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Abstract
Sensors can produce large amounts of data related to products, design, and materials; however, it is important to use the right data
for the right purposes. Therefore, detailed analysis of data accumulated from different sensors in production and assembly
manufacturing lines is necessary to minimize faulty products and understand the production process. Additionally, when
selecting analytical methods, manufacturing companies must select the most suitable techniques. This paper presents a data
analytics approach to extract useful information, such as important measurements for the dimensions of a shim, a small part for
aligning shafts, from the manufacturing data of a power transfer unit (PTU). This paper also identifies the best techniques and
analytical approaches within the following six individual areas: (1) identifying measurements associated with faults; (2) identi-
fying measurements associated with shim dimensions; (3) identifying associations between station codes; (4) predicting shim
dimensions; (5) identifying duplicate samples in faulty data; and (6) identifying error distributions associated with measurement.
These areas are analysed in accordance with two analytical approaches: (a) statistical analysis and (b) machine learning (ML)-
based analysis. The results show (a) the relative importance of measurements with regard to the faulty unit and shim dimensions,
(b) the error distribution of measurements, and (c) the reproduction rate of faulty units. Additionally, both statistical analysis and
ML-based analysis have shown that the measurement ‘PTU housing measurement’ is the most important measurement among
available shim dimensions. Additionally, certain faulty stations correlated with one another. ML is shown to be the most suitable
technique in three areas (e.g. identifying measurements associated with faults), while statistical analysis is sufficient for the other
three areas (e.g. identifying measurements associated with shim dimensions) because they do not require a complex analytical
model. This study provides a clearer understanding of assembly line production and identifies highly correlated and significant
measurements of a faulty unit.
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1 Introduction

Today, with the rise of advanced sensor technology through
the Internet of Things (IoT), a large amount of data, common-
ly known as big data, is collected through cyber physical sys-
tems (CPSs) [1–3]. However, only a small portion of the
available data is being used today, and often, most of these

data are not used for any purpose. Proper usage of data enables
smart manufacturing through improved decision-making
using a data analytics approach based on historical and real-
time data for fault detection, fault prognosis, production cost
estimation, and more [4, 5]. Traditional routine-based mainte-
nance in industry can be transformed into big data-assisted
predictive maintenance. Machine health monitoring can be
conducted by predicting health status based on real-time and
historical data [6]. ML technology can be used for predictive
maintenance, as in [6–8]. Thus, data-driven ML techniques
have created a new dimension in the manufacturing industry.

The application of ML in the manufacturing industry is a
recent development [9, 10]. Several techniques for integrating
ML into manufacturing have emerged in the last few decades.
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ML methods such as decision trees, Bayesian networks, k-
nearest neighbours (kNNs), and neural networks are currently
being used in the manufacturing industry for tool condition
monitoring. Tool wear-sensitive features are defined and ex-
tracted [11], and ML-aided tool wear monitoring or tool con-
ditionmonitoring can be helpful in the manufacturing industry
[12, 13]. This trend has been applied in the semiconductor
industry as well, and faulty wafers can be detected with the
help of ML techniques such as Gaussian density estimation,
Gaussian mixture models, the Parzen-window method, k-
means clustering, support vector machines (SVM), and prin-
cipal component analysis (PCA) [14]. Fault detection and
fault classification are essential parts of process monitoring
in photovoltaic (PV) arrays and can be performed with the
help of ML algorithms [15–17]. ML-aided automated fault
detection and diagnosis have been successful in many cases
[18]. To lower the necessity of human expertise in fault detec-
tion, convolutional ML algorithms such as convolutional neu-
ral networks outperform traditional systems in rotating ma-
chinery [19]. Images of partially printed objects in 3-D print-
ing are used for automated process monitoring. The object is
classified as ‘defective’ or ‘good’ with the help of SVM [20].
Another application of ML in process monitoring is monitor-
ing surface roughness in additive manufacturing. Temperature
and vibration data are fed into an ensemble learning algorithm
to predict roughness [21]. Data analytics aims to gain knowl-
edge from raw data or derived data (i.e. results received from
ML algorithms) [22]. Today, manufacturing systems are less
dependent on human knowledge and rely more on advanced
techniques such as deep learning to extract knowledge from
raw data.

ML technology has recently been applied in the
manufacturing industry. Before ML, statistical analysis was
the primary method used in the manufacturing industry.
Statistical methods help to correlate, organize, and interpret
data [23], and statistical analysis shows the underlying pat-
terns in a data set; for example, correlation indicates a rela-
tionship between two variables. Currently, manufacturing sys-
tems are becoming more complex, and it is challenging to
detect and isolate faults. The Gaussian mixture model for
finding probabilistic correlation is one method that is used
for anomaly detection [24]. Another statistical method that
can be used for fault detection is canonical correlation analysis
(CCA), which is used during alumina evaporation [25]. Based
on the correlation coefficient of the voltage curves, fault de-
tection can be performed on short circuits [26]. Fault diagnosis
in fluctuating workloads (i.e., large-scale cloud computing
environments) can be performed with the help of canonical
correlation analysis between workloads and performance ma-
trices [27].

As discussed above, statistics played an important role in
process control before the emergence of ML and other tech-
nologies. However, most companies are still not fully using

their data to create new knowledge. Additionally, most com-
panies face challenges in their choice of data analytics
techniques—whether they will adhere to traditional statistical
analysis or use the most current ML techniques. This study
attempts to solve these problems by extracting useful knowl-
edge from raw data and investigates which method (ML or
statistical analysis) is best suited for different areas. To our
knowledge, no study has investigated which data analytical
methods have been used for power transfer unit (PTU).

Consider the following example: a local company1 manu-
factures power transfer units (PTUs) for vehicles and uses
different IoT-based sensors to measure different dimensions
associatedwith the PTUs. The primary PTU housing shown in
Fig. 1 is supported with 3 shims. Approximately 6.8% of
PTUs are reported to be faulty, resulting in economic loss.
The data collected from the assembly line were analysed to
extract useful knowledge and identify the best method for data
analytics.

In this case, the influence of different measurements (i.e.
‘PTU housing measurement’) on the shim dimensions is in-
vestigated. Again, both statistical analysis methods (e.g. cor-
relation) and ML algorithms (e.g. linear regression (LR), sup-
port vector regression (SVR), and random forest regression
(RFR)) have been used to identify the most significant mea-
surements associated with the shim. Furthermore, the data can
be used to identify measurements that are highly responsible
for a faulty unit. In this study, associations between station
codes and shim dimension prediction are also investigated.
Additionally, the reproduction rate of the faulty unit and error
distribution of measurements are analysed. Both statistical
analysis and ML-based analysis are compared to identify the
method best suited to the areas mentioned above.

2 Data collection and analysis

2.1 Power transfer unit

PTUs transfer power from the front of a vehicle to the back.
This action is performed with the help of two cogwheels or
gears. The efficiency of the PTU depends on the position of
these two gears; misplaced gears result in vibrations and noise.
Thus, to align these two gears, shims are used. Figure 2 shows
a PTU in efficient driveline (ED) mode.

2.2 Dataset

The dataset investigated in this study was obtained from a
manufacturing company’s logistics in-production system da-
tabase and consists of various measurements performed on an
assembly line that manufactures PTUs. In total, 151,342 units

1 https://www.gkn.com/
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are constructed, 6,488 of which have been marked as ‘faulty’
by the operator due to mismatches in measurements or incor-
rect shim dimensions. Forty-two measurements for each unit
were recorded in the dataset, including mounting distances
from the housing of the gear and gear heights. Each unit has
a serial number and production time. There are several PTU
stations at which the data were collected, and each station has
a station code. The faulty samples were also marked in red,
and the STATION fields of the nonfaulty samples were kept
empty.

Explanations of the different stations are listed in Table 1.
The data used in this study were gathered from an IoT plat-
form that connects all the sensors via the internet.

2.3 Data analytics

Several data analytics areas that have been investigated in this
study are shown in Fig. 3.

In this study, Area A identifies an association of different
measurements with faults (i.e. which of 42 measurements are
highly correlated with faulty units). Area B concerns the iden-
tification of the most important measurement associated with
shim dimensions. Area C identifies a correlation between the
stations, as each faulty unit has a station code. Area D predicts
shim dimensions, and Area E identifies duplicate samples
within the faulty data sets. Finally, Area F identifies error
distributions associated with the measurements.

3 Overview of the approach

The step-by-step approach to data analytics is shown in Fig. 4.
The methods used in this study include domain knowledge;
problem formulation; data and data pre-processing; data ana-
lytics involving statistical data analysis; ML-based data anal-
ysis; evaluation of the approach; new knowledge; and the best
technique as an outcome. Initially, domain knowledge, data,
requirements, and ideas are accumulated from the
manufacturing company’s assembly line. Typically, the prob-
lem is formulated based on the requirements; in this study, the
problem is formulated to explore the data, gather more knowl-
edge about the assembly line, and find the best method of
analysis. Additionally, domain knowledge is extracted and
stored separately to evaluate the outcome of the approach.

Because data were collected in a raw format, data pre-
processing (i.e. populating missing values, identifying out-
liers, etc.) was performed. In this stage, the values
representing NaN (not a number) and null values were re-
placed with zeros, and missing values were identified and
populated via imputation. Furthermore, data exploration was
performed to identify irregular cardinality and outliers in the
dataset. None of the measurements had a cardinality of 1 or a
low cardinality. Therefore, irregular cardinality was absent in
the dataset. To identify outliers, the distributions of measure-
ments as well as minimums and maximums were observed.
However, the dataset did not contain any outliers. Finally, all
measurements were normalized to a range of 0 to 1. Then, the
dataset was divided into training (containing 80% of data) and
test (the other 20%) datasets to apply ML-based analysis.

In this study, data analytics was performed in two phases:
(1) Phase 1 performed statistical analysis to investigate differ-
ent data distributions and correlations between different sta-
tion codes as well as measurements associated with shim

Fig. 1 Main housing of PTU

Fig. 2 PTU in efficient driveline mode
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dimensions to identify correlations within the PTU domain;
and (2) Phase 2 performed ML-based data analysis to identify
the most relevant measurements and optimize the number of
measurements. The results of these two steps were analysed
and evaluated to create new useful knowledge about the
manufacturing company’s assembly line. Additionally, a
comparison between Phase 1 and Phase 2 was performed to
identify the most suitable methods for individual areas.

Statistical data analysis (Phase 1) was performed to explore
the data and describe the various characteristics of the dataset.
The goal of this Phase is to identify the distribution of faulty
items considering the different ranges of measurement values,
correlation between different measurements of the shim di-
mension, and correlation between error rates and assembly
stations. Statistical analysis provides insights into the dataset,
such as an overall understanding of the assembly line, the
importance of different measurements, and the effects of

faulty measurements on different stations in the assembly line.
To identify the relationships between different measurements
and the number of errors, the target measurements were divid-
ed into 100 bins. For each bin, the number of errors was
summed, and the distribution of the errors was explored with
histograms.

According to expert opinions, faults in the dataset are as-
sociated with one of the important measurements called the
‘PTU housing measurement’. A correlation analysis that indi-
cates the degree to which two random measurements were
linearly connected was used to see how faults from different
stations were associated with station codes for ‘PTU housing
measurement’. To estimate the correlation, station codes for
‘PTU housing measurement’ were first listed, and a matrix
was created, which was then used to calculate the cross-
correlation of the accumulated station codes. The correlation
showed that certain stations were highly correlated.

Table 1 Explanation of different
station codes Station code Explanation

60 Torque on gear (pinion) cartridge screws

88 Torque on gear (pinion) screw

90 Torque on gear (pinion) screw

110 Measurement of centricity and roundness and pinion (gear) height measurement

114 Measurement of centricity and roundness and pinion (gear) height measurement

121 Measurement of centricity and roundness and pinion (gear) height measurement

122 Assembly bearings in house and cover

140 Torque on cover screws

150 Torque on cover screws

160 Measuring backlash for correct position of gears in the assembly.

Fig. 3 Different data analytics
areas

1862 Int J Adv Manuf Technol (2021) 114:1859–1870



Additionally, certain faulty samples were found to be repeated
in the dataset. Therefore, duplicate values corresponding to an
item’s serial number were identified, and the frequency of
faulty samples for measurement ‘PTU housing measurement’
was estimated for each station code.

The objectives of ML-based analysis (Phase 2) were to
classify PTU faults, predict shim dimensions, and identify
the relationships between station codes. Classifying faults
helps to understand the most relevant measurements, and in
the future, fault classification may help to predict the values
that must be adapted for an accurate unit. All faulty and
nonfaulty units were labelled station codes 1 and 0, respec-
tively. The hyperparameters of the ML models were opti-
mized with the goal of comparing the performance of the
ML models with/without the default parameters.
Additionally, most case options for hyperparameter optimiza-
tion were set to default, and the creation of models with the
default optimization option took an average of 12 hours. Due
to the long optimization process and good performance of the
default hyperparameter optimization option (discussed in
Section 4), default values of the option for optimization were
not changed. All eligible hyperparameters were not optimized
(except RFR) for the same reason; RFR was optimized be-
cause of the deviation in the RFR model predicted value from
the real value.

Two support vector machine (SVM) classifiers were trained
to classify the faulty units using the training dataset. Then, the
coefficient values of the measurements obtained from the SVM
classifier were used to rank the measurements, and the most
relevant measurements were compared to the suggestions of ex-
perts. One of the classifiers had default hyperparameters, and
another had optimized hyperparameters. The default
hyperparameters associated with the classifier are box con-
straint=1, kernel scale=1, kernel function= ‘linear’, and standard-
ized data=0. The second classifier was built using automatic
hyperparameter optimization. The hyperparameter optimization

optionwas set to ‘auto’, which indicates that the hyperparameters
‘BoxConstraint’ and ‘KernelScale’ will be optimized instead of
all eligible parameters. Options for optimization were set to de-
fault values except ‘AcquisitionFunctionName’, whichwas set to
‘expected improvement plus’ to enable reproducibility. After 30
iterations, a hyperparameter-optimized model (support vector
classifier) was created. The best feasible ‘BoxConstraint’ value
is 837.56, and the ‘KernelScale’ value is 133.58.

Furthermore, to identify the correlations between ‘Gear
(Pinion) height’, ‘PTU housing measurement’ and ‘Manual
adjustment’, and the ‘shim dimension’ and to predict the shim
dimension, several ML algorithms (LR, SVR, and RFR) were
trained. With the LR algorithm, only one model was trained
because the hyperparameters were not involved in fitting the
input datapoints. It is assumed that the relation between input
and output follows the formula y = bx + c.

In SVR, two models were trained: one with default
hyperparameters, and one with optimized hyperparameters.
The default hyperparameter SVR was trained with a linear ker-
nel, and the hyperparameters were set to default values (lamb-
da=8.259×10−6, learner=SVM, regularization=ridge(L2)).
Conversely, for the optimized model, the parameters to be op-
timized were set to ‘auto’ to optimize three hyperparameters:
BoxConstraint, KernelScale, and Epsilon. Option for optimiza-
tion was set to default. After 30 iterations, a hyperparameter-
optimized regression model was created. The values of the
optimized hyperparameters are BoxConstraint=0.022683,
KernelScale=0.013568, and Epsilon=0.00022608.

In RFR, three models were trained: one with default
hyperparameters, one with four hyperparameters optimized
and one with all hyperparameters optimized. The default
RFR was trained using a bagged ensemble of 200 regression
trees, and the hyperparameters were set as follows: number of
ensemble learning cycles=200, learn rate=1, method=‘bag’,
and number of predictors to select at random for each split=all.
In the four hyperparameter-optimized RFR models, the

Fig. 4 States of the proposed
method
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parameters to be optimized were set to ‘auto’ to optimize four
hyperparameters: Method, NumLearningCycles, LearnRate,
and MinLeafSize. Options for optimization was set to default.
After 30 iterations a four hyperparameter-optimized RFRmodel
was created The values of the optimized hyperparameters are
Method= ‘LSBoost’, NumLearningCycles=85, LearnRate=
0.050891, and MinLeafSize=1. In the third model, all eligible
parameters were optimized. The values of all optimized
hyperparameters are Method= ‘Bag’, NumLearningCycles=16,
LearnRate=NaN, MinLeafSize=4, MaxNumSplits= 60006,
NumVariablesToSample=2. Then, these models were evaluated
using the test dataset.

To identify the relationships between different stations, 10
rules were mined using an Apriori algorithm on the Weka plat-
form. General association rules were mined instead of class
association rules by setting ‘car’ to false. The rules were ranked
based on the values of ‘confidence’, and the minimum metric
score was 0.9. Upper bound for minimum support was 1.0.

4 Results and discussion

The goal of this evaluation was to gather new, useful knowl-
edge about the assembly line using the proposed data analytics
method and identify the best techniques for individual areas.
In this study, an exploratory validation approach is used to
find the best ML model.

In Fig. 3, different areas of data analytics are described, and
an evaluation is presented based on these different areas.

Area A Experts from the manufacturing company provided a
set of the most relevant measurements corresponding to faults.
In Phase 1, the objective was to find the correlation coeffi-
cients between each of the 42 measurements and STATION.
However, this method was found to be time-consuming. The
MATLAB command ‘corrplot’ for finding correlations result-
ed in a 42×42 matrix that was difficult to interpret. Another
method of implementing Phase 1 analysis is analysis of var-
iance (ANOVA), where p-values are used to select the most
informative measurements [28]. The authors in [28] discarded
measurements depending on the p-value. However, this work
does not use the ANOVAmethod because the dataset was not
normally distributed in certain cases.

Implementation of Phase 1 analysis could also be accom-
plished by following the methods used by Andrew and
Srinivas [29]. The authors deleted one measurement at a time
to find the most important measurements; however, this meth-
od is time-consuming. Due to these problems, we did not
consider Phase 1 to be a suitable analysis method.

In the next step, we found a different set of relevant mea-
sures in Phase 2 (ML algorithms). Two SVM classifiers were
created: one with default hyperparameter values and another
with optimized hyperparameters. Both classifiers provided the

same measurements based on relevance, and the identified
relevant measurements found with both SVM classifiers are
shown in Table 2. However, a large amount of overlap was
observed between the measurements provided by the experts
and measurements identified using the ML algorithm SVM.
Thus, SVM classification was used to classify the samples
into two groups: ‘faulty’ and ‘nonfaulty’. Then, linear coeffi-
cients associated with the predictors (measurements) were
compared.We have listed the 18most relevant measurements.
A comparison between the list of 18 measurements provided
by the manufacturer and those uncovered using SVM showed
that the lists agree. After discussion with the experts, it was
confirmed that whenever a fault takes place, technicians can
check the measurements in Table 2 for possible faults.

The classification results using the test dataset and classifier
with default hyperparameters and optimized hyperparameters
are shown in Table 3. The classifiers are useful based on these
measurements. None of the samples were incorrectly classified
as faulty or nonfaulty by the classifiers, and both classifiers had
100% accuracy, specificity, and sensitivity. The motivation of
creating a hyperparameter-optimized model is to see if there is
any change in performance.

Phase 1 analysis is also shown to be unsuitable for Area A.
With increments in the number of measurements, the difficul-
ty of implementing Phase 1 increases exponentially. Thus,
Phase 2 is best suited for this area, considering implementa-
tion time and difficulty.

Area BBoth Phase 1 and Phase 2 analyses were implemented.
Three measurements—‘Gear (Pinion) height’, ‘PTU housing
measurement’, and ‘Manual adjustment’—were analysed for
correlations with the shim dimension. In Phase 1, the correla-
tion coefficients of these measurements with the shim dimen-
sion were calculated and are shown in Table 4.

As shown in Table 4, ‘PTU housing measurement’ has the
highest correlation with the shim dimension, and this result
also aligns with the experts’ opinions.

In Phase 2, the relative importance (i.e. linear coefficients
of measurements associated with shim dimension) was found
by the ML algorithms LR, SVR, and RFR with default
hyperparameters and optimized hyperparameters (Table 5).
These ML algorithms predicted the shim dimension with the
help of regression models.

From the table, it can concluded that if there is any fault in
the shim dimension, it is highly probable that ‘PTU housing
measurement’ has a problem. A technician can check this
measurement for probable adjustment. Both the default and
optimized hyperparameter models provided the same result
except for the default hyperparameter RFR model. In the case
of the default hyperparameter RFR model, ‘gear (pinion)
height’ has the highest importance with regard to the shim
dimension. However, this result does not align with the results
of the remainder of the models. Because hyperparameter-
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optimized SVR and LR have higher accuracies (Table 8), we
considered ‘PTU housing measurement’ as the most important
measurement. Additionally, a comparison between the default
hyperparameter and optimized hyperparameter models (SVRs)
showed that the overall relative importance of the predictors is
lower in the optimized hyperparameter model than in the de-
fault hyperparameter model. The effect of predictors on the
shim dimension is lower in the optimized hyperparameter mod-
el than in the default hyperparameter model.

Although both Phase 1 and Phase 2 analyses were imple-
mented in this area, Phase 1 was easier to use than Phase 2.
Phase 2 involved the creation of regression models with
hyperparameter tuning. Additionally, knowledge of ML is
required to implement Phase 2 analysis. The application of
ML is not necessary when the target problem can be easily
solved with traditional mathematics or statistics. Therefore,
for this area, Phase 1 is the most suitable method of analysis.

Area C The correlation (Phase 1) between different station
codes for the ‘PTU housing measurement’ was calculated,
and the most highly correlated station codes are shown in
Table 6 (i.e. faults with a correlation coefficient higher than
0.80). The remainder of the station codes appeared random
because their correlation coefficients were comparatively low
and are thus not listed in Table 6.

In Phase 2 analysis, association rules were mined using the
Weka platform, and the results are shown in Table 7. All of the
rules have confidence levels higher than 90%. For example,
we can interpret the first row as if Station 114 does not have
any fault, then there is a 100% chance that Station 140 will
not have any fault as a confidence level of 1. A lift value
greater than 1 indicates that the rule body and rule head occur
together more often than expected. Additionally, if the con-
viction value is 1, then the rule body and rule head are inde-
pendent. A conviction value other than 1 indicates a better

Table 2 (Area A) Relevant
measurements found with the
help of SVM

Measurement Measurement explanation

HUSSHIMSM6 The difference between the calculated shim and the used shim

PINJONGKASTM2 Measurement of combined centricity and roundness on the companion flange

PINJONGMATNINGM2 Bearing diameter gear (pinion)

CARTRIDGESHIMSM4 Gear (pinion) shims calculated

HUSSHIMSM4 Calculated house shims

HUSMATNINGM5 Bearing seat diameter

MECHM5 Measurement of combined centricity and roundness on the gear set

LOCKSHIMSM8 Cover shim for positioning of the crown wheel shaft in the assembly

ADJ2 Adjustment value

MECHM4 Upper bearing diameter (house side)

PINJONGMATNINGM2 Bearing diameter pinion (gear)

PINJONGSHIMSM5 The used shim measurement value

CARTRIDGESHIMSM5 Real shims pinion (same as above)

ADJ3 Adjustment value

SEKVENS_HISTORIK History

LOCKSHIMSM9 The used shim measurement value

HUSMATNINGM3 Housing measurement total height

MECHM3 Lower bearing diameter (cover side)

Table 3 (Area A) Faulty and non-
faulty data classification using
SVM on test dataset

Criteria Classification summary
(default hyperparameter)

Classification summary (optimized hyperparameter)

True positive 1291 1291

False positive 0 0

False Negative 0 0

True Negative 28977 28977

Sensitivity 100% 100%

Specificity 100% 100%

Accuracy 100% 100%
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rule. A high leverage value indicates a higher probability of
the rule head and rule body happening together. All of these
measures, as shown in Table 7 indicate that the rules are
reliable.

However, the stations that have a high correlation accord-
ing toPhase 2 do not align with the results ofPhase 1. Manual
checking of the stations suggests that Phase 2 is more accu-
rate. Statistical analysis only measured the correlation by the
number of faults and ignored the relationship when a fault was
absent. ML considered the relationships between stations ac-
cording to both faults and non-faults. Therefore, for this area
of analysis, Phase 2 is most suitable.

Area D To use Phase 1 in Area D, we reviewed 50 peer-
reviewed papers published in 2019–2020 and selected certain
statistical techniques. For example, we attempted to use spa-
tial statistics [30]; however, this method has basic applications
in feature extraction, not prediction. Similarly, Cox propor-
tional hazards regression [31] was used to predict the next
occurrence of an event; however, predicting the shim dimen-
sion was not possible with this algorithm. The accelerated
failure time (AFT) model was also considered. However, this
model uses the same method as the Cox proportional hazards
regression. Logistic regression was considered as a statistical
method in one study [32]; however, logistic regression is a
classifier that cannot be used for regression. Thus, we could
not find any other statistical techniques that could be imple-
mented in Area D. For this reason, Phase 1 was not imple-
mented in Area D.

In Phase 2, both the LR and SVR (default and optimized
hyperparameter) algorithms predicted the shim dimension
with an accuracy near 100%. A small deviation was observed

in the predicted value from the real value in the case of RFR
(both default and optimized hyperparameter) compared to LR
and SVR. All eligible hyperparameters were optimized in one
of the RFR models; however, the deviation was also the same
for that model. Figure 5 shows the parity plot for the shim-
dimension prediction using the test dataset and the optimized
hyperparameter RFR algorithm. These deviated values were
within 10% of the real values.

Table 8 lists the coefficient of determination (R2), root
mean square error (RMSE), mean absolute error (MAE), and
mean square error (MSE) values of the regression models
(defaul t and opt imized hyperparameter ) . In the
hyperparameter-optimized models, the R2, RMSE, MAE,
and MSE values were marginally improved compared to the
default hyperparameter models. However, for the RFRmodel,
there was no improvement in the hyperparameter-optimized
model. In Table 8, a lower RMSE value indicates a better fit,
and the observed data points are near the model’s predicted
values. Conversely, the R2 values are 1 or near 1, indicating
that the models can significantly predict the shim dimension.

Additionally, the MAE and MSE of the models are near
zero, indicating that the models can predict without any error.
However, the dataset to which the results are compared is
labelled by technicians and thus may be labelled incorrectly.
Thus, there may be faults in the model.

Table 9 shows the estimated coefficients of the linear re-
gression model, where ‘Gear (Pinion) height’, ‘PTU housing
measurement’, and ‘Manual adjustment’ are the predictors.
The term ‘Estimate’ indicates the relative importance

Table 4 (Area B) correlation between shim dimension determining
measurements. ‘Measurements’ column indicates measurements that
determines shim dimension

Measurements Correlation coefficient

‘Gear (Pinion) height’ −0.46
‘PTU housing measurement’ 0.74

‘Manual adjustment’ 0.26

Table 5 (Area B) The linear coefficients associated with shim dimension determining measurements. Negative values indicate if the measurements
change in positive direction than shim dimension will change in negative direction

LR Default Hyperparameter SVR Optimized
Hyperparameter SVR

Default
Hyperparameter RFR

Optimized
Hyperparameter RFR

‘Gear (Pinion) height’ −0.7082 −0.6928 −0.0096 127.0992 154.1051

‘PTU housing measurement’ 0.8155 0.8021 0.0111 126.4262 155.6014

‘Manual adjustment’ 0.2575 0.2511 0.0035 147.1816 144.2816

Table 6 (Area C) Correlation table of station codes, i.e. column ‘88’
indicates correlation coefficient of station code ‘88’ with other stations

Station code 88 90 110 122 150 160

88 1 0.94 0.94 0.92 0.85 0.93

90 0.94 1 0.95 0.86 0.85 0.92

110 0.94 0.95 1 0.88 0.86 0.95

114 0.79 0.74 0.82 0.76 0.80 0.80

122 0.92 0.86 0.88 1 0.80 0.87

150 0.85 0.85 0.86 0.80 1 0.87

160 0.93 0.92 0.95 0.87 0.87 1
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(coefficient value) of the predictors in the model. The predic-
tor ‘PTU housing measurement’ is the most important of the
three predictors.

‘SE’ is the standard deviation of the estimate and indicates
the standard error of the coefficients, which represents the
model’s ability to estimate coefficient values. A lower SE
indicates a better estimate. In Table 9, the SE is small, mean-
ing that the model accurately estimated the values of the
coefficients.

‘tStat’ is used to determine whether a null hypothesis
should be accepted or rejected by measuring the precision of
measurement estimates. ‘Null hypothesis’ indicates that there
is no relationship between the input and the output. The higher
the tStat value, the more significant the estimate is in the
regression model. Thus, the null hypothesis can be rejected
because tStat is high.

The ‘P-value’ in the linear regression analysis indicates
whether the null hypothesis can be rejected. In this study,
the null hypothesis can be rejected if the p-value is low.
Additionally, there is a high correlation between the input
and the output.

In Table 9, all p-values are 0, indicating that predictors are
highly correlated with the response.

For Area D, Phase 2 is the most suitable method because
Phase 1 could not be implemented.

Area E The ‘Serial number’ column was checked for dupli-
cate instances of a PTU unit, and a duplicate instance was
created if a fault were present. The faulty item was
repaired, and the same ‘serial number’ was provided. In
Phase 1, analysis was performed on faults with station
codes 90 and 110. A total of 3,930 items with station codes
90 and 110 were found to be faulty. Out of these 3930
faulty items, only 360 items with the same ‘serial number’
were repaired. According to discussions with experts in
this field, PTUs with faults can be assigned new ‘Serial
numbers’, or can be considered scrap.

Phase 2 was not implemented in this area because it is not
necessary to use ML to find duplicate instances within a given
set of numbers; traditional statistics are sufficient for this pur-
pose. ML is necessary the following cases [33]:

& A task that is too complex for a human to solve
& A task requiring large amounts of memory
& A task requiring adaptivity

Therefore, for Area E, Phase 1 is the best suited method.

Area F Phase 1was implemented to find the error distribution.
The relationship between faults and measurements follows
a Gaussian distribution, except for ‘housing measurement
from loading house/measuring house’, which has a large
bar at 59. We assume that the data were equivalent to 59
and not due to a programming error. After double-
checking, it was confirmed that these data were correct.
The error distribution of the ‘PTU housing measurement’
is shown in Fig. 6. At a threshold of 103.58, the error rate
is high. Conversely, the error rate decreases below a
threshold of 103.68.

Table 7 (Area C) Rule mined for
station code Rule Confidence Lift Leverage Conviction

If Station114=0 then Station140=0 1 1.14 0.08 8.28

If Station114=0 and Station121=0 then Station140=0 1 1.14 0.08 7.8

If Station60=0 and Station121=0 then Station140=0 0.95 1.08 0.05 1.92

If Station60=0 then Station140=0 0.94 1.07 0.04 1.66

If Station114=0 then Station121=0 0.94 1.19 0.1 2.9

If Station114=0 and Station140=0 then Station121=0 0.94 1.19 0.1 2.9

If Station114=0 then Station121=0 and Station140=0 0.94 1.27 0.14 3.59

If Station60=0 and Station140=0 then Station121=0 0.94 1.19 0.1 2.73

If Station121=0 then Station140=0 0.94 1.06 0.04 1.58

If Station60=0 then Station121=0 0.93 1.17 0.09 2.42

Fig. 5 (Area D) Parity plot for optimized random forest regression
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Phase 2 was not implemented for the same reason stated in
Area E; therefore, Phase 1 is the most suitable method for
Area F.

5 Conclusions

Concerning the various areas described in Fig. 3, the out-
comes of the proposed intelligent data analytics with regard
to power transfer units are as follows:

Area A: Out of 42 measurements, the experts from the
manufacturing company identified the 18 most relevant
measurements. In this study, we used two SVM classi-
fiers to find the most relevant measurements, which are
listed in Table 2. There is a large amount of overlap
between the measurements provided by the experts and
the measurements identified using the ML algorithm.
Phase 1 is not best suited for this area; Phase 2 is needed
for this area in this study.
Area B: Both statistical analysis and ML-based analysis
have shown that ‘PTU housing measurement’ is the most
important measurement for the shim dimension. Phase 1
is the method best suited for this area.
Area C: Certain station codes were highly correlated.
Phase 2 is the most suitable method for this area because
Phase 1 produced incomplete results.
Area D: ML algorithms predicted the shim dimension
accurately. The manufacturing company’s technicians
manually selected a shim dimension whenever there
was a mismatch. This manually selected shim dimension
was frequently correct. In this study, the dataset that was
used to train the ML models to predict the shim

dimension (Area D) contains these erroneous values. In
the future, the prediction of shim dimensions can be im-
proved by classifying them with the help of an ML algo-
rithm instead of depending on the knowledge of techni-
cians to create the labelled datasets. Phase 1 could not be
implemented in this area; thus, Phase 2 is the most suit-
able method for this area.
Area E: Not all units that had faults were reproduced,
which was determined by observing the number of dupli-
cate instances. Phase 1 was more effective in this area
than Phase 2.
Area F: The relationship between fault and measurements
follows a Gaussian distribution. Phase 1 is thus the most
suitable method for this area.

Thus, this study contributes to knowledge about a
manufacturing company’s assembly line and presents a com-
parative study of the suitability of various analytical methods
in the aforementioned six areas. The proposed methods allow
assembly line technicians to check important measurements
identified by ML (Area A) when there is a fault in a PTU
instead of checking all 42 measurements. Additionally, in
the case of shim dimensions (Area B), a technician can check
‘PTU housing measurement’ for mismatches. The identifica-
tion of relationships between station codes (Area C) can help
the manufacturing company find patterns and causes of fail-
ures. The prediction of the shim dimension (Area D) will help
technicians choose shims when there is a mismatch, and the
shim dimension prediction system can be used in the cloud.
Considering the rate of reproduction of faulty units (Area E),
technicians can try to reduce this rate. According to discus-
sions with experts at the manufacturing company, the error
distribution of ‘PTU housing measurement’ (Area F, Fig. 6)

Table 8 (Area D) Error rates
using regression models on the
test dataset

LR Default
hyperparameter
SVR

Optimized
hyperparameter
SVR

Default
hyperparameter
RFR

Optimized
hyperparameter
RFR

RMSE 5.226×10−14 0.0021 5.619×10−5 0.0036 0.0036

R2 1 0.9994 1 0.9986 0.9986

MAE 4.144×10−14 0.0017 4.583×10−5 0.0018 0.0018

MSE 2.73×10−27 4.606×10−6 3.158×10−9 1.298×10−5 1.317×10−5

Table 9 (Area D) Estimated
coefficients of linear regression
model

Estimate SE tStat p-
value

Intercept 0.22318 3.38×10−9 6.591×107 0

‘Gear (Pinion) height’ −0.70815 5.737×10−9 −1.234×108 0

‘PTU housing measurement’ 0.81545 4.998×10−9 1.6315×108 0

‘Manual adjustment’ 0.25751 2.8973×10−9 8.888×107 0
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follows an exponential distribution. However, the distribution
found in this study is Gaussian; this discrepancy will be in-
vestigated in future research.

The performance of the hyperparameter-optimized RFR
model was not higher than the default hyperparameter model;
this topic will also be investigated in future research.

We attempted to find the most suitable method of analysis
for six areas of interest. Based on various analyses, neither
statistics nor ML can be used in all six areas. Statistics were
found to be most suitable for areas B, E, and F, while ML was
found to be the most suitable technique for areas A, C, and D
because ML is used when a problem is too complex for sta-
tistics to solve and requires adaptability. None of the problems
solved in areas B, E, and F were too complex, nor did they
require any adaptability, while the problems solved in A, C,
and F were complex and benefitted from the advantages of
ML.
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