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Abstract
Part orientation is a critical task in the process of additive manufacturing product realisation. Recently, various computer-
aided methods for this task have been presented in the literature. The coexistence of different methods generates a series
of questions: What are the common characteristics of these methods? What are the specific characteristics of each method?
What are the main issues in computer-aided part orientation for additive manufacturing currently? What are the potential
research directions in this field in the future? To approach these questions, a review of the existing computer-aided part
orientation methods for additive manufacturing is presented in this paper. This review starts with a clarification of a part
orientation problem and a classification of the existing methods into two categories according to their process of solving
the problem. An overview of the representative methods in each category is then carried out from the aspects of approaches
for orientation search, generation, or selection, estimation of build orientation factors, determination of weights of factors,
establishment of overall objective function, and demonstration of effectiveness. After that, a discussion about the main issues
in computer-aided part orientation for additive manufacturing is documented based on the overview. Finally, a suggestion of
some future research directions in this field is reported.

Keywords Additive manufacturing · Computer-aided process planning · Part orientation · Build orientation factor ·
Multi-objective optimisation · Multi-objective decision-making

1 Introduction

Additive manufacturing (AM), historically known as
freeform fabrication, solid freeform fabrication, layer manu-
facturing, additive layer manufacturing, additive processes,
additive techniques, and three-dimensional (3D) printing, is
a set of processes of adding materials together in a layer
upon layer manner to build 3D parts from 3D model data
[1]. Compared to conventional manufacturing processes,
AM processes have distinguishing characteristics in pro-
viding high degree of freedom for design and achieving
complex geometries without additional cost. In addition,
AM processes enable the direct production of products with
heterogeneous materials, multiple colours, and customis-
able functionalities [2, 3]. Convinced by such characteristics
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and capability, some have anticipated that AM processes
would bring revolutionary changes to the industry [4].

Existing AM processes were categorised into vat pho-
topolymerisation, material jetting, binder jetting, powder
bed fusion, material extrusion, directed energy deposition,
and sheet lamination [5], where:

(1) Vat photopolymerisation builds 3D parts by selectively
curing the liquid photopolymer in a vat through tar-
geted light-activated polymerisation. The earliest vat
photopolymerisation technology is stereolithography
(SLA). Other technologies include digital light pro-
cessing, continuous liquid interface production, and
daylight polymer printing. Vat photopolymerisation is
known as a fast and accurate AM process that can be
used to build rather large parts.

(2) Material jetting builds 3D parts by selectively deposit-
ing the droplets of material. The development of this
process mainly derived from the standard inkjet tech-
nology used by conventional two-dimensional (2D)
printers on papers, as the process directly deposits
droplets of build material onto a substrate by drop-on-
demand ink jetting (IJ). The material jetting process is
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a great choice for realistic prototypes. It can provide
an excellent level of details, high accuracy, and smooth
surface roughness and supports the build of a part with
multiple colours and materials.

(3) Binder jetting builds 3D parts by joining material
through selectively depositing liquid binder. This
process can work with a variety of materials, which
include polymer, metal, ceramic, sand, and composite.
3D parts can be built with a range of different colours
using the process.

(4) Powder bed fusion builds 3D parts by using either
a laser beam or an electron beam to selectively fuse
the regions of a powder bed. The earliest powder bed
fusion technology is selective laser sintering (SLS),
which mainly uses polymer as the build material.
Metal is not commonly used in it since there are
three important metal powder bed fusion techniques.
They are electron beam melting (EBM), direct metal
laser melting, and selective laser melting, where
the latter two techniques are commonly referred to
as laser powder bed fusion (LPBF) [6]. The SLS
process benefits from requiring no additional support.
EBM and LPBF enable the fabrication of metallic
components with near full density and high strength
and stiffness, which makes them two very promising
metal AM technologies for producing functional
components in the industry.

(5) Material extrusion builds 3D parts by selectively
dispensing material through a nozzle or an orifice.
A common material extrusion technique is fuse
deposition modelling (FDM), which builds layers
through mechanically extruding molten thermoplastic
material onto a substrate. Material extrusion is well-
known as an inexpensive AM process which has
been widely used in many domestic and hobby AM
machines. It supports a wide variety of materials, such
as polymer, composite, metal, and ceramic.

(6) Directed energy deposition builds 3D parts by using
focused thermal energy to melt material as it is being
deposited. An important directed energy deposition
technique is laser engineered net shaping. Other
representative techniques include laser deposition
welding, 3D laser cladding, direct metal deposition
(DMD), and directed light fabrication. The directed
energy deposition process can be used with metal,
ceramic, and composite. It can control the grain
structure to a high degree, which makes it uniquely
suitable for repairing complex damaged parts.

(7) Sheet lamination builds 3D parts by bonding sheets
of material. Two representative sheet lamination
techniques are laminated object manufacturing (LOM)
and paper 3D printing. The sheet lamination process
has the advantages of ease of material handling,

smooth surface roughness, and low material, machine
and process costs.

In general, the use of an AM process to realise a product
contains a set of activities [7], where process planning is
a critical one [8–10]. Process planning for AM refers to
an activity of determining appropriate process variables,
including orientation, support, slices, tool path, and process
parameters, to build a part using an AM machine [11]. It
consists of four successive tasks before the construction
of a part. Part orientation is the first task, which directly
influences its three subsequent tasks, which are support
generation [12], slicing [13], and path planning [14].

In the context of AM, the orientation to build a part
is one of the most essential process variables, since it
has an important effect on the time and cost to build the
part and the quality and property of the as-built part [15–
17]. Part orientation is the determination of an optimal
orientation to build a part using an AM machine based
on certain production requirements on the part. In real
workshops, an AM process planner or machine operator
usually determines the build orientation of a part according
to their production experience and intuitive analysis on the
part. Different planners or operators could specify different
build orientations for an identical part under the same
conditions. This would negatively affect the stability and
repeatability of the used AM process and the quality and
property of the as-built part.

To implement the automation of part orientation, various
computer-aided methods have been presented during the
past three decades. The coexistence of different methods
triggers a series of questions: What are the common
characteristics of these methods? What are the specific
characteristics of each method? What are the main issues in
computer-aided part orientation (CAPO) for AM currently?
What are the potential research directions in this field in
the future? This paper attempts to approach these questions
via presenting a review of the existing CAPO methods.
Although [11, 15, 16], and [17] have, respectively, presented
related or similar reviews. The review in the present paper
is still of necessity because:

(1) The review of [11] was made two decades ago. It
defined and conceptualised the four AM process plan-
ning tasks, i.e. part orientation, support generation,
slicing, and path planning, and provided an overview
of the computer-aided methods for these tasks at that
time. This review does not include a large number of
new CAPO methods that have emerged during the past
two decades.

(2) The review of [15] was presented 13 years ago. It
described and discussed various CAPO attempts up to
that time. This review also does not contain a large
number of newly emerging CAPO methods.
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(3) The review of [16] was conducted 7 years ago.
It carried out a study of the CAPO strategies
considering the effects of build orientation on surface
roughness, dimensional accuracy, volumetric error,
support volume, part strength, and build time. This
review lacks a detailed discussion of the main issues in
CAPO for AM.

(4) The review of [17] was presented recently. It
provided an overview of the objective functions for
search of an optimal build orientation, including part
accuracy, surface roughness, support volume, build
time, manufacturing cost, and mechanical properties,
and made an analysis of the optimisation techniques
adopted in the existing CAPO methods. This review
also does not involve a detailed discussion of the main
issues of the CAPO methods.

(5) The review in the present paper, compared to the four
reviews, classifies and introduces the existing CAPO
methods from the perspective of their principles,
instead of their optimisation objectives. This review
is more comprehensive than the four reviews, as it
covers nearly all of the CAPO methods published in
mainstream journals in the past three decades. More
importantly, the review presents a detailed discussion
of the main issues in CAPO for AM and reports a
suggestion of some future research directions in this
field.

The remainder of the paper is organised as follows. An
overview of the existing CAPO methods are provided in
Section 2. Section 3 carries out a discussion about the main
issues in CAPO for AM. Section 4 ends the paper with a
suggestion of some future research directions in CAPO for
AM.

2 Status of CAPO for AM

In this section, a part orientation problem is first clarified
and an overview of the existing computer-aided methods for
solving this problem is then presented.

2.1 Part orientation problem

In the context of AM product realisation process, the
build orientation refers to the orientation with respect to
the slice plane of an AM machine. Theoretically, the
number of possible build orientations of a part is infinite.
Part orientation is the determination of an optimal build
orientation for a part from infinite possible orientations.
It is required for all AM processes. A part orientation
problem takes as input a 3D model of a part represented
by a specific format and certain production objectives on

the part, and outputs a build orientation for the part that
can simultaneously optimise the input production objectives
[11]. It is a typical multi-objective problem [17].

In most of the existing CAPO methods, a build
orientation is represented by a two-tuple (α, β), such that,
as shown in Fig. 1, the build orientation lines up along the
Z axis after rotating the 3D model around the X axis by an
angle of α (0◦ ≤ α ≤ 360◦) and around the Y axis by an
angle of β (0◦ ≤ β ≤ 360◦). A build orientation can also be
expressed by a unit vector (x, y, z), where (x, y, z) can be
converted into (α, β) using the following equations:

α =
{

arctan(y/z) if y �= 0 or z �= 0
0 if y = 0 and z = 0

(1)

β = − arctan
x√

y2 + z2
(2)

At present, there are a variety of formats that can be used
to represent the 3D model of an AM part [18], where the
standard tessellation language (STL) is the most used one
and has become the actual standard 3D model format in
AM. Almost all computer-aided design (CAD) systems can
import and export STL files, and almost all AM machines
supports the STL format. Most of the existing CAPO
methods take the STL model as input. A few methods
also use the original CAD model, the voxel model, the
AMF (additive manufacturing file) model, and the STEP
(standard for the exchange of product model data) model.

The production objectives for determining an optimal
build orientation (OBO) are set according to the build
orientation factors (BOFs), i.e. the factors influenced by the
build orientation. According to the surveys of [16] and [17],
the international standard [19], and the studies of [20–23],
and [24], the main BOFs are:

(1) Part property: The mechanical properties of an as-
built part, such as the tensile strength, yield strength,
elongation, hardness, and the physical properties, such
as the residual stress, flexural modulus, and fatigue
performance, are generally affected by the build
orientation of the part. For example, the mechanical

Fig. 1 Schematic representation of the two rotation angles
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properties of an as-built part are always anisotropic.
In general, the tensile strength and yield strength in
horizontal orientation are respectively greater than
the tensile strength and yield strength in vertical
orientation.

(2) Part accuracy: Part accuracy indicators generally
include dimensional error, geometric error, and vol-
umetric error. Build orientation directly affects the
shrinkage, curling, and distortion of an as-built part,
which are the major factors causing dimensional error
and geometric error. Volumetric error is caused by
building a part with staircases in a layer by layer man-
ner. It cannot be eliminated, but its influence on part
accuracy can be reduced via designing proper build
orientation and layer thickness.

(3) Surface quality: The most used surface quality
indicator is surface roughness. Build orientation has a
direct effect on surface roughness for all AM processes
because of the layer upon layer building manner.
For example, planes or surfaces that are parallel or
perpendicular to build orientation would have smaller
surface roughness than those that have an angle with
build orientation. Declining faces would be more
seriously influenced by staircase effect.

(4) Support structure: In the AM processes that are not
free of support structure, such as FDM, LPBF, EBM,
and DMD, support structure is used to sustain the
overhanging region to resist deformation or collapse,
reduce part distortion caused by thermal gradients,
or balance a building part to avoid shift. The use
of support structure, however, directly leads to an
increase of the total build volume, thereby lengthening
the build time and increasing the build cost. Further,
the removal of support structure will lengthen the post-
processing time and increase the post-processing cost,
and could be detrimental to the surface quality of the
supported region. It is intuitive that different build
orientations result in different support structure and
supported region.

(5) Build time: Build time mainly consists of layer
preparation time, layer building time, and recoating
time. Build orientation directly affects the build height
and thus influences the build time.

(6) Build cost: Build cost calculates all resources required
in building a part, such as materials, energy, machine,
and labour. It is affected by build orientation,
since different build orientations may cause different
material consumption and build time.

(7) Post-processing time: Post-processing time mainly
contains property enhancement time, support removal
time, accuracy improvement time, and surface quality
improvement time. Build orientation also affects the

post-processing time, since it influences the support
structure, part accuracy, surface quality, and part
property.

(8) Post-processing cost: Post-processing cost calculates
all resources needed in all post-processing tasks on a
built part. It is also influenced by build orientation,
because different build orientations may result in
different support structure, part accuracy, surface
quality, part property, and post-processing time.

In some existing CAPO methods, certain optimisation
methods are developed or adopted to search an orientation
enabling one or more factors to be optimal from infinite
possible orientations. These methods are called as one-
step methods in the present paper, since they solve a part
orientation problem in one step. Other existing CAPO
methods divide the part orientation task into a step of
generation of some alternative build orientations (ABOs)
and a step of selection of an OBO, which are successively
carried out on the basis of the optimisation of one or more
factors. These methods are named as two-step methods.
More details of the two categories of CAPO methods are
given below.

2.2 One-step methods

A one-step method generally develops an exhaustive search
algorithm or adopts an optimisation technique to search an
OBO from an infinite solution space. This search process
is a typical multi-objective optimisation (MOO) process.
According to the search approach, one-step methods can
be further divided into direct search-based methods and
optimisation technique-based methods.

A direct search-based method usually works on the basis
of a process of exhaustive computation. Its general flow, as
depicted in Fig. 2, is described as follows:

(1) Input a 3D model of a part in its original orientation
and certain production objectives on the part (e.g. to
maximise the tensile strength, to minimise the support
volume, to minimise the build cost).

(2) Estimate the values of the considered BOFs (e.g.
tensile strength, support volume, build cost) under the
current orientation using certain estimation models.

(3) Calculate a summary value of the considered BOFs
under the current orientation using certain aggregation
models.

(4) Determine whether the solution space has been
traversed and continue to (5) if the answer is no and
skip to (6) if the answer is yes.

(5) Rotate the 3D model in the current orientation in a
specific step size to obtain a new orientation and skip
to (2).
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Fig. 2 General flow of a direct search-based method for part
orientation

(6) Output an orientation that achieves the optimal
summary value to build the part.

There is a contradictory issue in (5): How to set a proper
step size? If the step size is assigned a large value, the
number of the iterations of the entire part orientation process
will be reduced. But this will increase the risk of missing
the true OBO. If it is assigned a small value, such risk
will be reduced. But this will greatly increase the number
of iterations. If the step size is assigned random values, an
OBO could be generated in a short time. But it is more
likely to take a very long time. Because of the contradictory
issue, most of the existing direct search-based methods have
a shortcoming of low efficiency.

Unlike the direct search-based methods, it is rather
difficult to use a unified flow to summarise all optimi-
sation technique-based methods, because the optimisation
techniques applied in the existing one-step methods are
diverse and their principles or processes could be dif-
ferent in nature. However, according to a survey of the
existing one-step methods, it is found that the most used
optimisation technique is the population-based optimisa-
tion algorithm (PBOA), such as the genetic algorithm
(GA), the particle swarm optimisation algorithm (PSOA),
the bacterial foraging optimisation algorithm (BFOA), and
the electromagnetism-like mechanism algorithm (ELMA).
Without loss of generality, the general flow of the one-step
methods using the PBOAs is described below.

A PBOA-based method generally works based on a
process that constantly updates the current group of
orientations. Its general flow, as depicted in Fig. 3, is
described as follows:

Fig. 3 General flow of a PBOA-based method for part orientation

(1) Input a 3D model of a part and certain production
objectives on the part.

(2) Set controlling parameters and generate an initial
group of orientations. Different controlling parameters
are needed to be set when using different PBOAs. For
example, setting the population size, crossover proba-
bility, and mutation probability is required when using
the GA. Specifying the inertia weight, social, and cog-
nitive parameters is needed when using the PSOA.
Setting the number of bacteria, number of chemo-
tactic, swim, reproductive, elimination, and dispersal
steps, elimination probability, and chemotactic step
size is required when using the BFOA. Specifying the
number of samples, maximum number of iterations,
maximum number of local search iterations, and local
search parameter is needed when using the ELMA.
The initial group of orientations is usually generated
randomly.

(3) Estimate the values of the considered BOFs using
certain estimation models and calculate the value of
overall objective function (OOF).

(4) Determine whether the termination condition is
satisfied and continue to (5) if the answer is no
and skip to (6) if the answer is yes. A PBOA-based
method will stop its iterations when certain objectives
are achieved, when a certain number of iterations
are completed, when the allocated time is used up,
when something disappears, or when no significant
improvement of the optimisation results after a certain
number of iterations.
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(5) Perform specific operations to update the current
group of orientations and skip to (3). Different PBOAs
update the current group of orientations via different
operations. For example, the GA updates it via
selection, crossover, and mutation. The PSOA updates
it via movement. The BFOA updates it via chemotaxis,
reproduction, and elimination-dispersal. The ELMA
updates it via attraction-repulsion.

(6) Output an optimal orientation to build the part.

The use of a PBOA is usually helpful to improve the
efficiency. But this brings an issue of setting controlling
parameters. In general, whether the set controlling parame-
ters are optimal would significantly affect the effectiveness
of the entire method. Determination of an optimal group of
controlling parameters is not an easy task. In addition, a spe-
cific PBOA can only achieve good performance for specific
types of optimisation problems. It is not clear which PBOA
is the most suitable for a part orientation problem.

During the past few decades, the research of part
orientation via direct search and optimisation techniques has
gained importance and popularity within the academia. A
large number of one-step methods have been presented in
this period. A brief summarisation of a set of representative
one-step methods is provided in Table 1. As can be seen
from the table, the main difference of the existing one-step
methods lies in the targeted AM processes, the approach for
orientation search, the OOF, and the considered BOFs:

(1) Processes: Most one-step methods are proposed for
the SLA, FDM, or SLS process. Some methods are
theoretically applicable for all AM processes. A few
methods are developed for the EBM or LPBF process.

(2) Search approach: Direct search-based methods
directly search an OBO via an exhaustive computation
procedure. Optimisation technique-based methods
search an OBO using optimisation techniques.

(3) OOF: The OOFs used in the existing one-step
methods include the weighted sum model (WSM)
w1F1(O) + w2F2(O) + ... + wm′Fm′(O), Pareto
front analysis (PFA) [F1(O), F2(O), ..., Fm′(O)],
and min-max functions (MMFs) (min/max{F1(O)},
min/max{F2(O)}, ..., min/max{Fm′(O)}), where O is
a given build orientation, m′ is the number of the con-
sidered BOFs, Fi(O)(i = 1, 2, ..., m′) is the objective
function of the ith BOF in O, and wi is the weight of
the ith BOF.

(4) BOFs: Each one-step method considers one or more
BOFs among part property, part accuracy, surface
quality, support structure, build time, build cost, post-
processing time, and post-processing cost.

In the following subsections, a general overview of the
characteristics of the optimisation techniques used in the

one-step methods in Table 1 is first provided. Then a
review of these one-step methods is given according to their
targeted AM processes.

2.2.1 Overview of the used optimisation techniques

According to Table 1, the optimisation techniques used in
the existing one-step methods include the GA [82], non-
dominated sorting genetic algorithm II (NSGA-II) [83],
trust region method (TRM) [84], PSOA [85], extreme learn-
ing machine (ELM) [86], principal component analysis-
based optimisation algorithm (PCABOA) [56], surrogate
model (SM) [87], Taguchi method (TM) [88], sequential
quadratic programming algorithm (SQPA) [89], BFOA [90],
S-metric selection evolutionary multi-objective algorithm
(SMSEMOA) [91], globally convergent method of moving
asymptotes (GCMMA) [92], ELMA [93], and generalised
differential evolution 3 (GDE3) [94], where:

(1) The GA is a meta-heuristic algorithm of searching for
the optimal solution via simulating the natural evolu-
tion process. Its main advantages lie in having simple
and robust process, good scalability, potential con-
currency, and random search capability irrelevant to
actual optimisation problems. The major limitations
of the GA are reflected at two aspects. On the one
hand, the GA has a tendency to converge towards
local optimum in many optimisation problems. On
the other hand, the efficiency of the GA is generally
lower than that of other optimisation algorithms.

(2) The NSGA-II is an improved version of the non-
dominated sorting genetic algorithm [95]. It has
three aspects of improvement. The first aspect is the
development of a non-dominated sorting procedure,
which largely improves the efficiency. The second
aspect is the use of crowding distance and its
comparison operators, which enable individuals in
the quasi-Pareto domain to extend to the entire
Pareto domain and maintain the diversity of the
population. The third aspect is the introduction of
elitist strategy, which expands the sampling space.
A main shortcoming of the NSGA-II is that the
unstable crowding distance model when two or
more solutions have the same fitness value will
influence the convergence and diversity preservation
capabilities of the algorithm.

(3) The TRM is one of the most important numeri-
cal optimisation techniques for solving non-linear
optimisation problems. A main advantage of the
TRM over line search algorithms is that it can
use non-convex approximation models. Further, the
TRM is a reliable and robust technique which has
strong convergence property and can be applied to
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Table 1 A brief summarisation of representative one-step methods

One-step method Processes Search approach OOF PP PA SQ SS BT BC PT PC

[25] SLA Direct search MMFs � � �
[26] SLA Direct search WSM � � �
[27] SLA, FDM Direct search MMFs � �
[28] SLA Direct search WSM � � �
[29] SLA Direct search WSM � � �
[30] 4 processes Direct search PFA � � � �
[31] FDM Direct search MMFs �
[32] SLS Genetic algorithm MMFs �
[33] FDM Direct search MMFs �
[34] FDM Direct search MMFs �
[35] FDM NSGA-II MMFs � �
[36] FDM Genetic algorithm WSM � �
[37] 3 processes Genetic algorithm WSM � �
[38] SLA Genetic algorithm WSM � � �
[39] SLA Trust region method MMFs �
[40] 3 processes Genetic algorithm MMFs �
[41] SLA Genetic algorithm WSM � �
[42] SLA, SLS Trust region method WSM � � �
[43] SLS Direct search MMFs �
[44] SLA Genetic algorithm PFA � � �
[45] SLS NSGA-II, PSOA MMFs � �
[46] SLA, SLS Direct search MMFs �
[47] SLS Genetic algorithm PFA � �
[48] 3 processes Genetic algorithm WSM � � �
[49] AM processes Genetic algorithm PFA � �
[50] AM processes Genetic algorithm MMFs �
[51] AM processes Direct search MMFs �
[52] AM processes Direct search WSM � �
[53] SLA, FDM ELM WSM �
[54] AM processes Genetic algorithm WSM �
[55] SLS Direct search MMFs �
[56] AM processes PCABOA MMFs �
[57] LPBF Genetic algorithm WSM � � � � �
[58] AM processes Direct search MMFs � �
[59] AM processes Direct search WSM � � �
[60] FDM Direct search WSM �
[61] FDM NSGA-II PFA � �
[62] FDM Surrogate model WSM �
[63] AM processes PSOA MMFs � �
[64] LPBF PSOA WSM � �
[65] FDM Taguchi method MMFs � �
[66] LPBF Direct search MMFs �
[67] FDM Direct search MMFs �
[68] FDM SQPA WSM �
[69] FDM PSOA, BFOA WSM � �
[70] FDM SMSEMOA PFA � � �
[71] LPBF Direct search MMFs � �
[72] FDM Direct search MMFs � � �
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Table 1 (continued)

One-step method Processes Search approach OOF PP PA SQ SS BT BC PT PC

[73] SLA GCMMA MMFs �
[74] FDM ELMA MMFs � � � �
[75] SLA, FDM, IJ NSGA-II, GDE3 MMFs �
[76] FDM Direct search MMFs �
[77] SLA, FDM PSOA WSM � � �
[78] FDM PSOA PFA �
[79] AM processes Direct search MMFs �
[80] FDM Genetic algorithm WSM � �
[81] AM processes Direct search MMFs �

OOF stands for overall objective function; PP stands for part property; PA stands for part accuracy; SQ stands for surface quality; SS stands for
support structure; BT stands for build time; BC stands for build cost; PT stands for post-processing time; PC stands for post-processing cost; MMFs
stands for min-max functions; WSM stands for weighted sum model; 4 processes include SLA, SLS, FDM, LOM; PFA stands for Pareto front
analysis; NSGA-II stands for non-dominated sorting genetic algorithm II; 3 processes include SLA, SLS, FDM; ELM stands for extreme learning
machine; PCABOA stands for principal component analysis-based optimisation algorithm; SQPA stands for sequential quadratic programming
algorithm; SMSEMOA stands for S-metric selection evolutionary multi-objective algorithm; GCMMA stands for globally convergent method of
moving asymptotes; GDE3 stands for generalised differential evolution 3

ill-conditioned optimisation problems. However,
optimisations using the TRM require the gradients
or Hessian matrices of the objective and constraint
functions, which are sometimes not easy to calculate.

(4) The PSOA is a group collaboration-based search
algorithm developed by simulating the foraging
behaviour of birds. It has five common characteristics
with the GA. Firstly, the initial population of both is
generated randomly. Secondly, both of the algorithms
evaluate the fitness value of each individual. Thirdly,
the current population is updated according to the
fitness values. Fourthly, both of them terminate when
the termination condition is satisfied. Fifthly, both of
them are not guaranteed to find the global optimal
solution. Compared with the GA, the PSOA does not
involve the crossover and mutation operations and
all particles may converge to the optimal solution
faster in most cases. However, the algorithm is easy
to fall into local optimums for objective functions
with multiple local extreme points. In addition, the
PSOA does not have a rigorous theoretical basis. It
is not clear from the principle why the algorithm
is effective. Because of this, the PSOA is generally
suitable for a class of high-dimensional optimisation
problems that do not require very accurate solutions.

(5) The ELM is a machine learning algorithm for solving
single hidden layer feed-forward neural network. It
is simple and easy to use, since it only needs to set
the network structure, while traditional feed-forward
neural networks need to manually set a large number
of network training parameters. In the ELM, the
weights from the input layer to the hidden layer

are randomly determined once and do not need to
be adjusted during the execution of the algorithm,
while the weights from the hidden layer to the output
layer only need to be determined by solving a linear
equation system. For this reason, the computation
speed is largely increased. The main characteristic
of using the ELM to search the optimal solution is
reflected in high efficiency. However, the accuracy
of the search largely depends on the quality of
the sample data. For most optimisation problems,
obtaining a certain amount of high-quality sample
data is not easy.

(6) The PCABOA is an optimisation algorithm for part
orientation based on the principal component analysis
[96]. In this algorithm, the area weighted normal
is first introduced to convert a part orientation
problem to a least absolute deviation linear regression
problem. Then, the principal component analysis is
used to solve the regression problem. Compared with
the direct search-based methods, the algorithm uses
less than 40% running time to achieve satisfying
accuracy. In addition, the PCABOA determines
the optimal solution adaptively, which eliminates
the uncertainty caused by manual interventions.
However, it is not clear whether the performance of
the algorithm is better than that of other optimisation
techniques.

(7) The SM is a commonly used optimisation technique
in engineering problems. When an optimisation
problem requires a large amount of computation
and is not easy to solve, a simplified model that
needs a smaller amount of computation and mimics
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the original problem as closely as possible can
be used to replace the optimisation problem to
speed up the optimisation process. This simplified
model is the so-called SM. There have been a
number of commonly used SMs so far, such as the
polynomial response surface, kriging, radial basis
function, support vector machine, Bayesian network,
and Fourier surrogate model. Using certain SMs
to solve complex optimisation problems can be
beneficial, but it is generally not easy to find or
establish an accurate SM for a specific optimisation
problem.

(8) The TM is a powerful experimental optimisation
technique. The main advantages of the TM over other
experimental optimisation techniques are reflected
at three aspects. Firstly, the TM is usually carried
out with the minimum number of experiments.
Secondly, it is applicable for both continuous and
discrete optimisation problems. Thirdly, it can find
the optimal solution without calculation of the
derivatives. A main limitation of the TM is that the
selection of the optimal solution for the problem
from the specified levels of parameters may lead to a
limited resolution to search the optimal solution [65].

(9) The SQPA is one of the most effective algorithms
for solving constrained non-linear optimisation prob-
lems. It is capable of processing any degrees of
non-linearity. The prominent advantages of the SQPA
lie in good convergence property, high computa-
tional efficiency, and strong boundary search capa-
bility. However, each iteration of the algorithm needs
to solve one or more quadratic programming sub-
problems. The amount of computation and storage
required to solve the subproblems is substantial with
the expansion of the optimisation problem scale. For
this reason, the SQPA only works well for small and
medium optimisation problems and becomes very
cumbersome for large optimisation problems with
many variables.

(10) The BFOA is a bionic optimisation algorithm based
on the Ecoli phagocytosis behaviour in human
intestines. Its notable characteristic is having fast
convergence speed, high accuracy, and the capability
to jump out of local optimums. Further, the algorithm
introduces a new termination condition. That is,
without any iteration or accuracy condition, it
will naturally terminate with the disappearance
of the colony and certain accuracy can still be
maintained. However, for complex optimisation
problems, especially high-dimensional multi-modal
optimisation problems, the convergence property of
the BFOA is worse than other swarm intelligence
optimisation algorithms.

(11) The SMSEMOA is an indicator-based evolutionary
algorithm that explicitly uses a performance indicator
called as hypervolume or S-metric in its environmen-
tal selection procedure. It has an advantage of not
requiring a reference set over other indicator-based
evolutionary algorithms. The SMSEMOA uses only
a reference point, which is much easier to state than a
reference set. Because of this, the algorithm is more
flexible to solve the MOO problems where the char-
acteristics of the Pareto front are unknown. However,
the computational cost of the performance indica-
tor will greatly increase as the number of objectives
increases. Thus, the application of the SMSEMOA is
usually limited by its high computational cost.

(12) The GCMMA is a globally convergent version of
the method of moving asymptotes [97], a convex
approximation method for structural optimisation
problems. Like the SQPA, the GCMMA is also
an alternative method for solving constrained non-
linear optimisation problems. A main difference
between them is that the SQPA needs to perform
a line search on a merit function at each iteration,
while the GCMMA introduces curvature in the
objective function and the constraint functions of the
subproblem to avoid line search. Another difference
is that the SQPA cannot work well for large
optimisation problems with many variables, while the
GCMMA can be successfully used to optimisation
problems with a very large number of variables and
a relatively small number of constraints. A main
shortcoming of the GCMMA is that it is not capable
of finding the optimal solution in a reasonable time
for some large structural optimisation problems.

(13) The ELMA is a meta-heuristic algorithm of solving
the unconstrained non-linear optimisation problems
in a continuous domain via simulating the attraction-
repulsion mechanism of charges in the electromag-
netism theory. The main strength of the algorithm
lies in the idea of directing the sample points towards
local optimisers. Further, the ELMA has better per-
formance in terms of accuracy and efficiency when
it is compared with the GA and PSOA, although it
shares several characteristics with them. However,
the algorithm pays little attention to the influence of
the size of the search step on its accuracy and conver-
gence performance. In the ELMA, the particle search
is based on random step size and the iterations are
terminated when obtaining one comparatively better
objective function value. This way is not accept-
able since it may not achieve a balance between the
convergence speed and the convergence accuracy.

(14) The GDE3 is an improved version of the gener-
alised differential evolution 2 [98], a meta-heuristic
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algorithm that optimises a problem via iteratively
improving an alternative solution according to a given
measure of quality. A major change is the use of a
growing population and non-dominated sorting with
pruning of non-dominated solutions, which decreases
the population size at the end of each iteration and
makes the algorithm more stable in selecting con-
trolling parameters. Compared to the NSGA-II, the
GDE3 provides better solution diversity and requires
less function evaluations. However, its convergence
performance needs further testing.

Based on the description above and Table 1, the optimisation
techniques used in the existing one-step methods are briefly
summarised in Table 2. It can be seen from Table 2 that
PBOA is the most used optimisation technique and the GA
is the most used PBOA in the existing one-step methods.
This does not indicate that a PBOA or the GA is the most
suitable optimisation technique to solve a part orientation
problem. In addition, each optimisation technique has its
specific strengths and limitations. It is difficult to find the
most suitable one for a part orientation problem from such
qualitative description. To achieve this, specific quantitative
comparison experiments need to be carried out. However,
there is yet no evidence that such experiments have been
conducted.

2.2.2 One-step methods for the SLA process

The method of [25] established three decision criteria,
including surface quality, build time, and support complex-

ity, to search desirable build orientations for an SLA part
directly. The surface quality was evaluated by the area of
non-stepped and stepped surfaces. The build time was esti-
mated via the number of layers. The support complexity was
quantified by the supported points. The optimisation objec-
tive for searching the build orientations was to maximise
the area of non-stepped surfaces and minimise the area of
stepped surfaces, to minimise the number of layers, or to
minimise the number of supported points. This method was
demonstrated via a simulation example.

In the method of [26], part stability, part accuracy, and
build time were optimised at the same time to search an
OBO for an SLA part directly. The part stability in a given
build orientation O was evaluated by a penalty function
when the part is unstable in O

SO
part = hO

cogd
O
cogch

aO
base

(3)

where hO
cog is the height of centre of gravity in O, dO

cogch
is the closest distance between the projection of centre
of gravity and the convex hull of base in O, and aO

base
is the base area in O. The part accuracy and build time
were quantified by the overhanging region and number of
layers, respectively. The OOF was established using the
WSM, in which the weights were manually assigned. The
optimisation objective for searching an OBO is to minimise
the OOF. The feasibility of this method was verified by two
simulation examples.

The method of [28] optimised the part accuracy, build
time, and part stability simultaneously to search an OBO

Table 2 A brief summarisation of the optimisation techniques used in the existing one-step methods

Technique PBOA Number Main strength of the technique Main limitation of the technique

GA [82] Yes 14 Simple and robust Tend to converge to local optimum in many problems

NSGA-II [83] Yes 4 Robust and efficient Unstable when solutions have the same fitness value

TRM [84] No 2 Reliable and robust Not easy to calculate gradients or Hessian matrices

PSOA [85] Yes 6 Simple and efficient Solutions are not very accurate for many problems

ELM [86] No 1 Simple and efficient Not easy to obtain high-quality sample data

PCABOA [56] No 1 Flexible and efficient Performance still requires further evaluation

SM [87] No 1 Beneficial for complex problems Not easy to find or establish an accurate SM

TM [88] No 1 Versatile and efficient Limited resolution to search the optimal solution

SQPA [89] No 1 Good convergence and efficient Cumbersome for large problems with many variables

BFOA [90] Yes 1 Effective and efficient Bad convergence for high-dimensional problems

SMSEMOA [91] Yes 1 Flexible for certain problems Application is limited by high computational cost

GCMMA [92] No 1 Applicable for large problems Not efficient when solving some large problems

ELMA [93] Yes 1 Effective and efficient Effect of search step size on performance is neglected

GDE3 [94] Yes 1 Good diversity of solutions Convergence performance still needs further testing

PBOA stands for whether the technique is a PBOA; Number stands for the number of the one-step methods in Table 1 that use the technique
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for an SLA part directly. The part accuracy in a given build
orientation O was estimated by

AO
part =

(
n∑

i=1

1

sin θO
i cos θO

i

)
/n

+
⎛
⎝ n′∑

j=1

aO
psfacet,j

⎞
⎠ /

(
n∑

i=1

afacet,i

)
(4)

where n is the number of facets of the input STL model,
n′ is the number of sloping facets with respect to O, θO

i is
the sloping angle of the ith facet with respect to O (i.e. the
acute angle between the ith facet and the XOY plane when
O and the +Z axis are in the same direction), aO

psfacet,j is the
area of the j th projected sloping facet with respect to O,
and afacet,i is the area of the ith facet. The build time was
estimated via the number of layers. The part stability was
quantified using the ratio of projected support area to base
area. The OOF was established using the WSM, where the
weights were manually assigned. The optimisation objective
for searching an OBO is to minimise the OOF. This method
was illustrated by a simulation example.

In the method of [29], a build orientation for an SLA part
was searched directly based on the objectives of short build
time, high part accuracy, and smooth surface roughness.
The build time and part accuracy were evaluated using the
response surface methodology. The surface roughness in a
given build orientation O was predicted by

RO
surface =

n∑
i=1

((
1874 sin θO

i cos θO
i + 3.5θO

i + 48
)
afacet,i

)
n∑

i=1
afacet,i

(5)

The OOF was established using the WSM, in which the
weights were manually assigned. The optimisation objective
for searching an OBO is to minimise the OOF. This method
was demonstrated via two simulation examples.

The method of [38] optimised the post-processing time,
post-processing cost, and number of layers simultaneously
to search an OBO for an SLA part. The post-processing time
in a given build orientation O and the post-processing cost
in O were respectively evaluated by

T O
postproc = T O

sremoval+T O
polish+Twash+Tpostcure+Ttransfer (6)

CO
postproc = CO

sremoval + CO
polish + Cwash + Cpostcure

+Ctransfer + Coverhead (7)

where T O
sremoval is the support removal time in O, T O

polish is
the polishing time in O, Twash is the washing time, Tpostcure

is the post-curing time, Ttransfer is the transferring time,

CO
sremoval is the support removal cost in O, CO

polish is the
polishing cost in O, Cwash is the washing cost, Cpostcure is
the post-curing cost, Ctransfer is the transferring cost, and
Coverhead is the overhead cost. The OOF was established
using the WSM, in which the weights were manually
specified. The optimisation objective for searching an OBO
is to minimise the OOF. The search was accelerated by a
model mapping approach based on the GA. The rotation
step sizes from 0◦ to 10◦ were tested and compared. This
method was demonstrated by three simulation examples, in
which the rotation step size was assigned 5◦.

In the method of [39], the model in Eq. 5 was
used to evaluate the surface roughness of an SLA part.
The optimisation objective for searching an OBO is to
minimise the surface roughness. The optimisation process
was realised by the TRM. The rotation step size was set as
1◦. This method was illustrated by two simulation examples.

The method of [41] established a framework for
searching an OBO for an SLA part. In this framework, the
optimisation objective is to minimise a weighted sum of
build time and surface roughness. The optimisation process
was realised using the GA, in which random step sizes
were used. The framework was tested by a set of simulation
examples.

In the method of [44], the objective functions of the
surface roughness, build time, and support volume of
an SLA part were handled individually via Pareto-based
optimisation, which was performed by the GA. The surface
roughness was evaluated using an adaptive slicing method
presented by [99]. The build time was calculated via an
algorithm based on the number of layers. The support
volume was estimated by a model presented by [100]. This
method was illustrated using two simulation examples.

The method of [73] realised the simultaneous optimisa-
tion of the build orientation and structural topology of an
SLA part. In this method, the mechanical properties of an
as-built part were considered and a quantitative correlation
between the process variables and the mechanical proper-
ties was established. The correlation was implemented for
process and topology optimisation by a gradient-based algo-
rithm. This method was validated via a set of fabrication
examples.

2.2.3 One-step methods for the FDM process

The methods of [31] and [33] established one decision cri-
terion, volumetric error, to search proper build orientations
for an FDM part directly. The volumetric error in a given
build orientation O was evaluated by

EO
volum =

NO
layers∑
i=1

EO
area,iplayer,i (8)
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where NO
layers is the number of layers in O, player,i is the

perimeter of the ith layer, and EO
area,i is the area error in the

ith layer with respect to O that can be calculated using

EO
area,i =

{
t2
layer/(2 tan θO

i ) if the ith layer is an overhanging layer
(t2

layer tan θO
i )/2 if the ith layer is not an overhanging layer

(9)

where tlayer is the constant layer thickness. In the method of
[34], a different model for estimating the volumetric error
of an FDM part was developed as

EO
volume =

∣∣∣∣∣∣∣
NO

layers∑
i=1

1

2
(aO

layer,i+1 − aO
layer,i )tlayer

∣∣∣∣∣∣∣
(10)

where aO
layer,i is the horizontal area of the ith layer with

respect to O. For the three methods, the optimisation
objective for searching the build orientations was to
minimise the volumetric error. These methods were
validated via a set of simulation or fabrication examples.

The method of [35] established two decision criteria,
surface roughness and build time, to search an OBO for
an FDM part. The surface roughness in a given build
orientation O was predicted by

RO
surface =

n∑
i=1

(
RO

facet,iafacet,i

)
n∑

i=1
afacet,i

(11)

where RO
facet,i is the surface roughness of the ith facet in O

that was calculated via

RO
facet,i =

⎧⎪⎪⎨
⎪⎪⎩

(69.28 → 72.36)tlayer/ tan θO
i if 0◦ ≤ θO

i ≤ 70◦
0.05

(
90R70◦ − 70R90◦ + θO

i (R90◦ − R70◦)
)

if 70◦ < θO
i < 90◦

117.6tlayer if θO
i = 90◦

1.2RO
facet,i if the ith facet is a supported facet

(12)

where R70◦ is the value of RO
facet,i when θO

i = 70◦, and R90◦

is the value of RO
facet,i when θO

i = 90◦. The build time in O

was estimated through

T O
build = NO

layers

⎛
⎜⎜⎜⎜⎝1 +

n′′∑
j=1

afacet,j

n∑
i=1

afacet,i

RO
sw2tw

⎞
⎟⎟⎟⎟⎠ (13)

where n′′ is the number of supported facets in O, and RO
sw2tw

is the ratio of the supported width in O to the total width in
O. The optimisation objectives were to minimise the surface
roughness and minimise the build time. The NSGA-II was
adopted to accelerate the search and the rotation step size
was assigned random values in the algorithm. This method
was demonstrated by two simulation examples.

In the method of [36], surface roughness and build
time were optimised simultaneously to search an OBO

for an FDM part. The surface roughness in a given build
orientation O was evaluated using the model in Eq. 11. The
build time in O was predicted by

T O
build = NO

layers

⎛
⎜⎜⎜⎜⎝1 +

n′′∑
j=1

afacet,j

n∑
i=1

afacet,i

Dsmat

⎞
⎟⎟⎟⎟⎠ (14)

where Dsmat is the density of the support material. The
OOF was established using the WSM, in which the weights
were manually assigned. The optimisation objective is to
minimise the OOF. The search was accelerated using the
GA. This method was verified via two simulation examples.

The method of [60] searched a build orientation for
an FDM part via minimising the number of disconnected
components and the distance between the disconnected
components that remain, thereby minimising the total build
time. The OOF was defined as a weighted sum of such
number and distance and the height and trapped volume
of the input 3D model. The weights of these criteria were
determined based on the experiment results of 20 models.
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This effectiveness of this method was demonstrated by
a comparison of simulation and fabrication results of six
models with the part orientation method in [10].

In the method of [61], the surface roughness was
estimated using a model based on analytical modelling and
empirical investigation presented by [101]. The build time
was predicted using the model in Eq. 14. The search of an
OBO for an FDM part was realised by PFA, which was
performed using the NSGA-II. This method was validated
by three fabrication examples.

The method of [62] addressed the simultaneous optimisa-
tion of the volumetric error and material composition error
of an FDM part. In this method, the volumetric error in a
given build orientation O was evaluated through

EO
volum =

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

(tlayer
∣∣δO

i

∣∣ afacet,i ) if
∣∣zO

i

∣∣ = 1

n∑
i=1

(1/2tlayerz
O
i afacet,i ) if

∣∣zO
i

∣∣ �= 1
(15)

where zO
i is the Z component of the unit normal vector of

the ith facet with respect to O, and δO
i was defined as

δO
i =

∣∣∣�(ZO
i − ZO

min)/tlayer + 0.5� − (ZO
i − ZO

min)/tlayer

∣∣∣
(16)

where ZO
i is the Z coordinate of ith facet with normal

vector along the Z axis with respect to O, and ZO
min is the

bounding box minima in the Z direction with respect to O.
The material composition error in O was calculated by

EO
mcomp = 1

NO
voxels

NO
voxels∑
i=1

‖Cdmat,i − Camat,i‖ (17)

where NO
voxels is the number of voxels in O, Cdmat,i is the

desired material composition at the ith voxel centroid, and
Camat,i is the attainable material composition at the ith voxel
centroid. The OOF was formulated as a weighted sum of the
volumetric error and material composition error, where the
weights were manually specified. A build orientation for an
FDM part was searched with an objective of minimising the
OOF. The optimisation problem was solved by a SM-based
global optimisation framework. This method was illustrated
by a set of simulation examples.

In the method of [65], the support volume and surface
roughness were optimised at the same time to search an
OBO for an FDM part. The support volume in a given build
orientation O was predicted by

V O
support =

n′′∑
j=1

(
zO

aver,j afacet,j

)

n∑
i=1

afacet,i

⎛
⎝1 +

n′′∑
j=1

∣∣∣ZO
j

∣∣∣
⎞
⎠ (18)

where zO
aver,j is the average of the Z components of the

three vertices of the ith facet with respect to O. The surface
roughness in O was estimated via

RO
surface =

n∑
i=1

(
ZO

i afacet,i
)

n∑
i=1

afacet,i

(19)

The optimisation objectives were to minimise the support
volume and to minimise the surface roughness. The
optimisation was carried out using the Taguchi experiment
method, in which the rotation step size was set as 1◦. This
method was tested by a fabrication example.

The method of [67] developed a novel support generation
approach to reduce material consumption, build time,
and energy consumption in FDM. Build orientation was
considered as a significant factor and was optimised with an
objective of minimising the support material. This method
was tested via several fabrication examples.

In the method of [68], a strategy for determining the OBO
of 3D truss-like structures built using FDM was presented.
The objective was to minimise the norm of dot products of
the normal direction of build platform and the directions of
tensile forces. The determination strategy was implemented
using the SQPA. To demonstrate the method, two 3D truss-
like structures fabricated by FDM were investigated.

The method of [69] established the relationships between
the build orientation of an FDM part and the tensile
strength, hardness, flexural modulus, and surface roughness
of the part via linear multiple regression. The OOF was
formulated using the WSM, in which the weights were
manually assigned. The optimisation was performed using
a hybrid particle swarm optimisation-bacterial foraging
optimisation algorithm. This method was tested through a
set of fabrication examples.

In the method of [70], estimation models for the surface
quality and manufacturing cost of an FDM part were
presented. The surface quality in a given build orientation
O was predicted via

QO
surface =

n∑
i=1

(
P O

a,iafacet,i

)
n∑

i=1
afacet,i

(20)

where P O
a,i is the Pa (arithmetic average of the unfiltered

raw profile) value (defined in ISO 4287) of the ith facet,
which was calculated using a model constructed in [102].
The manufacturing cost in O was evaluated by

CO
manuf = (Recost + Rfcost)T

O
build + CO

smat + CO
postproc (21)

where Recost is the energy cost rate (i.e. energy cost per unit
time), Rfcost is the fixed cost rate (i.e. fixed cost per unit
time), CO

smat is the support material cost in O, CO
postproc is the
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post-processing cost in O, and T O
build was estimated using an

estimator based on neural network in [103]. The generation
of the build orientations for an FDM part was realised by
PFA, which was solved using the SMSEMOA. The final
determination of an OBO was carried out via the technique
for order of preference by similarity to ideal solution
(TOPSIS). The reliability of the method was evaluated via a
set of properly designed case studies.

The method of [72] developed a multi-axis robot FDM
system for dynamic part orientation. The system was
constructed around two robot arms and an FDM extruder.
Using the system, quantitative experiments were carried out
to investigate the effect of build orientations on the surface
roughness, support structure, and mechanical strength of an
as-built part.

In the method of [74], volumetric error, supported region
area, staircase effect, build time, surface roughness, and
surface quality were optimised simultaneously to search an
OBO for an FDM part. The volumetric error in a given build
orientation O was evaluated by

EO
volum =

n∑
i=1

(
t2
layer

∣∣oTvi

∣∣ afacet,i

2

)
(22)

where oT is a unit vector expressing O, and vi is the unit
normal vector of the ith facet. The supported region area in
O was calculated using

AO
sregion =

n∑
i=1

(
λafacet,i

∣∣∣oTvi

∣∣∣) (23)

where λ = 1 if oTvi < 0 and λ = 0 if oTvi > 0. The
staircase effect in O was predicted via

EO
scase =

n∑
i=1

Ei (24)

where Ei = tlayer/ tan ϑO
i (ϑO

i is the angle between the
normal vector of the ith facet and O) if tan ϑO

i �= 0 and
Ei = 0 if tan ϑO

i = 0. The build time in O was estimated
through

T O
build = n

max
i=1

(
oTv1,i , o

Tv2,i , o
Tv3,i

)

− n

min
i=1

(
oTv1,i , o

Tv2,i , o
Tv3,i

)
(25)

where v1,i , v2,i , and v3,i are the three vertices of the ith
facet. The surface roughness in O was evaluated by the
model in Eq. 11, where RO

facet,i was calculated by

RO
facet,i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

70.82tlayer/ cos ϑO
i if 0◦ ≤ ϑO

i ≤ 70◦
0.05

(
90R70◦ − 70R90◦ + ϑO

i (R90◦ − R70◦)
)

if 70◦ < ϑO
i < 90◦

117.6tlayer if ϑO
i = 90◦

70.82
(
1.2tlayer/ cos(ϑO

i − 90◦)
)

if 90◦ < ϑO
i ≤ 135◦

500tlayer
∣∣cos(85◦ − ϑO

i )/ cos 5◦∣∣ if 135◦ < ϑO
i ≤ 180◦

(26)

The surface quality in O was predicted via

QO
surface =

n∑
i=1

(∣∣cos ϑO
i

∣∣ tlayerafacet,i
)

n∑
i=1

afacet,i

(27)

The search was accelerated using the ELMA and the
rotation step size was assigned random values in the
algorithm. This method was tested by a set of simulation
examples.

The method of [76] developed a concurrent density
distribution and build orientation optimisation framework
of functionally graded lattice structures built by the FDM
process. The optimisation objective was to maximise the
structural performance. The developed framework was
demonstrated via three lightweight part design examples,
whose degree of geometric complexity is from low to high.
The demonstration results suggest that the OBO determined

by the method can achieve better structural performance
than the OBOs generated by slicing software.

In the method of [78], a flexible support platform for the
FDM process was developed. The objective of the method
was to search a build orientation for a part to be built
using the platform that minimises the support structure.
The search was accelerated using the PSOA. The Pareto
solution was generated via the algorithm. The effectiveness
of the method was verified by three fabrication examples.
The verification results show that a 3D model having
cantilever structure can reduce more support structure after
optimisation on the platform.

The method of [80] considered two BOFs, build time and
support structure, when searching an OBO for an FDM part.
The build time in a given build orientation O was estimated
using the number of layers in O. The support structure in
O was quantified by the area of supported region in O.
The search was accelerated by the GA, in which the fitness
function was defined as a weighted sum of layer number and
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supported region area and the rotation step size was set as
1◦. This method was tested by a set of simulation examples.

2.2.4 One-step methods for the SLS process

The method of [32] addressed the concurrent determination
of an OBO and packing of multiple SLS parts. In the
determination process, the build time was considered and
quantified by the build height and feeding powder quantity.
The objectives were to minimise the build height and to
minimise the ratio of X length to Y length at cross-section.
In the packing process, each 3D model to be built was
represented as a voxel structure and an adapted bottom-
left approach was adopted. The concurrent optimisation was
performed using the GA. This method was evaluated via a
set of simulation examples.

In the method of [43], the determination of an OBO for an
SLS part with an objective of minimising the tensile strain
was investigated. The SLS process was applied to build a set
of test specimens. The relationships between strain, stress,

and modulus against build orientations are established via
tensile test experiments. Such relationships were expressed
as

AO
max = 0.000054γ 2 − 0.00082γ + 0.85 (28)

EO
max = 0.00021γ 2 − 0.10γ + 14.00 (29)

MO
young = −0.0224γ 2 + 0.74γ + 263.00 (30)

where AO
max is the maximum strain in a given build

orientation O, EO
max is the maximum stress in O, MO

young
is the Young’s modulus in O, and γ is the angle between
the load direction and the build platform of the machine.
These equations were used in the selection of an OBO. This
method was tested by a simulation example.

The method of [45] established two decision criteria,
surface roughness and build time, to search an OBO for an
SLS part. The surface roughness in a given build orientation
O was predicted using the model in Eq. 11, where RO

facet,i
was calculated by

RO
facet,i =

⎧⎨
⎩

−2.04067 + 0.22θO
i + 0.06722tlayer − 0.001368(θO

i )2 if the ith facet is an upward facet
185 − 9.52Plaser − 0.834θO

i + 0.157tlayer+
0.15P 2

laser − 0.00099(θO
i )2 + 0.0058θO

i tlayer if the ith facet is a downward facet
(31)

where Plaser is the laser power. The build time in O

was quantified by the height of the input STL model in
O. The search was accelerated by the NSGA-II and the
multi-objective PSOA, in which the rotation step size was
set random values. This method was tested by a set of
simulation examples.

In the method of [47], the surface roughness and energy
consumption were optimised simultaneously to search an
OBO for an SLS part. The surface roughness in a given
build orientation O was predicted using the model in Eq. 11,
where RO

facet,i was calculated using a model in [40]. The
energy consumption in O was estimated by

SO
energy = Plaser

vscanshatch

NO
layers∑
i=1

aO
layer,i (32)

where vscan is the scan velocity, and shatch is the hatch
spacing. The optimisation was realised via PFA, which was
performed by the GA. The rotation step size was set as 5◦.
This method was tested via two simulation examples.

The method of [55] optimised the build orientation of
an SLS part with an objective of improving the surface
quality. In this method, the surface roughness in a given
build orientation O was predicted using the model in Eq. 11,
where RO

facet,i was assigned according to a database of the
surface quality. A validation of the method was carried out

with a built monitor bracket. The measurement results of
five different orientations of the monitor bracket showed a
good accordance between the predicted surface roughness
and measured surface roughness.

2.2.5 One-step methods for the LPBF process

The method of [57] simultaneously optimised eight
BOFs, including yield strength, tensile strength, elongation,
hardness, surface roughness, support volume, build time,
and build cost, to determine an OBO for an LPBF Ti6Al4V
part. The yield strength, tensile strength, elongation, and
hardness in a given build orientation O were predicted using
some models based on build orientation and post-processing
heat treatments (stress relief, mill anneal, and hot isostatic
pressing). The surface roughness in O was estimated using
the model in Eq. 11, where RO

facet,i was calculated via

RO
facet,i = 9.4148 + 0.0389θO

i (33)

This equation was established based on a study of
the average surface roughness of LPBF Ti6Al4V samples
in different build orientations and with a constant layer
thickness of 0.03 mm. The support volume in O was
evaluated through geometric analysis. The build time and
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build cost in O were respectively predicted using the models
in [104, 105]

T O
build = hO

model

tlayer
Trecoat + Vmodel + V O

support

tlayershatchvlscan
(34)

CO
build = CO

material + CO
energy + CO

indirect (35)

where hO
model is the height of the input STL model in

O, Trecoat is the recoating time, Vmodel is the volume
of the input STL model, CO

material is the material cost in
O, CO

energy is the energy cost in O, and CO
indirect is the

indirect cost in O. The OOF was constructed using the
WSM, where the weights were determined using triangular
fuzzy numbers. The optimisation was accelerated using
the GA, in which the rotation step sizes were randomly
set. An LPBF part orientation system with a user-friendly
graphical user interface was developed to optimise LPBF
process variables and provide different estimation tools. The
developed system was tested by two simulation examples.

In the method of [64], an optimisation framework based
on fast process modelling is presented to search an OBO for
an LPBF part by minimising the support volume and max-
imum residual stress. The support volume in a given build
orientation O was estimated by a voxel-based approach.
The maximum residual stress in O was predicted using
a voxel-based fictitious domain approach. The OOF was
established using the WSM, where the weights were inves-
tigated via experiments. The optimisation was accelerated
using the PSOA, in which the rotation step sizes were ran-
domly set. Experimental validation of the framework was
conducted on a realistic LPBF part with different geometric
complexity.

The method of [66] addressed the combined problem of
searching an OBO and 2D irregular bin packing solution of
a mixed batch of parts across the same LPBF machine. The
total build cost was used as the objective function, which
was estimated by

CO
build =

Nbins∑
i=1

⎛
⎝RindirectT

O
build,i + PbmatDbmat

Npieces,i∑
j=1

(
Vmodel,j + V O

support,j

)⎞
⎠ (36)

where Nbins is the number of bins, Npieces,i is the
number of pieces in the ith bin, Rindirect is the indirect
cost rate (i.e. the indirect cost per unit time), Pbmat is

the price of the build material, Dbmat is the density
of the build material, and T O

build,i was approximated
via

T O
build,i = tconst + cbheighth

O
build,i + cmvolume

Npieces,i∑
j=1

Vmodel,j + csvolume

Npieces,i∑
j=1

V O
support,j (37)

where tconst is a constant time, hO
build,i is the build height

of the ith bin in O, cbheight is the build height coefficient,
cmvolume is the model volume coefficient, and csvolume is
the support volume coefficient. The search was carried out
by an iterative tabu search procedure, in which decreasing,
random, and fixed rotation step sizes were respectively
tested. To validate the method, a set of simulation exper-
iments were conducted and the searching results were
benchmarked against Materialise Magics, a commercial
process planning software for metal AM.

In the method of [71], a mathematical framework for
minimisation of the structural compliance, build time,
and build cost of an LPBF part in simultaneous part
orientation and density-based topology optimisation. The
surface area and support volume of an input 3D model
were implemented as the physical factors affecting the build
time and build cost. A new approach was developed to

estimate support volume throughout topology optimisation
with variable build orientations. This method was tested via
three simulation examples.

2.2.6 One-step methods for over one processes

The method of [27] directly searched a build orientation for
an SLA/FDM part that can minimise the manufacturing cost
of the part. In this method, the manufacturing cost in a given
build orientation O was defined as

CO
manuf = CO

prebuild + CO
build + CO

postproc (38)

where CO
prebuild is the pre-build cost in O. The three types of

cost were respectively calculated via

CO
prebuild = (Roperat + Rcomput)T

O
procplan + RoperatTsetup (39)
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CO
build = RmachineT

O
build + CO

smat + Cmmat (40)

CO
postproc = RpostprocT

O
postproc + CO

ppmat (41)

where Roperat is the machine operator cost rate, Rcomput is
the computer cost rate, T O

procplan is the process planning time
in O, Tsetup is the machine setup time, Rmachine is the
machine cost rate, Cmmat is the model material cost,
Rpostproc is the post-processing cost rate, and CO

ppmat is
the post-processing material cost in O. This method was
demonstrated through two simulation examples.

In the method of [30], a framework for directly searching
an OBO for an SLA/SLS/FDM/LOM part was presented.
The part accuracy was selected as the primary optimisation
objective and the surface roughness, build time, and build
cost were chosen as the secondary optimisation objectives in
the framework. This method was illustrated via a simulation
example.

The method of [37] developed a model to estimate the
surface roughness in a given build orientation O and a
model to estimate the build time in O:

RO
surface =

n∑
i=1

(
tlayer

4 cos θO
i − (R2

1+R2
2)(1−π/4) sin θO

i

tlayer
+ (R2

1−R2
2)2(1−π/4)2

t3
layer

tan θO
i sin θO

i

)
afacet,i +

n′′∑
j=1

Rsrafacet,j

n∑
i=1

afacet,i

(42)

T O
build = NO

layers

(
Tidle + Dmmat

(
Vmodel

NO
layerstlayerRmha

+ Vmodel

NO
layerstlayerRmsa

))
+ Dsmat

dlbeam

n∑
i=1

afacet,i

NO
layerstlayerRssa

(43)

where R1 is the radius of the round fillet, R2 is the radius
of the corner fillet, Rsr is the constant surface roughness of
the supported region, afacet,j is the area of the j th supported
facet, Tidle is the idle time of the machine between layers,
Dmmat is the density of the model material, Rmha is the
model hatching rate (i.e. the area hatching per unit time),
Rmsa is the model scanning rate (i.e. the area scanning per
unit time), dlbeam is the diameter of the laser beam, and
Rssa is the support scanning rate (i.e. the area scanning
per unit time). The OOF was established using the WSM,
where the weights were determined using triangular fuzzy
numbers. The optimisation objective for searching an OBO
for an SLA/SLS/FDM part is to minimise the OOF. The
genetic algorithm was adopted to accelerate the search
and the rotation step size was assigned random values
in the algorithm. This method was demonstrated by five
simulation examples.

In the method of [40], the required post-machining region
in a build orientation O was considered and quantified using

RO
postmach =

n∑
i=1

afacet,iv
O
binary,i (44)

where vO
binary,i is a binary variable corresponding to the ith

facet in O that was obtained according to

vO
binary,i =

{
1 if RO

surface,i > Rtarget

0 if RO
surface,i ≤ Rtarget

(45)

where Rtarget is a target roughness whose value was set
according to the actual situation, and RO

surface,i is the surface
roughness of the ith facet in O that was estimated by

RO
surface,i = R(θprev)+R(θnext) − R(θprev)

θnext − θprev
(θO

i −θprev) (46)

where θprev is the previous sloping angle, θnext is the
next sloping angle, R(θprev) is the measured roughness at
the previous sloping angle, and R(θnext) is the measured
roughness at the next sloping angle. An OBO for an
SLA/SLS/FDM part was searched with an objective of
minimising the required post-machining region. The search
was accelerated using the GA and the rotation step size was
assigned random values in the algorithm. This method was
tested by a set of simulation examples.

The method of [42] optimised the surface roughness,
build time, and support structure simultaneously to search
an OBO for an SLA/SLS part. The surface roughness was
estimated using the model in Eq. 5. The build time in a given
build orientation O was calculated using a model presented
by [35]. The support structure was quantified by the area
of the supported region. The optimisation objective is to
minimise a weighted sum of surface roughness, build time,
and support structure. The optimisation process was realised
by the TRM. The rotation step size was set as 1◦. This
method was illustrated by three simulation examples. This
method is similar to the method of [39] at several aspects.
But it adds the optimisation of build time and support
structure.
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In the method of [46], the cylindricity error in a given
build orientation O was evaluated by

EO
cylindr =

Nfcyl∑
i=1

(
tlayer sin ψO

i

)
(47)

where Nfcyl is the number of facets with cylindricity
tolerance, and ψO

i is the angle between the cylinder axis
and O. An OBO for an SLA/SLS part was directly searched
with an objective of minimising the cylindricity error. This
method was illustrated through a simulation example.

The method of [48] searched an OBO for an
SLA/SLS/FDM part via simultaneously optimising build
height, surface roughness, and material utilisation. The
build height in a given build orientation O was calculated
by

hO
build = hO

model/(1.2lObbdiag) (48)

where lObbdiag is the length of diagonal of the bounding box
with respect to O. The surface roughness in a given build
orientation O was evaluated via

RO
surface =

n∑
i=1

((
70.82tlayer/ cos θO

i

)
afacet,i

)
n∑

i=1
afacet,i

(49)

The material utilisation is the percentage of material used
in building a hollowed SLA part and was quantified as ratio
of the volume of hollowed model to the volume of solid
model. The optimisation process was realised by the GA,
in which the rotation angles were generated randomly in
their range. This method was tested by three simulation
examples.

In the method of [49], a multi-sphere model was used
to optimise the build orientation of an AM part. Two
criteria, theoretical volume deviation and model height,
are considered in the optimisation. The search of an OBO
was realised via PFA, which was performed using the GA.
This method was tested by three simulation examples. The
method of [50] developed a unit sphere discretisation and
search approach to optimise the build orientation of an AM
part with minimum volumetric error. In this approach, a
unit sphere was uniformly discretised first to express the
potential build orientations in 3D space. Then, each facet of
the STL model was mapped to the discretised unit sphere
as a great circle, which denotes the optimal orientation for
this facet. To find the globally OBO, both exhaustive search
and genetic algorithm-based search were carried out. This
method was demonstrated via three simulation examples.

In the method of [51], how the support structure of an
AM part can be optimised via changing the build orientation
of the part was examined. The objective function of support
volume was defined as a continuous function with respect

to the build orientations. An efficient algorithm running on
a graphics processing unit was presented to compute the
support volume in a given build orientation. The presented
algorithm was extended to search a build orientation with
minimum support volume. This method was validated by a
set of simulation examples.

The method of [52] searched an OBO for an AM
part directly with objectives of reducing the cylindricity
and flatness errors and minimising the support volume.
The cylindricity error in a given build orientation O was
evaluated using the model in Eq. 47. The flatness error in O

was estimated via

EO
flatness =

Nfflat∑
i=1

(
tlayer cos θO

i

)
(50)

where Nfflat is the number of facets with flatness tolerance.
The support volume in O was calculated by a voxel-based
approach. The OOF was constructed using the WSM, in
which the weights were manually specified. This method
was tested via two simulation examples. The method of [58]
extended the method of [52] via adding the consideration
of perpendicularity and parallelism errors, which were
respectively estimated via

EO
perpend =

Nfperp∑
i=1

(
tlayer cos θO

i

)
(51)

EO
parall =

Nfpar∑
i=1

(
tlayer cos θO

i

)
(52)

where Nfperp is the number of facets with perpendicularity
tolerance, and Nfpar is the number of facets with parallelism
tolerance.

In the method of [53], a perceptual model to search
build orientations that avoid placing support in perceptually
significant region was presented. The OOF was formulated
as a weighted sum of metrics including supported region
area, visual saliency, preferred viewpoint, and smoothness
preservation. A training-and-learning methodology was
developed to obtain a closed-form solution for the presented
model. The performance of the model was demonstrated
via a set of simulation and fabrication examples. The main
characteristic of this method is to introduce the ELM into
part orientation for SLA/FDM. Because of this, the search
efficiency is generally better than direct search and search
based on optimisation algorithms. However, the training of
the model requires a certain amount of sample data, which
is sometimes not so easy to obtain in practice.

The method of [54] established an integrated framework
for optimisation of AM process variables via geometric
analysis. The optimisation objectives were to ensure the
manufacturability and to minimise the build complexity.
The OOF was formulated using the WSM, in which the
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weights were determined by an approach based on hypothet-
ical equivalents and inequivalents. The optimisation process
was performed using the GA. This methods was tested via
two freeform surface models.

In the method of [56], a fast determination strategy of
an OBO for an AM part with an objective of minimising
the volumetric error was presented. The staircase effect
between two consecutive layers was analysed and an
estimation model of volumetric error was established as

EO
volum =

n∑
i=1

(
1

2
tlayer| cos ϑi |afacet,i

)
(53)

The area weighted normal was introduced to convert a
part orientation problem to a least absolute deviation linear
regression problem. The PCABOA was used to solve the
converted problem. The effectiveness and efficiency of the
presented strategy were evaluated on several simulation and
fabrication examples.

The method of [59] considered eights criteria, including
support volume, supported region area, support accessibil-
ity, number of layers, number of small openings, number
of thin regions, number of sharp corners, and average cusp
height, in optimisation of the build orientation of an AM
part. The OOF was constructed using the WSM, in which
the weights were manually assigned. The optimisation was
implemented using the Matlab routine based on global
search algorithm. This method was tested via a simulation
example.

In the method of [63], the staircase effect and supported
region area were optimised simultaneously to search an
OBO for an AM part. The staircase effect in a given build
orientation O was evaluated by

EO
scase =

{
Eq. 22 if

∣∣oTvi

∣∣ �= 1
0 if

∣∣oTvi

∣∣ = 1
(54)

The supported region area was estimated via

AO
sregion =

{
Eq. 23 if

∣∣oTvi

∣∣ �= −1 and the ith facet is not on the build base
0 if

∣∣oTvi

∣∣ = −1 or the ith facet is on the build base
(55)

The search was accelerated using the PSOA. This method
was illustrated via three simulation examples.

The method of [75] addressed the objective function of
the build cost of an SLA/FDM/IJ part via PFA, which was
carried out by the NSGA-II and the GDE3. The build cost
in a given build orientation O was evaluated by

CO
build = T O

buildRpcost + (Mmodel + MO
support)Rmcost (56)

where Mmodel is the mass of the input 3D model, MO
support is

the mass of the support in O, Rpcost is the production cost
rate (i.e. the production cost per unit time), and Rmcost is the
material cost rate (i.e. the material cost per unit mass). This
method was tested by three simulation examples.

In the method of [77], the support volume, surface
roughness, salient area roughness, and mechanical property
were optimised simultaneously to determine an OBO for
an SLA/FDM part. The support volume in a given build
orientation O was predicted using

V O
support =

N∑
i=1

⎛
⎝agrid,i

N ′∑
j=1

hO
support,i,j

⎞
⎠ (57)

where N is the number of grids, N ′ is the number of
supported points, agrid,i is the area of the ith grid, and

hO
support,i,j is the support height of the j th supported point of

the ith grid. The surface roughness in O was estimated by

RO
surface = wfsr

n∑
i=1

(
1

2
aO

facet,i cos θO
i

)
+ wsfsr

n′′∑
j=1

aO
facet,j

(58)

where wfsr is the weight of the facet surface roughness and
wsfsr is the weight of the supported facet surface roughness.
The salient area roughness in O was evaluated using

RO
area =

n∑
i=1

(
cfacet,i

(
1

2
wfsra

O
facet,i cos θO

i + wsfsra
O
facet,i

))

(59)

where cfacet,i is the cone curvature of the ith facet. The
mechanical property in O was predicted via

P O
mech =

N ′′∑
i=1

(
ωi

∣∣∣Smax,i cos ϕO
i

∣∣∣) (60)

where N ′′ is the number of critical sections, ωi is the
weight of the ith critical section, Smax,i is the maximum
normal stress in the ith critical section, and ϕO

i is the angle
between Smax,i and O. The OOF was established using
the WSM, where the weights were manually specified. The
optimisation was realised using the PSOA. This method was
validated by a set of fabrication examples.
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The method of [79] developed a build orientation
determination algorithm to minimise the amount of shape
modifications required to make the shape manufacturable
with a given AM process. The effectiveness of the algorithm
was demonstrated via a set of simulation and fabrication
examples.

In the method of [81], the build orientation and topo-
logical layout of an AM part were optimised simulta-
neously to satisfy the overhanging angle constraints for
part self-support. These overhanging angle constraints were
converted into two global constraints via the Heaviside
projection-based aggregations. The first global constraint
controls the overhanging angle of the interface inside the 3D
model to eliminate the internal support. The second global
constraint controls the angle of the 3D model boundary
to reduce the external support. The effectiveness and effi-
ciency of the method in build orientation optimisation and
overhanging angle control were demonstrated via several
simulation and fabrication examples.

2.3 Two-step methods

A two-step method, as depicted in Fig. 4, divides the part
orientation task into two successive steps. The first step
is to generate a certain number of ABOs from infinite
possible orientations. The second step is to select an
OBO from the generated ABOs. In the existing two-step
methods, the generation of ABOs is realised by feature
recognition, convex hull generation, quaternion rotation, or

Fig. 4 General flow of a two-step method for part orientation

facet clustering. The selection of an OBO is carried out via a
multi-objective decision-making (MODM) process. In this
process, certain estimation models of the considered BOFs
are first used to estimate the values of the factors under
each ABO. Then, a summary value of the considered factors
under each ABO is calculated using certain aggregation
models. An OBO is selected according to the calculated
summary values.

From the principle above, it can be observed that a
two-step method focuses on a certain number of ABOs. It
will not spend time in performing computation on a large
number of meaningless orientations like a one-step method.
However, a two-step method generally has high risk of
missing the true OBO, because no matter what technique is
adopted, it is usually difficult to ensure that the generated
ABOs must contain the true OBO.

During the past three decades, the research of part
orientation via the two-step strategy has also gained
importance within the academia. A number of two-step
methods have been proposed in this period. A brief
summarisation of a set of representative two-step methods
is given in Table 3.

In the following subsections, an overview of the two-step
methods in Table 3 is given on the basis of their adopted
approach in the generation of ABOs.

2.3.1 Two-step methods based on feature recognition

The method of [106] classified the features of 3D models
into fourteen types. Based on these features, a set of rules, as
listed in Table 4, were developed to infer the ABOs. Given
the 3D model of an SLA part, the method first identified the
types of features included in the model and then determined
the ABOs of the part according to the rules in Table 4. An
OBO of the part was selected from the determined ABOs
using an MODM approach, in which part accuracy and build
time were considered. The part accuracy in an ABO O was
evaluated by

AO
part =

NO
ifs∑

i=1

(WiNi) (61)

where NO
ifs is the number of the identified features in O, Wi

is the weight of the ith identified feature that was assigned
according to Table 4, and Ni is a number associated with
the ith identified feature. The build time in O was assumed
to be directly proportional to the number of layers in O.
An OBO was selected with a primary objective of attaining
the best possible part accuracy and a secondary objective
of minimising the build time. The working process of the
method was illustrated by two simulation examples.

In the method of [107], the features of 3D models were
divided into hole, revolution surface, round surface, thin
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Table 3 A brief summarisation of representative two-step methods

Two-step method Processes ABO generation OOF PP PA SQ SS BT BC PT PC

[106] SLA Feature recognition MMFs � �
[107] SLA Feature recognition MMFs � � �
[100] SLA Feature recognition WSM � � �
[108] SLA Feature recognition DF � � �
[99, 109] 4 processes Convex hull generation WSM � � � �
[110] AM processes Convex hull generation MMFs �
[111] AM processes Feature recognition WSM � � � � � � � �
[112] AM processes Feature recognition WSM � �
[113] LPBF Feature recognition WSM � �
[114] SLA Quaternion rotation OWAO � � �
[115] AM processes Feature recognition FAOs � � � � � � � �
[116] SLA, FDM Quaternion rotation WSM � � � � � �
[117] AM processes Facet clustering WSM � �
[118, 119] LPBF Facet clustering WSM � � � � �

OOF stands for overall objective function; PP stands for part property; PA stands for part accuracy; SQ stands for surface quality; SS stands for
support structure; BT stands for build time; BC stands for build cost; PT stands for post-processing time; PC stands for post-processing cost;
MMFs stands for min-max functions; WSM stands for weighted sum model; DF stands for deviation function; 4 processes include SLA, SLS,
FDM, LOM; OWAO stands for ordered weighted averaging operator; FAOs stands for fuzzy aggregation operators

structure, inter/external surface, plane, freeform surface,
inclined plane, and overhang. On the basis of these features,
a set of rules were designed to generate the ABOs for
an SLA part with an objective of improving the surface
quality of the part. An OBO for the part was determined
by a decision support system with objectives of minimising
the build time and minimising the amount of support
structure.

The method of [100] provided a decision support system
to help SLA users in part orientation. In this system,
overhanging region area, support volume, build time, build
cost, and problematic features, are considered concurrently
to recommend a desirable orientation to an end-user. The
overhanging region area, support volume, build time, and
build cost in an ABO O was estimated using certain
estimation models. The problematic features in O were

Table 4 The rules for part orientation developed in [106]

Type of feature Build orientation Staircase Overcure Support Weight

Upfacing horizontal plane η = 0◦ 1

Perpendicular plane η = 90◦ 1

Base plane η = 180◦ � � W2 + W3 + 1

Downfacing horizontal plane no support η = 180◦ � W3

Downfacing horizontal plane need support η = 180◦ � � W2 + W3

Upward sloping plane (α, β) = (0◦, 90◦) � − cos η/2

Downward sloping plane (α, β) = (90◦, 150◦) � � W3 + cos η/2

Downward sloping plane no support (α, β) = (150◦, 180◦) � � W3 + cos η/2

Downward sloping plane need support (α, β) = (150◦, 180◦) � � � sin η/2 − 1

Horizontal cylinder (hole) η = 0◦ (180◦) 1

Perpendicular cylinder (hole) no support η = 90◦ � � W3

Perpendicular cylinder (hole) need support η = 90◦ � � � W2 + W3

Sloping cylinder (hole) no support (α, β) = (0◦, 90◦) � � W3 − sin η/2

Sloping cylinder (hole) need support (α, β) = (60◦, 90◦) � � � cos η/2 − 1

η is the angle between the normal vector of the feature and the build orientation
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categorised into pipes, shells, critical surfaces, holes, axes,
dimensions, and extents. The OOF was constructed using
the WSM, in which the weights were manually specified.
The performance of the system was tested via three
simulation examples.

In the method of [108], an integrated process planning
framework was developed to assist SLA users in selecting
proper values of build orientation, layer thicknesses, and
recoating variables. In this framework, the ABOs of an
SLA part were generated using a feature-based approach.
An OBO of the part was selected based on a balance
of objectives specified by the build time, part accuracy,
and surface roughness, which was achieved by a deviation
function. This method was tested on a 3D model with
non-trivial features.

The method of [111] introduced the concept of AM
feature and classified AM features into cylinders, planes,
cones, and structural units. A set of rules, as depicted in
Fig. 5, were developed to determine the ABOs for cylinders,
planes, and cones. The ABOs of an AM part were obtained
via combining the ABOs of all recognised AM features
included in the 3D model of the part and removing the
duplicated ones. An OBO of the part was selected from
the obtained ABOs using an integrated MODM model in
[120]. In the selection process, the mechanical properties,
part accuracy, surface quality, support volume, build time,
build cost, post-processing, and favourableness of AM
features are considered at the same time. The values of
these BOFs in an ABO were predicted using an AM process
planning platform named KARMA Tool. This method was
demonstrated via two simulation examples.

In the method of [112], a two-step strategy was
introduced to address the part orientation problem for multi-
part production in AM. First, the feature-based approach
in [111] was used to generate a set of finite ABOs for
each part within a given part group. Second, an improved
genetic algorithm was adopted to search a globally optimal
combination of build orientations to minimise the total build
time and build cost. This method was illustrated via a case

study of orientating sixteen parts simultaneously on a build
chamber.

The method of [113] developed a system for automatic
determination of part build orientations in LPBF. The
system first read a STEP model and extracted its
geometrical and topological information. Then the features
and their geometric properties were respectively recognised
and extracted. Based on the feature information, feasible
build orientations were determined with an objective of
maximising the dimensional and geometrical tolerances of
all features, which were estimated using

T O
dimgeom =

NO
ifs∑

i=1

⎛
⎜⎜⎜⎝Wi

NO
ifsafeature,i
n∑

j=1
afacet,j

⎞
⎟⎟⎟⎠ (62)

where afeature,i is the area of the ith feature. An OBO was
selected using an MODM approach based on the WSM,
in which the weights were manually assigned and part
accuracy and build time were considered. This method was
tested by a simulation example.

In the method of [115], the ABOs of an AM part
were generated using the feature-based approach in [111].
The OBO of the part was determined using an MODM
approach based on a fuzzy weighted power partitioned
Muirhead mean operator [121] and a fuzzy power prioritised
average operator [122]. The reason for using this approach
is that the operators can capture the correlative and priority
relationships among the considered BOFs when aggregating
their values, while the WSM, min-max functions, and PFA
used in the existing CAPO methods always assume that the
BOFs are independent of each other. In the determination
process, the mechanical strength, part accuracy, surface
roughness, support volume, build time, build cost, post-
processing, geometric features, and need for filler material
were identified as BOFs. The values of these BOFs in an
ABO were also estimated using the KARMA Tool. This
method was demonstrated via two simulation examples

Fig. 5 Rules for generation of
the ABOs of AM features in
[111]
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together with qualitative and quantitative comparisons
based on them.

2.3.2 Two-step methods based on convex hull generation

The methods of [99, 109] determined the ABOs for an
SLA/SLS/FDM/LOM part from the surfaces of the convex
hull of its 3D model, which were manually identified
by users. An OBO for the part was selected from the
determined ABOs using an MODM approach based on the
WSM, in which three BOFs, including surface roughness,
build time, and manufacturing cost, were considered
simultaneously and their weights were assigned manually.
The surface roughness in an ABO O was estimated by the
model in Eq. 42. The build time in O was predicted by the
model in Eq. 43. The manufacturing cost in O was evaluated
via

CO
manuf = Rlcost(T

O
preproc + T O

postproc) + RbcostT
O

build + (1 + r)

×(DmmatVmodelPmmat + DsmatV
O
supportPsmat) (63)

where Rlcost is the labour cost rate (labour cost per unit
time), Rbcost is the build cost rate (build cost per unit time),
T O

preproc is the pre-processing time in O, r is the material
waste ratio, Pmmat is the price of model material, and
Pmmat is the price of the support material. These methods
were demonstrated via several simulation and fabrication
examples.

In the method of [110], an algorithm for automatic
determination of the build orientations of an AM part
was developed. This algorithm determined an OBO for
minimising the amount of support structure according to the
convex hull principle: (1) Identify the outward unit normal
vectors of an input STL model; (2) Generate the convex
hull of the model; (3) Compare the STL model facets and
convex hull facets for matches; (4) Merge facets in list of
potential build surfaces; (5) Determine a build surface with
least amount of overhanging region. The working process of
the algorithm was illustrated by a simulation example.

2.3.3 Two-step methods based on quaternion rotation

The method of [114] presented quantitative suggestions for
build orientation selection for the SLA process. In this
method, the ABO space was first expended to infinity
via quaternion rotation. Then the ABOs were determined
according to the randomly acquired rotation axes. An
OBO was selected using a MODM approach based on the
proportional-integral-derivative control model, in which the
surface roughness, support volume, and build time were
considered concurrently. The surface roughness in an ABO

O was estimated by the model in Eq. 42. The support
volume in O was evaluated by

V O
support = tbasea

O
hproj +

(
(2ZO

min + ZO
max)/3 + dbpp

)
afacet,i cos θO

i

(64)

where tbase is the base thickness, aO
hproj is the horizontal

projection area of the minimum bounding box, ZO
max is the

bounding box maxima in the Z direction with respect to O,
and dbp2m is the distance between the base plane and the
part. The build time in O was predicted via

T O
build =

n∑
i=1

(
afacet,i sin θO

i

)
tlayervscan

+ V O
support

tlayervscanshatchx

+ V O
support

tlayervscanshatchy
(65)

where shatchx is the hatch spacing in X direction, and
shatchy is the hatch spacing in Y direction. The estimated
values of the considered BOFs were aggregated using the
ordered weighted averaging operator, in which the weights
were manually specified. The method was tested by four
simulation examples.

In the method of [116], personalised design of the build
orientation of an SLA/FDM part was studied. A certain
number of ABOs of the part were also determined via
quaternion rotation. An OBO was selected using a negative
feedback decision-making model, which was established
by integrating the proportional-integral-derivative control
model and the TOPSIS. The decision-making model
considered simultaneously the surface roughness, support
volume, build time, manufacturing cost, and flatness
error, whose weights were assigned manually. The surface
roughness in an ABO O was estimated by the model in
Eq. 42. The support volume in O was evaluated using the
model in Eq. 64. The build time in O was predicted by the
model in Eq. 65. The manufacturing cost in O was estimated
using the model in Eq. 63. The flatness error in O was
predicted via

EO
flatness =

n∑
i=1

((∣∣(tlayer+εz) cos θO
i

∣∣+∣∣εxy sin θO
i

∣∣) afacet,i
)

n∑
i=1

afacet,i

(66)

where εxy is the XY-error, and εz is the Z-error. The
effectiveness of the method was demonstrated by several
simulation and fabrication examples.

2.3.4 Two-step methods based on facet clustering

The method of [117] generated the ABOs of an AM part via
a facet clustering-based approach and determined an OBO
for the part via an MODM approach based on statistical
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Fig. 6 General flow of the facet
clustering-based approach in
[117]

evaluation. The facet clustering-based approach, whose
general flow is shown in Fig. 6, includes clustering of facets
and generation of ABOs. In the clustering of facets, the STL
model of an AM part, which is expressed by a finite number
of facets, was used as the input of the k-means clustering
algorithm, where k was determined by the Davies-Bouldin
index. A certain number of meaningful clusters of facets
were produced based on a facet clustering rule of “The
observed data objects for the clustering of facets are the
normal vectors of facets and the distance metric is a metric
of angle between the normal vectors of facets in 3D space”.
In the generation of ABOs, the ABOs of each facet cluster
were generated according to an ABO generation rule of
“The unitised central vector of all normal vectors in a cluster
and its opposite vector directly serve as the ABOs of this
cluster”. The ABOs of the part are obtained via combining
the ABOs of all clusters and removing duplicated ABOs
among them. The MODM approach selected an ABO from
the generated ABOs based on a decision index, which
implicitly described the influence of a build orientation on
the surface quality and support structure. The decision index
was formulated using the WSM, where the weights were
specified manually. This method was tested via a set of
simulation examples.

An important characteristic of the method of [117] is that
it can work for both regular and freeform surface models.
But the method could generate unstable and unreasonable
ABOs and would not be efficient for a high-resolution STL
model. The method of [118] addressed these limitations
by replacing the k-means clustering algorithm with an
accelerated HDBSCAN* (hierarchical density-based spatial

clustering of applications with noise*) algorithm. The
general flow of this method is shown in Fig. 7. The method
also includes clustering of facets and generation of ABOs.
In the clustering of facets, the STL model of an LPBF
part was used as the input of the accelerated HDBSCAN*
algorithm. A certain number of meaningful clusters of facets
were produced based on the same facet clustering rule and
the k-cluster lifetime partition criterion. In the generation
of ABOs, whether the obtained facet clusters needs to
be further refined is first judged. If a refinement is no
longer required, the ABOs of each cluster will be generated
according to the same ABO generation rule. The ABOs of
the part are obtained via combining the ABOs of all clusters.
Otherwise, a refinement of clusters will be carried out
according to a cluster refinement rule of “The top 20 (200)
facet clusters in area are used to generate ABOs if the input
STL model is a regular (freeform) surface model”. Then a
smaller number of clusters will be achieved to generate the
ABOs of the part. An OBO of the part was determined using
an MODM approach in the method of [119]. This approach
considered simultaneously the support volume, volumetric
error, surface roughness, build time, and build cost. The
support volume in an ABO O was evaluated using Autodesk
Meshmixer. The volumetric error in O was calculated by the
model in Eq. 53. The surface roughness in O was predicted
using the model in Eq. 11, where RO

facet,i was calculated via
Eq. 33. The build time in O was estimated by the model in
Eq. 34. The build cost in O was estimated by the model in
Eq. 35. The OOF was established using the WSM, in which
the weights were determined using a scaling approach based
on pairwise comparison. The effectiveness of the methods

Fig. 7 General flow of the facet
clustering-based approach in
[118]
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was demonstrated via a set of simulation examples together
with qualitative and quantitative comparisons.

3 Issues in CAPO for AM

Based on the review of the state-of-the-art, the issues in
CAPO for AM can be discussed from the following aspects:

(1) Process of solving a part orientation problem: A one-
step method solves a part orientation problem via a
step of searching an orientation that can meet one
or more objectives. A main issue in this process is
the difficulty in determining a proper rotation step
size or setting suitable controlling parameters. As
analysed in Section 2.2, a large rotation step size
can improve the efficiency but will increase the risk
of missing the true OBO. A small rotation step
size can improve the accuracy but will lengthen the
search time. A random rotation step size would take
a long time to obtain accurate results. Some one-
step methods [38, 39, 42, 47, 65, 80] set the rotation
step size as 1◦ or 5◦. Other one-step methods [35,
37, 40, 41, 45, 48, 57, 64, 74] use random rotation
step sizes. A few one-step methods [38, 66] test
different rotation step sizes. There is no answer from
the existing one-step methods in terms of what is
the most appropriate rotation step size. It is thought
that a proper rotation step size should be able to
achieve a trade-off between the accuracy and the
efficiency. As also analysed in Section 2.2, whether
the set controlling parameters are optimal would
significantly influence the effectiveness of the entire
method. But determination of an optimal group of
controlling parameters is not an easy task. In the
existing PBOA-based methods [32, 35–38, 40, 41,
44, 45, 47–50, 54, 57, 61, 63, 64, 69, 70, 74, 75,
77, 78, 80], the controlling parameters are manually
assigned according to experience. A two-step method
addresses a part orientation problem through a step
of generating a certain number of ABOs and a step
of selecting an OBO from the generated ABOs on
the basis of one or more objectives. A main issue in
this process is the high risk of missing the true OBO.
As described in Section 2.3, the existing two-step
methods generate ABOs via feature recognition [100,
106–108, 111–113, 115], convex hull generation [99,
109, 110], quaternion rotation [114, 116], and facet
clustering [117–119]. The use of these techniques is
helpful for improving the efficiency. But no matter
what technique is used, it is generally difficult to
ensure that the generated ABOs must contain the true
OBO.

(2) Generation of ABOs: The existing approaches based
on feature recognition are not applicable for freeform
surface models, as it is impossible to define the
features and ABOs of features for such models.
In addition, automatic recognition of features from
a complex 3D model with multiple overlapping
features remains a challenging task [123–125]. The
existing approaches based on convex hull generation
have an accuracy issue, sine the convex hull is not
the exact 3D model. The existing approaches based
on quaternion rotation cannot ensure that the true
OBO is included in the determined ABOs, because
the ABOs are determined according to the randomly
acquired rotation axes. The existing approaches based
on facet clustering would not be effective when the
considered BOFs do not include support volume,
build time, and build cost. That is, they do not
have satisfying flexibility. The facet clustering rule,
ABO generation rule, and cluster refinement rule
used in these approaches can theoretically benefit
the optimisation of the total support volume. The
ABOs generated by them are effective when the
considered BOFs include support volume. However,
the rules would be ineffective when only other BOFs
are considered.

(3) Consideration of BOFs: Different CAPO methods
may consider different BOFs for the same AM
process. This can be very confusing, because there is
not a guideline or standard that states which BOFs
should be considered for a certain AM process.

(4) Estimation of the values of BOFs: There may be a
number of different estimation models for a BOF
for an identical AM process. It is unclear which
one is the most accurate and efficient, since there
is not an existing CAPO method that makes a
comprehensive comparison of the performance of the
different estimation models.

(5) Determination of the weights of BOFs: The weights
of the considered BOFs reflect their relative impor-
tance for search or selection of an OBO. A small
variation of the weights can significantly influence
the determined OBO. In most of the existing CAPO
methods, the weights are assigned manually. Gener-
ally, it is not easy to specify proper weights for the
considered BOFs, as this would require a deep under-
standing of how the BOFs affect the as-built part. In
addition, the considered BOFs are usually conflict-
ing or interrelated, which makes the assignment of
their weights more complicated [17]. A few methods
determine the weights via triangular fuzzy numbers
[37, 57], an approach based on hypothetical equiv-
alents and inequivalents [54], certain experiments
[60, 64], and a scaling approach based on pairwise
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comparison [119]. Compared to direct assignment,
these approaches seem more convincing, but they still
require a great deal of know-how.

(6) Aggregation of the values of BOFs: In the exist-
ing CAPO methods, the most used aggregation
approaches are the MMFs, WSM, and PFA. A set of
MMFs is the most intuitive aggregation approaches
for solving a multi-objective problem. But it is gen-
erally impossible or difficult to search an OBO that
can simultaneously satisfy all min/max conditions.
The WSM is a popular aggregation approach in MOO
and MODM because of its simplicity and efficiency.
However, determination of proper weights of the con-
sidered BOFs, as discussed in (5), is not an easy
task. Further, the use of the WSM produces a sin-
gle OBO instead of a set of solutions to be later
compared, which prompts the application of the PFA
[17]. Compared to a single OOF established via the
WSM, Pareto-based optimisation can better reflect
the characteristics of individual objective functions.
However, evaluating a Pareto front is a complicated
and time-consuming task [126]. Apart from their
respective weaknesses, a common limitation of the
MMFs, WSM, and PFA is that the complex relation-
ships among the considered BOFs are not captured in
them. Generally, the different considered BOFs are
not independent of each other, but are conflicting or
interrelated. For example, large support volume will
lead to long build time and post-processing time and
high build cost and post-processing cost. All of the
three aggregation approaches assume that the BOFs
are independent of each other when aggregating their
values. The method of [115] copes with this issue
using fuzzy aggregation operators. But the use of
these operators leads to lower efficiency with respect
to the use of the WSM, since the time complexity of
the used operators (O(m′!m′)) is significantly higher
than that of the WSM (O(m′)).

(7) Classification of Pareto OBOs. Since a part orienta-
tion problem is essentially a multi-objective problem,
its solution set usually consists of a relatively large
number of Pareto optimal solutions [126]. A solution
in this set is not a true OBO. Therefore, strictly speak-
ing, a Pareto OBO determined from the set is not the
true OBO, but a good build orientation. This raises a
question of how close to the true OBO does a Pareto
OBO need to be classified as a good build orientation.
For this question, the existing CAPO methods do not
provide an appropriate answer.

(8) Techniques for OBO search: Many existing one-step
methods search an OBO directly under certain opti-
misation objectives. Direct search, sometimes known
as exhaustive search, is a simple and crude search

approach. This approach is desirable when the solu-
tion space is small. But it has very low efficiency for
OBO search, since the solution space of OBO search
is infinite. To accelerate the search of an OBO, a
number of other one-step methods use optimisation
techniques. Compared to direct search, optimisation
technique-based search is helpful to improve the effi-
ciency. But certain optimisation techniques can only
achieve good performance for certain optimisation
problems. So far, various optimisation techniques
have been applied to solve a part orientation prob-
lem. It is not clear which optimisation algorithm is
the most suitable for this problem.

(9) Techniques for OBO selection: The existing two-step
methods select an OBO under certain objectives
using the MODM approaches based on the WSM,
deviation function, MMFs, fuzzy aggregation
operators, and TOPSIS. Each of these techniques
was used for specific purpose. But it is unclear which
technique is the most suitable for OBO selection.

(10) Demonstration of the effectiveness: Effectiveness is
the most important criterion for evaluating a CAPO
method. In general, whether a CAPO method is
effective depends on whether the OBO determined
by it can meet the pre-set objectives. The best way
to demonstrate the effectiveness of a CAPO method
is to carry out actual fabrication experiments to
compare the estimated and measured values of the
considered BOFs. Among the existing CAPO meth-
ods, the methods of [53, 56, 60, 61, 65, 67, 69, 73,
77–79, 81, 99, 109], and [116] adopted this way.
Another feasible way is to use the OBO determina-
tion results of a commercial AM process planning
software as benchmark. For example, the method
of [66] was validated via conducting a quantita-
tive comparison experiment, in which the OBO
determination results were benchmarked against
Materialise Magics. Apart from these methods,
the remaining methods just illustrated their work-
ing process via one or more simulation examples,
which would be insufficient for demonstrating their
effectiveness.

(11) Quantitative comparison among different CAPO
methods. Making a comparison between the deter-
mined OBO and estimated results of a new CAPO
method and those of the existing methods is another
feasible way to validate the new method. But there is
yet no evidence that any literature has included such
a comparison. The main reason is that the compar-
ison can only be carried out when all methods to be
compared are for the same AM process and consider
the same BOFs. These conditions are a bit harsh for
the existing CAPO methods.

1320 Int J Adv Manuf Technol (2021) 115:1295–1328



(12) Consideration of multi-part production: An impor-
tant characteristic of most AM processes is the
support of multi-part production [127, 128]. In addi-
tion to the methods of [112] and [66], the remaining
CAPO methods focus on build orientation determi-
nation for production of one single part. They are not
applicable for the situation where a group of parts in
the same build need to be orientated simultaneously.

4 Future research directions

Detailed work in the review of the existing CAPO methods
and the discussion of their issues revealed a number of
interesting future research directions, which are outlined as
follows:

(1) Determination of personalised rotation step size or
controlling parameters. What is the best rotation step
size or the best group of controlling parameters?
This question is very difficult to answer, because
the rotation step size or controlling parameters is or
are related to the geometry of the input 3D model.
The 3D models with different geometries would have
different best rotation step sizes or group of controlling
parameters. For example, the best rotation step size
of a regular surface model is sometimes 90◦, while
that of a freeform surface model is generally small.
To calculate the personalised rotation step size or
controlling parameters for an input 3D model, a
specialised approach is required. This approach can
be developed via geometry analysis. One can also
consider using machine learning algorithms in the
development.

(2) Development of new rules for facet clustering, cluster
refinement, and ABO generation. The latest two-
step method based facet clustering can work for
both regular and freeform surface models, produce
stable and reasonable results, and provide satisfying
efficiency. But the method would not be effective if it
is applied to the AM processes that are free of support
structure. The reason is that the facet clustering rule,
ABO generation rule, and cluster refinement rule used
in the method can only meet an objective of optimising
the support volume. To apply the method to the
situation where support volume is not considered, new
rules for facet clustering, cluster refinement, and ABO
generation need to be developed.

(3) Development of a guideline or standard to recommend
the BOFs for each commonly used AM process.
The BOFs considered for different AM processes
are generally not the same, since each AM process
has its characteristics and application range. For
example, the FDM process is a cheap technique that

is mainly applied to manufacture the products for toy
or hobby use, while the LPBF process is a promising
metal AM technique that can be applied to produce
functional components in high-value industries. The
BOFs related to part property, such as the strength,
elongation, hardness, residual stress, flexural modulus,
and fatigue performance, are usually not important for
the FDM process, but they are of great importance for
the LPBF process. To avoid the confusion in study of
the part orientation problem, a guideline or standard
for recommending the BOFs for each commonly used
AM process is required.

(4) Determination or establishment of an accurate and
efficient estimation model for each BOF. Accuracy
is the most critical performance indicator for an
estimation model of a BOF, since the accuracy of the
model has a direct influence on the effectiveness of
the CAPO method considering this BOF. Efficiency
is another important performance indicator for an
estimation model of a BOF, because most of the
time in the entire part orientation process is spent
on estimation of the values of BOFs [119]. In
general, the accuracy and efficiency of an estimation
model are negatively correlated. For example, accurate
estimation of support volume is very time-consuming.
That is why some of the existing CAPO methods used
very rough models to estimate the support volume. But
if the support volume is not accurately calculated, the
prediction of build time, build cost, post-processing
time, and post-processing cost will not be accurate and
the effectiveness of the entire CAPO method will be
negatively affected. To ensure the effectiveness and
efficiency of a CAPO method, an estimation model
for each BOF which can achieve a trade-off between
the accuracy and efficiency needs to be determined or
established.

(5) Determination of the reference weights of BOFs: In
view of the fact that the weights of BOFs in most of
the existing CAPO methods are manually assigned,
it is of necessity to carry out specialised studies and
conduct certain experiments to determine the weights
of the recommended BOFs for each commonly used
AM process. The determined weights can be used as
reference when developing new CAPO methods.

(6) Development of a guideline to recommend the most
suitable technique for OBO search or selection.
In view of the facts that various OBO search or
selection techniques have been used in the existing
CAPO methods and it is not clear which one is
the most suitable for a part orientation problem, it
is of importance to conduct quantitative comparison
experiments and develop a guideline to address the
question.
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(7) Comparison of the effectiveness of different CAPO
methods for each commonly used AM process. In
general, the effectiveness of a CAPO method mainly
depends on the accuracy of the used estimation models
of BOFs and the effectiveness of the used OBO
determination approach. To this end, the comparison
can be carried out via comparing this indicator for a
certain number of parts. To make future comparisons
between a new CAPO method and the existing
methods more convenient, an open source benchmark
for evaluating a CAPO method needs to be developed.

(8) CAPO for multi-part production. In view of the
facts that support of multi-part production is an
important characteristic of most AM processes and
most of the existing CAPO methods focus only on
part orientation for production of one single part, it
is of necessity to develop new CAPO methods for
multi-part production.

(9) Integration of design task and other process planning
tasks with part orientation. The quality and property
of an as-built part are synthetically affected by
multiple design and process variables (e.g. topology,
build orientation, support structure, slices, tool path,
and process parameters). It is sometimes insufficient
to study the part orientation problem separately by
fixing or ignoring other variables. An ideal way
is to comprehensively determine all design and
process variables via weighing certain part quality and
property factors. To this end, it would be desirable
to study the systematic determination of the design
and process variables for each commonly used AM
process.

Appendix 1. Definition of acronyms

ABO Alternative Build Orientation
AM Additive Manufacturing
AMF Additive Manufacturing File
BFOA Bacterial Foraging Optimisation Algorithm
BOF Build Orientation Factor
CAD Computer-Aided Design
CAPO Computer-Aided Part Orientation
DMD Direct Metal Deposition
EBM Electron Beam Melting
ELM Extreme Learning Machine
ELMA Electromagnetism-Like Mechanism Algo-

rithm
FDM Fuse Deposition Modelling
GA Genetic Algorithm
GCMMA Globally Convergent Method of Moving

Asymptotes
GDE3 Generalised Differential Evolution 3

HDBSCAN Hierarchical Density-Based Spatial Cluster-
ing of Applications with Noise

IJ Ink Jetting
LPBF Laser Powder Bed Fusion
LOM Laminated Object Manufacturing
MMFs Min-Max Functions
MODM Multi-Objective Decision-Making
MOO Multi-Objective Optimisation
NSGA-II Non-dominated Sorting Genetic Algorithm

II
OBO Optimal Build Orientation
OOF Overall Objective Function
PBOA Population-Based Optimisation Algorithm
PCABOA Principal Component Analysis-Based Opti-

misation Algorithm
PFA Pareto Front Analysis
PSOA Particle Swarm Optimisation Algorithm
SLA Stereolithography
SLS Selective Laser Sintering
SM Surrogate Model
SMSEMOA S-Metric Selection Evolutionary Multi-

Objective Algorithm
SQPA Sequential Quadratic Programming Algo-

rithm
STEP Standard for The Exchange of Product model

data
STL Standard Tessellation Language
TM Taguchi Method
TOPSIS Technique for Order of Preference by Simi-

larity to Ideal Solution
TRM Trust Region Method
WSM Weighted Sum Model
3D Three-Dimensional
2D Two-Dimensional

Appendix 2. Definition of symbols

α The angle at which the 3D model rotates
around the X axis

β The angle at which the 3D model rotates
around the Y axis

γ The angle between the load direction and
the build platform of the machine

εxy The XY-error
εz The Z-error
θO
i The sloping angle of the ith facet with

respect to O

ϑO
i The angle between the normal vector of the

ith facet and O

θnext The next sloping angle
θprev The previous sloping angle
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ϕO
i The angle between Smax,i and O

ψO
i The angle between the cylinder axis and O

ωi The weight of the ith critical section
aO

base The base area in O

afeature,i The area of the ith feature
afacet,i The area of the ith facet
agrid,i The area of the ith grid
aO

hproj The horizontal projection area of the
minimum bounding box

aO
layer,i The horizontal area of the ith layer with

respect to O

aO
psfacet,j The area of the j th projected sloping facet

with respect to O

cbheight The build height coefficient
cfacet,i The cone curvature of the ith facet
cmvolume The model volume coefficient
csvolume The support volume coefficient
dbpp The distance between the base plane and the

part
dO

cogch The closest distance between the projection
of centre of gravity and the convex hull of
base in O

dlbeam The diameter of the laser beam
hO

build The build height in O

hO
build,i The build height of the ith bin in O

hO
cog The height of centre of gravity in O

hO
model The height of the input STL model in O

hO
support,i,j The support height of the j th supported

point of the ith grid
lObbdiag The length of diagonal of the bounding box

with respect to O

m The number of the generated alternative
build orientations

m′ The number of the considered build orien-
tation factors

n The number of facets of the input STL model
n′ The number of sloping facets with respect

to O

n′′ The number of supported facets in O

o A unit vector expressing O

player,i The perimeter of the ith layer
r The material waste ratio
shatch The hatch spacing
shatchx The hatch spacing in X direction
shatchy The hatch spacing in Y direction
tbase The base thickness
tlayer The constant layer thickness
tconst A constant time
vi The unit normal vector of the ith facet
vO

binary,i A binary variable corresponding to the ith
facet in O

vscan The scan velocity

v1,i , v2,i , v3,i The three vertices of the ith facet
wfsr The weight of the facet surface roughness
wi The weight of the ith build orientation

factor
wsfsr The weight of the supported facet surface

roughness
x The X coordinate of a unit vector express-

ing a build orientation
y The Y coordinate of a unit vector express-

ing a build orientation
z The Z coordinate of a unit vector expressing

a build orientation
zO
i The Z component of the unit normal vector

of the ith facet with respect to O

AO
max The maximum strain in O

AO
part The part accuracy in O

AO
sregion The supported region area in O

Camat,i The attainable material composition at the
ith voxel centroid

CO
build The build cost in O

Cdmat,i The desired material composition at the ith
voxel centroid

CO
energy The energy cost in O

CO
indirect The indirect cost in O

CO
manuf The manufacturing cost in O

CO
material The material cost in O

Cmmat The model material cost
Coverhead The overhead cost
CO

polish The polishing cost in O

Cpostcure The post-curing cost
CO

postproc The post-processing cost in O

CO
ppmat The post-processing material cost in O

CO
prebuild The pre-build cost in O

CO
sremoval The support removal cost in O

CO
smat The support material cost in O

Ctransfer The transferring cost
Cwash The washing cost
Dbmat The density of the build material
Dmmat The density of the model material
Dsmat The density of the support material
EO

area,i The area error in the ith layer with respect
to O

EO
flatness The flatness error in O

EO
max The maximum stress in O

EO
mcomp The material composition error in O

EO
scase The staircase effect in O

EO
volum The volumetric error in O

Fi(O) The objective function of the ith build
orientation factor in O

Mmodel The mass of the input 3D model
MO

support The mass of the support in O

MO
young The Young’s modulus in O
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N The number of grids
N ′ The number of supported points
N ′′ The number of critical sections
Nbins The number of bins
Nfcyl The number of facets with cylindricity

tolerance
Nfflat The number of facets with flatness toler-

ance
Nfpar The number of facets with parallelism

tolerance
Nfperp The number of facets with perpendicularity

tolerance
Ni A number associated with the ith identified

feature
NO

ifs The number of the identified features in O

NO
layers The number of layers in O

Npieces,i The number of pieces in the ith bin
NO

voxels The number of voxels in O

O A given build orientation
P O

a,i The Pa value (defined in ISO 4287) of the
ith facet

Pbmat The price of the build material
Pmmat The price of model material
Pmmat The price of the support material
Plaser The laser power
P O

mech The mechanical property in O

QO
surface The surface quality in O

RO
area The salient area roughness in O

Rbcost The build cost rate (build cost per unit time)
Rcomput The computer cost rate
Recost The energy cost rate (i.e. the energy cost per

unit time)
RO

facet,i The surface roughness of the ith facet in O

Rfcost The fixed cost rate (i.e. the fixed cost per
unit time)

Rindirect The indirect cost rate (i.e. the indirect cost
per unit time)

Rlcost The labour cost rate (labour cost per unit time)
Rmachine The machine cost rate
Rmcost The material cost rate (i.e. the material cost

per unit mass)
Rmha The model hatching rate (i.e. the area

hatching per unit time)
Rmsa The model scanning rate (i.e. the area

scanning per unit time)
R90◦ The value of RO

facet,i when θO
i = 90◦

R1 The radius of the round fillet
Roperat The machine operator cost rate
Rpcost The production cost rate (i.e. the production

cost per unit time)
Rscf The constant surface roughness of the

supported area

R70◦ The value of RO
facet,i when θO

i = 70◦
Rssa The support scanning rate (i.e. the area

scanning per unit time)
RO

surface The surface roughness in O

RO
surface,i The surface roughness of the ith facet in O

RO
sw2tw The ratio of the supported width in O to the

total width in O

R2 The radius of the corner fillet
Rpostproc The post-processing cost rate
Rtarget A target roughness
SO

energy The energy consumption in O

Smax,i The maximum normal stress in the ith
critical section

SO
part The part stability in O

T O
build The build time in O

T O
dimgeom The dimensional and geometrical toler-

ances in O

Tidle The idle time of the machine between layers
T O

polish The polishing time in O

Tpostcure The post-curing time
T O

postproc The post-processing time in O

T O
preproc The pre-processing time in O

T O
procplan The process planning time in O

Trecoat The recoating time
Tsetup The machine setup time
T O

sremoval The support removal time in O

Ttransfer The transferring time
Twash The washing time
Vmodel The volume of the input STL model
V O

support The support volume in O

Wi The weight of the ith identified feature
ZO

i The Z coordinate of ith facet with normal
vector along the Z axis with respect to O

ZO
max The bounding box maxima in the Z

direction with respect to O

ZO
min The bounding box minima in the Z direc-

tion with respect to O
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