem in some systems,
since high torque peaks are required to run the trajectory
and they could not be feasible. In the second optimization
case where b1 b3 b4 b6

L2 b2
2 b5

2 = 2.894 · 10−4, the computed

optimum motion time period T is between 1.67 and 2.66 s,
depending on the selected trajectory. Again, the computed

Fig. 6 Hoist system
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Table 4 Test-case parameters

Symbol Value Symbol Value

d 0.157m Kt 0.85Nm/A

L π d Ke 0.85V s/rad

m 11.83 kg R 10.7Ω

τ 1/35 D 0.0611Ns/m

jm 55.34 · 10−6 kg m2 Fc 18.58N

acceleration/deceleration times are very short (i.e., left side
in Fig. 4 in the case of non-polynomial profiles).

8 Experimental evaluation

The hoist system has been used also as an experimental
test-case in order to finally validate the method and the
numerical results. A real system (Fig. 6) has been realized
in the Smart Mini Factory of the Free University of Bozen-
Bolzano. A Kollmorgen AKM31C PMSM motor coupled
with a Beckhoff AG3210-NP015S planetary gearset with
a 1/35 transmission ratio are used to move the spool. The
motor is controlled in position by a Kollmorgen AKD-
P00307 servo-drive that is able to reproduce any motion
profile defined through a table. A braking energy recovering
system, integrated in the drive, is able to store up to 9 J of
energy. A series of Matlab scripts and functions have been
created in order to communicate with the drive and program
it. In particular, the connection is based on a telnet protocol
and established on a LAN network. The drive is able to
acquire and save internal parameters (e.g., speed, current,
DC bus voltage) with its built-in scope function. A Matlab
function has thus been created to manage the scope function
and acquire the instantaneous speed n and the current q-
axis component Iq , proportional to the output torque, with a
sampling frequency of 1 kHz. The scope function has been

Table 5 Test-case numerical results (a motion time period T of 4 s has
been considered in the 1st optimization case)

1st opt. case 2nd opt. case

Traj. λ1,opt E [J ] Topt [s] λ1,opt E [J ]
trap 0.0162 73.8 2.30 0.0279 72.8

cycl 0.0169 73.8 1.67 0.0398 73.2

2s 0.0170 73.8 2.32 0.0290 72.8

Traj. ci,opt cj,opt E [J ] Topt [s] ci,opt cj,opt E [J ]
poly3 – – 74.1 2.44 – – 73.2

poly5 0.0430 -0.0043 73.9 2.31 0.3775 -0.0043 72.9

poly5b – – 74.4 2.66 – – 73.8

poly7 -0.0242 0.0017 74.0 2.42 -0.4861 0.0017 73.2

exploited to measure and calculate the energy consumed by
the system performing all the different trajectories. Firstly,
the mechanical power is calculated as:

Pm = 2π n

60
Kt Iq (35)

The power lost as heat in the motor wound is instead
computed as:

Pj = R I 2 = R
3

2

√
I 2q + I 2d � 3

2
R I 2q (36)

where the last assumptions consider that the direct-axis
current Id is always zero for this kind of machine and in
the considered working zones (i.e., flux weakening not used
since high speeds are not reached). The coefficient 3/2 is
due since the drive uses the formal Clark transformation
[39]. The electrical energy is then computed as E =∫ T

0 Pm + Pj dt .
The system parameters are the same reported in Table 4.

On this regard, all of them have been determined by collect-
ing data from a data-sheet, except for the friction terms Fc

and D that have been instead retrieved experimentally.
In this experimental campaign, all the seven trajectory

profiles have been tested, considering different trajectory
parameters. For what concerns the first three profiles (i.e.,
trapezoidal speed, cycloidal, and double-S profiles), the
energy consumption is measured in experiments where both
the time period T and the acceleration/deceleration time
t1 = t3 are varied. Note that the optimum λ1 values reported
in Table 5 cannot be achieved by the experimental system
(i.e., the rope can work only in tension; thus, deceleration
higher than 9.81m/s2 is not admissible). Anyway, a closer
value, λ = 0.1, is reachable.

In the case of polynomial profiles, the influence of
the time period T on the energy consumption has been
investigated. In the case of 5th and 7th degree polynomial
profiles, two of the polynomial profile coefficients are
free to be chosen; in these experiments, only the optimum
coefficients (i.e., Table 5) that maximize the energy
efficiency have been considered. Each test has been
repeated 5 times, as shown in Fig. 7.

The results of the experimental campaign are summa-
rized in Fig. 8a where the trajectories are all compared
together.

As foreseen by the model and the numerical evaluation
(Table 5), the minimum energy consumption point falls in
a range between 2 and 3 s for all the curves. Then, the
energy increases for shorter and longer time periods (i.e.,
convex shape). As expected from the theory (Section 6), the
trapezoidal speed profile results the less energy-intensive,
since the system constant b3 b6

T 2 b2 b5
< 0.001. More in general,

the energy consumption rank of all the motion primitives
follows the Fig. 5 prediction.
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Fig. 7 Comparison between
experimental data and numerical
model in the case of the
trapezoidal speed profile with
λ = 0.1
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In Fig. 8b, the influence of the acceleration and decelera-
tion time is shown in the case of a trapezoidal speed profile,
demonstrating that in this system lower values of t1 = t3
lead to a minimum of the energy consumption. For instance,
an energy reduction of about 1.3% can be achieved if t1 =
t3 = 1/10, instead of using the most common 1/3 values
(i.e., the energy from 73.41 J falls down to 72.43 J , consid-
ering the time period T = 2.5 s), and this while maintaining
the same productivity (i.e., T does not change). Analogous
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Fig. 8 Experimental results: a energy consumption comparison
between the different trajectory profiles; b trapezoidal speed profile
(note that each data point is the mean value of five tests)

results can be obtained considering the cycloidal-S and the
double-S profiles.

9 Conclusion

In this paper, the study of the energy consumption and
its minimization in generic 1-DoF mechatronic systems
moving a constant inertia load (e.g., elevators, cranes,
CNC machines, Cartesian axis) and possibly equipped or
retrofitted with regenerative devices (i.e., mixed approach)
has been done. Different PTP trajectory profiles have been
investigated including both profiles commonly used in
industrial motor drives and more complex ones.

In particular, the function of energy consumption has
been analytically expressed finding out that it depends on
six constant bi terms that describe the system parameters
(e.g., mass, inertia, friction), the length of the motion path
L, the total time period T , and the speed and acceleration of
the motion profiles. Then, the developed approach considers
the analytical energetic optimization of all the different PTP
primitives by deriving the optimum closed-form solutions.

For what concerns the standard trajectories (i.e., trape-
zoidal speed and double-S profiles), as well as the cycloidal
one, the optimization has been achieved by varying the total
motion time T and the acceleration and deceleration time
periods. Conversely, in the case of polynomial primitives,
the motion time period T has been optimized, as well as
the polynomial coefficients that have effect on the “shape”
of the profile. The energy function presents a convex trend
with respect to the total motion time T and, thus, a unique
T that guarantees the minimum energy consumption exists.

In addition to similar works, it has been demonstrated and
verified that, under the considered hypothesis and working
conditions, the optimum solution is the one obtained when
the same values for the acceleration and deceleration time
periods are chosen (i.e., λ1 = λ3). The effect of changing the
λi values on the overall energy expenditure (i.e., from λ = 0.1
to λ = 0.5), even if is less heavy if compared with the varia-
tion of T , is higher in systems in which the inertial terms
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are greater than the effect of external constant force/torque.
This numerical result shows as, in particular in repetitive
tasks, the saved energy could reach substantial values.

Considering a practical application, this analytical approach
allows for a fast and easy computation to determine the point
of minimum energy. Therefore, it is worth to be integrated
in (existing) embedded mechatronic control systems, where
computational power is limited, for online trajectory opti-
mization. Even if some constraints (e.g., maximum motor
current) are not directly taken into account, the analytical
solution can be used as a starting point for a numeri-
cal method, where only the motion-dependent terms are
minimized as discussed in Section 3 (i.e., less computa-
tion efforts). Anyway, in future studies, the introduction of
system constraints into the analytical formulation will be
valuable, to further speed-up the computation of the optimal
trajectory. Other motion primitives will be also investigated
(e.g., Gutman, Freudenstein).

Appendix

A.1 PTP industrial trajectory profiles

In this section, the equations that define all the considered
trajectory profiles are reported. In particular, with reference
to Fig. 2, the displacement sl(t), the velocity vl(t), and the
acceleration al(t) of the load are defined.

A.1.1 Trapezoidal speed profile

sl(t) =
⎧⎨
⎩

1
2A1 t2 t ∈ [0, ta]
sa + A1 ta (t − ta) t ∈]ta, tb]
sb + A1 ta t + A2 tb t − 1

2A2 t2 t ∈]tb, T ]
(37)

vl(t) =
⎧⎨
⎩

A1 t t ∈ [0, ta]
A1 ta t ∈]ta, tb]
A1 ta − A2 (t − tb) t ∈]tb, T ]

(38)

al(t) =
⎧⎨
⎩

A1 t ∈ [0, ta]
0 t ∈]ta, tb]
−A2 t ∈]tb, T ]

(39)

where si = s(ti) and the constants A1 and A2 are retrieved
by imposing the total path length (i.e., s(T ) = L) and
the equality between the initial and final speed of constant
speed part (i.e., V = v(ta) = v(tb)): A1 = 2L

(2T −t1−t3)t1
and

A2 = A1
t1
t3
.

A.1.2 Cycloidal-S profile

sl(t) =

⎧⎪⎪⎨
⎪⎪⎩

V
2

(
t − sin(ω1 t)

ω1

)
t ∈ [0, ta]

V
(
t − t1

2

)
t ∈]ta, tb]

V
(
T − t1

2 − t3
) + V

2

(
t ′ + sin(ω3 t ′)

ω3

)
t ∈]tb, T ]

(40)

vl(t) =
⎧⎨
⎩

V
2 (1 − cos(ω1 t)) t ∈ [0, ta]
V t ∈]ta, tb]
V
2 (1 + cos(ω3 t ′)) t ∈]tb, T ]

(41)

al(t) =
⎧⎨
⎩

V
2 ω1 sin(ω1 t) t ∈ [0, ta]
0 t ∈]ta, tb]
−V

2 ω3 sin(ω3 t ′) t ∈]tb, T ]
(42)

where ω1 = π
t1
, ω3 = π

t3
, and t ′ = t − T + t3. The constant

V is derived by imposing the path length (i.e., s(T ) = L):
V = 2L

2T −t1−t3
.

A.1.3 Double-S profile

sl(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

A1
tj1

t3 t ∈ [0, ta]
sa + va(t − ta) + 1

2A1(t − ta)
2 t ∈]ta, tb]

sb + vb(t − tb) + A1(t−tb)
2

2

(
1 − t−tb

3 tj2

)
t ∈]tb, tc]

sc + vc(t − tc) t ∈]tc, td ]
sd + vd(t − td ) − 1

6A2
(t−td )3

tj3
t ∈]td , te]

se + ve(t − te) − 1
2A2(t − te)

2 t ∈]te, tf ]
sf + vf (t−tf ) − A2(t−tf )

2

2

(
1− t−tf

3 tj4

)
t ∈]tf , T ]

(43)

vl(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

A1
tj1

t2 t ∈ [0, ta]
va + A1(t − ta) t ∈]ta, tb]
vb + A1

[
t − tb − (t−tb)

2

2 tj2

]
t ∈]tb, tc]

vc t ∈]tc, td ]
vd − 1

2A2
(t−td )2

tj3
t ∈]td , te]

ve − A2(t − te) t ∈]te, tf ]
vf − A2

[
t − tf − (t−tf )

2

2 tj4

]
t ∈]tf , T ]

(44)

al(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1
tj1

t t ∈ [0, ta]
A1 t ∈]ta, tb]
A1

(
1 − t−tb

tj2

)
t ∈]tb, tc]

0 t ∈]tc, td ]
−A2

t−td
tj3

t ∈]td , te]
−A2 t ∈]te, tf ]
−A2

(
1 − t−tf

tj4

)
t ∈]tf , T ]

(45)

where si = s(ti), vi = v(ti), and the acceleration constants
A1 and A2 are retrieved by imposing the total path length
(i.e., s(T ) = L) and V = v(ta) = v(tb). In this work, as
done in most of the practical applications, the acceleration
ramp times (i.e., tj1 = tj2 = tja) as well as the deceleration
ramp times (i.e., tj3 = tj4 = tjd ) are considered equal. In

this way, A1 = − 2L

(t1−tja) (t1−2 T +t3)
and A2 = A1

t1−tja

t3−tjd
.

A.1.4 3rd-order polynomial profile

sl(t) = c0 + c1 t + c2 t2 + c3 t3 (46)
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vl(t) = c1 + 2 c2 t + 3 c3 t2 (47)

al(t) = 2 c2 + 6 c3 t (48)

where c0 = 0, c1 = 0, c2 = 3L

T 2 , and c3 = − 2L

T 3 are the
polynomial coefficients which values are given by imposing
the initial conditions on displacement (i.e., sl(0) = 0 and
sl(T ) = L ) and velocity (i.e., vl(0) = 0 and vl(T ) = 0).

A.1.5 5th-order polynomial profile

sl(t) = c0 + c1 t + c2 t2 + c3 t3 + c4 t4 + c5 t5 (49)

vl(t) = c1 + 2 c2 t + 3 c3 t2 + 4 c4 t3 + 5 c5 t4 (50)

al(t) = 2 c2 + 6 c3 t + 12 c4 t2 + 20 c5 t3 (51)

where c0 = 0, c1 = 0, c2 = 3L

T 2 + c4 T 2 + 2 c5 T 3, and

c3 = c3 = − 2L

T 3 − 2 c4 T − 3 c5 T 2 are the polynomial
coefficients which values are computed by imposing the
initial conditions on displacement (i.e., sl(0) = 0 and
sl(T ) = L ) and velocity (i.e., vl(0) = 0 and vl(T ) = 0).
The values of c4 and c5 can be freely chosen or via, e.g., a
minimum energy criterion.

If also the initial and final accelerations are imposed (i.e.,
al(0) = 0 and al(T ) = 0), it results: c0 = 0, c1 = 0, c2 = 0,
c3 = 10L

T 3 , c4 = − 15L

T 4 , and c5 = 6L

T 5 . In this case, we refer
to this trajectory with the name poly5b.

A.2 Double-S profile optimal time blends

For the double-S profile, the resolution of the optimum
problem is not immediate and a closed-form is hard to find.
Anyway, thanks to some considerations and simplifications,
the terms in Table 2 can be computed. It is also possible
to demonstrate that the time blends tja and tjd should be
zero to minimize the consumed energy and thus the Double-
S profile degenerates in a trapezoidal speed profile. Indeed,
considering the partial derivatives:

∂α2s

∂tja

= 8L2
(
t1 − 2 tja

)
3

(
t1 − tja

)3
(t1 − 2 T + t3)

2
(52)

∂ω2s

∂tja

= 2L2
(
5 t1

3 − 20 t1
2 tja + 24 t1 tja

2 − 8 tja
3
)

15
(
t1 − tja

)3
(t1 − 2 T + t3)

2

(53)

they are always positive for 0 ≤ tja ≤ t1/2; thus, the
functions α and ω are both minimized and thus the energy,
when tja is zero. The same conclusion can be obtained for
tjd that has to be zero to minimize the consumed energy.
In this way, tja and tjb can be seen as parameters and not
variables.
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