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Abstract
The analysis of the stress-strain state of the closed rope elements under axial tension and torsion was carried out by the finite
element method using the licensed software package SIMULIA/Abaqus. The closed rope consists of an outer layer of Z-profile
wires, a subsurface layer of alternating round and H-profile wires, an intermediate layer, and a core of the structure 1 + 7 + 7/7 +
14 of round wires. Modeling made it possible to determine the values of the axial force P, the torqueM, the relative elongation ε,
and the relative angle of torsion θ of the rope sample at the given values of the axial displacement and the rotation angle the cross-
section. The results of the analytical calculation of the stress-strain state of a spiral rope using traditional approaches were
compared with those obtained in the course of computer finite element modeling. The results of modeling the rope deformation
under tension were verified by experimental data obtained by stretching the rope sample on a universal horizontal hydraulic test
machine LabTest 6.2000N.7. The results of computer modeling of the rope pure tension correlate well with the results of the
calculation by the method of M.F. Glushko, which more accurately takes into account the real construction of the ropes.
Computer simulation of the stress-strain state of the closed rope elements made it possible to determine the contact stresses
between shapedwires in layers and between layers at different values of the gap between shapedwires; therefore, it can be used to
optimize the gaps. Computer simulation of the stress-strain state of the rope elements of a closed structure makes it possible to
assess the consistency of the layers narrowing during axial tension by analyzing the contact stresses between adjacent wires in the
cross-section of the rope.

Keywords Closed rope . Finite element modeling . Stress-strain state . Wire . Stretching . Torsion . Deformation . Equivalent
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1 Introduction

Closed hoisting ropes are multilayer single helical strand
ropes. They are used as a traction element in lifting and

transport machines and mechanisms, for example, pump rods
for oil production from deviated wells [1, 2]. Such ropes must
have high strength and sufficient flexibility, so they consist of
a large number of small round and shaped wires.

According to the Russian State Standard (GOST) 10505-
76, the first three layers of round wires of a closed hoisting
rope are twisted around the central wire; according to the
principle of linear tangency, subsequent layers of wires of
round and shaped cross-sections are twisted according to the
principle of point tangency. The direction of the lay of the
wires in the two upper adjacent layers should alternate.

An algorithm for scientifically grounded design of ropes
for reliable and safe operation requires the development of
reliable methods for determining the stress-strain state (SSS).
These methods must be both highly accurate and wide range
of applications. In work [3] directions of approaches to the
theory of calculation of ropes are outlined. These areas are
based on:
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a) The discrete model, in which the rope is represented as a
statically indeterminate rod system. Calculation of stress-
es in this system is possible using the methods of struc-
tural mechanics [4].

b) The theory of a fiber composites and the solution of the
Saint-Venant problem for a cylinder with helical anisot-
ropy [5].

Determination of the force factors in the cross-section of
the rope elements at joint tension and torsion occurs in the
process of solving the static equation [4]:

P ¼ A � εþ C � θ and M ¼ C � εþ B � θ ð1Þ

where P is the axial force; M is torque; ε and θ are relative
elongation and relative torsion angle; and A, B, and C are
generalized stiffness coefficients.

The values of the generalized coefficients are determined
by the equations:

According to the model of M.F. Glushko [4]:
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where E and G are the elastic and shear modulus of the wire
material; Fi is the cross-sectional area of the wires of the i-th
layer; Ii is the axial inertia moment of the i-th layer section of
wires relative to the axis of the rope; Ipi is polar inertia moment
of the i-th layer section of wires relative to the center of the
rope; αi is the i-th layer wire lay angle; and ri is the average
radius of the i-th layer.

According to the model of I.P. Getman and Yu.A.
Ustinov [5]:
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where k1 is the ratio of the total cross-sectional area of the
wires ΣFi to the cross-sectional area of the rope as a
round cylinder FК; a is radius of the rope as a round
cylinder; ν is Poisson’s ratio of the wire material; and α
is the outer layer wire lay angle.

Solutions of equations (1) with respect to deformations ε
and θ are presented in the form [4]:

ε ¼ B
Δ

P−
C
Δ

�M and θ ¼ −
C
Δ

� P þ A
Δ

M ð4Þ

where Δ = A · B −C2.
The considered approaches do not take into account the fric-

tional forces and contact interaction between the rope elements,
which reduces the reliability of determining the stress-strain state
of the rope. An effective tool for ensuring the operability of
multilayer ropes during operation is computer finite element
modeling of the stress-strain state of ropes using various soft-
ware packages [6] [7] [8] [9] [10] [11] [12] [13]. Computer finite
element modeling is not inferior in reliability to experimental
and analytical methods. The number of works on the computer
simulation of the SSS of closed ropes is limited [14].

The purpose of the work is to study the effectiveness of
using the method of computer simulation of the stress-strain
state of a closed rope during tension and torsion to predict
service properties.

2 Materials and methods

The analysis of the SSS of the closed rope elements during
axial tension and torsion was carried out by the finite element
method using the licensed SIMULIA/Abaqus software pack-
age. The SIMULIA/Abaqus software package allows
obtaining results with the required accuracy and productivity
[15]. The cross-section of the closed rope and its elements
(outer layer 6 of Z-profile wires, subsurface layer 5 of alter-
nating round and H-profile wires, layer 4 and a core of the
structure 1 + 7 + 7/7 + 14 of round wires) are shown in Fig. 1.

The core of the 1 + 7 + 7/7 + 14 structure is a single-strand
wire rope of a round profile with axes in the form of helical
lines. The wires are twisted with the same pitch in several layers
around the central straight wire (Fig. 1). Laying of the core is
carried out in one technological operation according to the
principle of linear tangency: the wires of the layer above are
placed in the recesses formed by the wires of the lower layer.
The contact between the layers of wires occurs along the lines.

Laying of subsequent layers of the rope is carried out by
separate technological operations. At each operation, the di-
rection of the wire lay in the layers is changed. The direction
of the lay of 4th layer from wires of a circular profile and 6th
layer from wires of Z-profile was taken for the right and 5th
layer of alternating wires of round and H-profile and the core
for the left. With different directions of lay, the contact of the
layers of round wires occurs at points. The contact of layers of
shaped profile wires can be considered as linear [4].

The C3D8R cells type was used for all elements of the rope
– continuous three-dimensional eight-node elements with
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reduced integration. The elongation of the cells along the axis
of the wires of all profiles was 1.5 mm, and in the cross-
section, 0.1 mm for the H-profile, 0.2 mm for the Z-profile,
and 0.26–0.3 mm for round profile of the wires. The choice of
the cells size was determined by the degree of curvature of the
individual elements of the profile. The helical elements of the
rope were obtained by the method of extrusion (solid extrude)
with a turn with a predetermined pitch of the cross-section of
the wires, which also led to a helical “torsion” of the finite
element mesh. The appearance of the finite element mesh at
the end of the wires is shown in Fig. 1b, c, and d.

The length of the simulated rope sample is l0 = 130mm, the
elastic modulus of the wire material is E = 2·105 MPa, and the
friction coefficient is μ = 0.1. The wire rope material was set
to isotropic. An increase in local plastic deformation leads to
an increase in the resistance to deformation σs according to the
known dependences for wires of the used strength groups. For
the material of the wires of round profile, steel with the initial
value of the yield point σso = 1280 MPa was used and for the
shaped profile σso = 1120 MPa [16].

To determine the loads and torques taken by the layers of
the rope during tension or torsion, the ends of the layers wires
at the rear end of the simulated rope before stretching were
firmly connected to the end surface of the movable hard disk
of the rig, and on the front – with coaxially located fixed rigid
inner disk (core 1 + 7 + 7/7 + 14) and rings (layers 4–6) [16].
The deformation of the rope sample under tension was carried
out due to the axial movement of the movable hard disk and
the subsequent torsion – due to the turns of the movable hard
disk at the achieved axial load (with the possibility of axial

movement during the torsion). Internal forces and torques in
each of the layers were determined from the time-varying
reactions of the supports on the fixed inner disk and rings at
the front end, which are fixed at each step of the simulation.

The determination of the characteristics of the SSS of the
rope elements in tension and torsion was carried out for two
loading options.

In 1st simulation version, at the first stage, the ends of the
rope sample, fixed in devices that exclude their rotation, were
moved apart at a speed of 4 mm/s to the value of the axial
force P ~ 120 kN. This force takes into account the passport
carrying capacity of 80 kN and the weight of the rope with a
length of 1500 m. The torsion of the rope sample by the
external M torque was carried out at the second stage. The
direction of torsion led to the unwinding of the outer layer of
the Z-profile wires.

According to 2nd simulation version, at the first stage, the
sample was stretched similarly to the first stage of 1st simula-
tion version, and at the second stage, the external M torque
carried out the twisting of the rope sample in the opposite
direction to 1st simulation version. This caused the outer layer
of the Z-profile wires to twist.

The torsion of the rope sample at the second stage of the 1st
and 2nd simulation version was carried out at a speed of 36
deg/s for 0.55 s (angle of rotation φ≈20°). During the torsion
process, the external load P, reached at the first stage,
remained unchanged. The direction of the external torque M
in the direction of torsion of the outer layer of the rope sample
was taken to be positive. The loading scheme at the first stage
(pure tension: θ = 0, ε ≠ 0) was a model of longitudinal force

Fig. 1 Cross-section of the closed
rope a (part of the outer layer is
conditionally removed) and its
elements with the finite element
mesh: b Z-profile; c H-profile; d
round profile; (1) core (round
wires); (2) 4th layer (round
wires); 3–5th layer (round/H-pro-
file wires); 4–6th layer (Z-profile
wires)
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transfer, and at the second stage (torsion under load: θ ≠ 0, ε ≠
0), it was a model of rotational motion from a surface drive to
a downhole pump [16].

3 Results

The scheme of analytical calculation of the SSS of a helical
rope according to traditional approaches [4] [5] consists of the
following steps. For a given external load on the rope in the
form of an axial force P and the torque M, the generalized
coefficients of the rigidity of the rope are determined by equa-
tions (2) and (3), and then, the deformation coefficients ε and
θ are found from equations (4). Next, the distribution of power
and moment loads over the rope layers and internal forces in
the cross-sections of the wires are calculated.

The axial and polar moments of inertia of the rope layers in
equations (2) were determined as for ring sections. The direc-
tion of laying the wires of the outer layer was taken to be
positive. The difference in the directions of the lay of the
wires’ layers of the closed rope affects the value of the coef-
ficient C, since the sine of the lay angle enters into an odd
power in equation (2) to determine it. One of the main reasons
for stratification may be the “untwisting” effect, the magni-
tude of which, in addition to technological reasons, depends
on the value of the stiffness coefficient C.

The values of the generalized stiffness coefficients of the
investigated rope calculated according to equations (2) and (3)
are given in Table 1.

The results of the analytical calculation of the SSS of a
helical rope using traditional approaches were compared with
those obtained in the course of computer finite element model-
ing. The resulting values of the forces and moments in the
rope, obtained by summing the internal forces and moments
in each of the layers of the rope during tension and subsequent
torsion [16], are shown in Fig. 2.

Modeling makes it possible to determine the values of the
axial force P, torque M, relative elongation ε, and relative

torsion angle θ = φ/lo of the rope sample at given values of
axial displacement (the first stage) and the torsion angle of the
cross-section (the second stage). Further, it is possible to solve
the inverse problem – to determine the generalized stiffness
coefficients using equation (1). This avoids time-consuming
analytical calculations.

The first stage Pure tension of the rope.
This type of loading causes elongation of the rope sample

in the direction of the force action (ε ≠ 0), accompanied by its
untwisting. The ends of the rope sample are secured against
rotation (θ = 0).

Table 1 The results of calculating the generalized coefficients by
analytical methods and according to computer finite element modeling

Method Generalized coefficients

A 105, H C 105, H·мм B 105, H·мм2

M.F. Glushko [4] 462,6 344,2 16535,6

I.P. Getman, Yu.A. Ustinov [5] 458,0 757,7 1780,7

Modeling 213,1
371,5*

121,5
211,8*

-

*The values of the coefficients obtained taking into account the exclusion
of the initial elongation ε residual from the total elongation of the rope
sample

Fig. 2 Distribution of axial force (a) and torques (b) in the rope during
tension (stage 1) and torsion (stage 2): (1) untwisting the rope; (2) twisting
the rope
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Under pure tension, from equations (1) are obtained
equations:

ε ¼ P=A;

M ¼ C � ε ¼ C � P=A: ð5Þ

From the results of modeling, it follows that with the force
of P ~ 120 kN, the elongation of the rope sample, achieved in
a time of ~ 0.2 s, is ε = 0.563%, the tensile stiffness coefficient
(Fig. 2a):

А = Р/ε = 213,1·105 N

The elastic modulus of the rope E = A/F≈0.8· 105 MPa
obtained from the simulation results is significantly lower than
the usually given values E = (1.3 − 1.5)·105 MPa for helical
ropes at the first loading [17]. The residual structural elonga-
tion εres associated with the running-in of twisted wires at the
first loading is 0.24% [16]. The exclusion of the residual struc-
tural elongation from the total deformation gives the value of
the elastic elongation of the rope sample ε = 0.563 − 0.24 =
0.323%. In this case, the elastic modulus of the rope is E =
1.38·105 MPa, corresponding to the traditionally used one,
and the stiffness coefficient is A = 371.5·105 N (Table 1).

The results of modeling the deformation of the rope under
tension [16] are confirmed by the experimental data obtained
by stretching a rope sample on a test universal hydraulic hor-
izontal machine LabTest 6.2000N.7 (Czech Republic). From
the tension diagram in Fig. 3, it follows that with the exclusion
of the initial structural elongation of the sample εres = 0.26%
from the total deformation; the elastic elongation of the rope
sample at P ~ 120 kN is ε = 0.318%. The experimentally
determined value of the elastic modulus of the rope is E =
1.37·105MPa. The difference between the values of the elastic
modulus obtained during modeling and the experimental data
is ≈ 1.5%.

Under the action of a tensile force, the torque Mk arises in
the rope layers. It is directed in the direction opposite to the
direction of the wire lay in the layer. The resulting torque,

counterbalanced by the torque in the fastening, is equal to
the algebraic sum of the torques in the layers of the rope
[16], and by the end of the first stage, it takes the value M =
68.4 N·m (Fig. 2b). From equations (5), the value of the in-
fluence coefficient is C = A/ε = 121.5·105 N·mm, and in the
case of excluding residual elongation, from the total deforma-
tion C = 211.8·105 N·mm (Table 1).

The value of elongation ε obtained in the simulation of the
stage of tension at a force of P ~ 120 kN exceeds the values of
elongations obtained by analytical calculation by the methods
[4] [5] (Table 2). This discrepancy is associated with a large
difference in the values of the stiffness coefficients A
(Table 1). An increase in the tensile stiffness of the rope is
usually achieved by preliminary stretching of the rope (the
elastic modulus increases by an average of 20% [18]).

The calculated values of the torques obtained by the
methods [4, 5] areM = 87.8 N·m andM = 210.1 N·m, respec-
tively. The discrepancy between the values is explained by the
difference in the values of the influence coefficient C (see
Table 1), associated with taking into account the direction of
the layering of the layers when calculating according to equa-
tions (2). The value of the torque M = 68.4 N·m obtained
during the simulation (Fig. 2b) is close to the result obtained
by the method of M.F. Glushko.

Thus, the results of modeling the pure tension of the
rope are consistent with equations (5) and correlate well
with the results of calculation by the method of M.F.
Glushko, which more accurately takes into account the
real construction of the ropes.

The second stage Torsion of the rope with a constant longitu-
dinal tensile force P = 120 kN (ε ≠ 0, θ ≠ 0).

When modeling a complex loading, a given relative angle
of untwisting (twisting) of a rope sample θ =φ/l = ± 2.66 rad/
mm is achieved when the rope sample is twisted by an exter-
nal torqueM = − 252.4 N·m (untwisting) andM = 573, 3 N·m
(twisting). These values of the torques correspond to the final
values of the torque on curves 1 and 2 (Fig. 2b).

The elongation achieved at the first stage (tension) can
decrease or increase during torsion, depending on the sign of
the external torque. The untwisting torque tends to lengthen
the top layer of the rope, while the twisting moment tends to
compress it. The simulation results under the given loads
show that by the end of the second stage the relative elonga-
tion of the rope during the untwisting of the outer layer de-
creases by the value Δε = 0.06% and remains unchanged
during twisting (Table 2).

In contrast to computer modeling, the results of the analyt-
ical calculation of elongation according to the methods [4, 5]
when untwisting the rope indicate an increase, and when
twisting, a decrease in the relative elongation in comparison
with the first stage (Table 2). This is most clearly manifested
for the method [5]. The differences are associated with the low

Fig. 3 Diagram of stretching of the rope sample on a test universal
hydraulic horizontal machine LabTest 6.2000N.7: (1) section of construc-
tional elongation; (2) section of elastic elongation
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value of the torsional stiffness coefficient B = 1780.7·105 N·
mm2 (Table 1).

With various models of calculation, the angle of torsion θ
of the section of the rope sample during untwisting takes neg-
ative values and during twisting, positive values (Table 2).
The θ values obtained by the methods [4, 5] differ several
times from the simulation results.

The static equations (1) are valid for a rope, for which
deformations ε and θ are the same for all rope elements. At
the second stage, this condition is not met due to the difference
in the directions of layering.

Thus, the results of computer simulation of the complex load-
ing of the closed rope differ from the results of the calculation
according to equations (1), which is associated with the peculiar-
ities of the distribution of internal forces and torques over the
layers of the rope with different directions of wire lay [16].

It is known [19] that in the case of tight twisting of wires, an
inconsistent transverse narrowing of the layers under tension
during operation or even during preliminary stretching leads
to the appearance of radial gaps between the layers. Radial
gaps can lead during the operation of the rope to a violation
of the structural integrity and failure with multiple reiterations
of the load-unload cycle.

A coordinated transverse narrowing of adjacent layers of a
closed rope is possible if there are gaps between the shaped
wires in the rope layers. According to GOST 10505-76, a gap
is allowed between the shaped wires that does not violate the
rope lock. The criteria for choosing the size of the gap can be
the degree of residual structural elongation of the rope, the
tolerance for the size of the wire, as well as the magnitude of

the contact stresses between the rope elements when they
come into contact [20]. Computer simulation of the SSS of
closed rope elements allows determining the contact stresses
between shaped wires in layers and between layers (Fig. 4).

From Fig. 4a, it follows that under conditions of stretching
the rope with initial gapsΔ = 0.035 mm, the tangential contact
stresses between the wires of the outer layer reach σc = 300–
400 MPa (curve 1). The contact stresses between the layers
(curve 3) and the wires of the subsurface layer (curve 2) are
insignificant. This indicates that the narrowing of the outer
layer lags behind the subsurface layer, which contributes to
the formation of a radial gap between these layers, leading to
an unstable position of the wires. As already mentioned, the
occurrence of a radial clearance can cause a possible violation
of the structural integrity of the outer layer with repeated reit-
erations of the load-unloading cycle during the operation of
the rope.

When the rope is stretched with initial gaps Δ = 0.13 mm
(Fig. 4b), the values of the tangential contact stresses between
the wires of the outer layer (curve 1) decrease in comparison
with those shown in Fig. 4a; at the same time, the stresses σc
between the wires of the subsurface layer increase (curve 2).
In this case, the contact radial stresses between the wires of the
outer and subsurface layers increase significantly and reach
the value of σr = 900–1100 MPa (curve 3). This indicates that
the outer layer becomes self-tightening, overloaded, which
increases the chance of breakages and reduced service life.

Thus, the computer simulation of the SS of the rope ele-
ments of a closed structure makes it possible to assess the
consistency of the narrowing of the layers during axial tension

Table 2 Comparison of the
values of elongation and torsion
angle obtained by analytical
methods and according to
computer simulation data

Stage Force Relative elongation

ε, %

M.F. Glushko I.P. Getman, Yu.A. Ustinov Modeling

1 Р = 120 kN

М = 0

0,255 0,258 0,563

0,323*

2 Р = 120 kN

М = − 252,4 N·m

0,272 1,68 0,503

0,263*

Р = 120 kN

М = 573,3 N·m

0,204 − 0,91 0,563

0,323*

Stage Force Relative torsion angle

θ · 10−3, rad/mm

M.F. Glushko I.P. Getman, Yu.A. Ustinov Modeling

1 Р = 120 kN

М = 0

- - -

2 Р = 120 kN

М = − 252,4 N·m

− 0,25 − 8,56 − 2,66

Р = 120 kN

М = 573,3 N·m

0,25 7,13 2,66

*Values obtained by excluding the initial elongation εres from the total elongation of the rope sample
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by analyzing the contact stresses between adjacent wires in the
cross-section of the rope.

In this work [16], it was shown that the twisting of the rope
causes an increase in the equivalent stresses σeq in the ele-
ments of the twisted layers, in comparison with tension. This
should affect the reliability of the rope during operation; there-
fore, it is proposed to determine the safety factor of the rope
layers in relation to the ratio of permissible stress values in
accordance with the wire-marking group to the average stress
values σeq over the wire cross-section.

A distinctive feature of the used method of computer
modeling is the ability to determine the distribution of force
factors over the volume of each rope element. The example

shows the distribution of equivalent stresses σeq in the cross-
sections of the elements of the layers in the radial direction
with the adopted parameters of external loading (Fig. 5). The
distribution of equivalent stresses along the diameter of the
round wires of the core layer 3 and the intermediate layer 4
of the closed rope, as well as the profiled wires of the 5th and
6th layers, is indicated.

When stretching (stage 1), the rope elongates in the direc-
tion of the force action, accompanied by untwisting. The in-
tensity of the stresses generally increases towards the center of
the rope. The excess of the values of σeq in the outer layer in
comparison with the subsurface layer 5 is associated with a
smaller gap between the wires along the lower flange of the Z-
profile [21]. In the middle part of layer 3 of the core, a mini-
mum is observed, and at the contact with the wires of adjacent
layers 2 and 4 – maxima of stress intensity values.

The distribution of stress intensity over the layers is nonuni-
form during the untwisting and twisting of the rope (stage 2).
The scatter of the average values of σeq over the layers is char-
acteristic, which is explained by the difference in the directions
of layering of layers. The maximum values of σeq, evenly dis-
tributed over the cross-section of the wires, significantly exceed-
ing the values of σeq under tension, are observed in the twisted
layers. The untwisted layers are characterized by an increase in
the stress intensity in the contact regions of the adjacent rolled
layers. Thus, the stress intensity in the cross-section of the wires
of the untwisted layer 5 increases in the zone of contact interac-
tion with the wires of the twisted outer layer.

Thus, the distribution of the intensity of equivalent stresses
in the elements of the rope makes a significant contribution to
ensuring the durability and reliability of closed ropes during
operation.

4 Conclusions

1. The results of computer simulation of the SSS of the
closed rope elements in tension correlate well with the

Fig. 4 Change in contact stresses between the wires in the cross section of
the closed rope during tension (initial tangential gaps between the wires of
the outer layer Δ = 0.035 mm (a) and Δ = 0.13 mm (b)): (1 and 2)
tangential stresses between the wires in the outer and subsurface layers,
respectively, (3) radial stresses σr between the outer and subsurface layers

Fig. 5 Curves of intensity distribution of equivalent stresses in the radial
direction under tension (ε≈0.6%, curve 1)and torsion (φ≈20°; curve 2,
untwisting; curve 3, twisting)
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results of the analytical calculation of deformations and
efforts according to the equations of statics.

2. Finite element modeling of the SSS of closed rope ele-
ments allows at the design stage: it is justified to approach
the choice of the size of the gaps between the shapedwires
in the layers of the rope based on the analysis of the
change in contact stresses between the elements of the
rope during tension. Optimization of the gap ensures the
compatibility of the layers in the radial direction and the
preservation of the structural integrity of the rope during
operation, and by the distribution of equivalent stresses in
the cross-sections of the rope elements during joint ten-
sion and torsion, it predicts the durability and reliability of
closed ropes during operation.
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