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Abstract
Thermal errors affect the accuracy of computer numerical control machine tools and are produced by the thermal deformation of
machine components due to temperature difference between heat source and ambient temperature of the machine tools. At
present, most of the literature does not consider the randomness of the influencing factors of thermal error, leading to inaccurate
predictions of machine tool thermal error. In this paper, a new inverse randommodel is proposed through the combination of the
stochastic theory, genetic algorithm, and radial basis function neural network (RBFNN), to predict thermal error while consid-
ering the randomness of influencing factors. The randomness index of influencing factors can be identified using the inverse
random RBFNN (IR-RBFNN). Furthermore, through the combination of the stochastic theory, RBFNN, and the improved
exponential moving average method with abnormal data elimination, a new forward random radial basis function neural network
(FR-RBFNN) is established according to the identified influencing factor random index. The models are verified through
experimental results on a ball screw system. Compared with the traditional methods, the experimental data show that the
proposed method provides a more accurate description of thermal errors while incorporating the randomness of factors affecting
thermal error.

Keywords Inverse random radial basis function neural network . Genetic algorithm . Prediction model of thermal error .
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1 Introduction

With advances in the manufacturing industry, the demand for
machine tools with improved manufacturing accuracy has sig-
nificantly increased. Recently, the problems associated with
the accuracy of machine tools and their solutions have
attracted significant attention from researchers. Several stud-
ies have shown that thermal and geometric errors are the most
critical among various error sources in machine tools.
Approximately 40 to 70% of total machine tool errors are
caused by thermal deformation [1].

There are two main methods for thermal error prediction.
The first method involves calculating the thermal error numer-
ically. The finite element method (FEM) and finite difference
method (FDM) are the most commonly used methods for
modelling thermal errors. Mian et al. [2] established a thermal
error model using the FEM approach. Creighton et al. [3]
suggested an FEM model to analyse the temperature field of
a milling spindle. Mayr et al. [4] initially proposed an FDM
model to calculate the temperature distribution and subse-
quently developed an FEMmodel to analyse the thermal error.
Zhao et al. [5] used a numerical simulation method to analyse
the temperature field and thermal deformation of spindles.
Mian et al. [6] applied FEM to simulate the influence of the
main internal heat source of a small vertical milling machine.
However, the prediction accuracy of thermal errors by FEM
and FDM approaches depends on the accurate determination
of boundary conditions, such as the heat generation rate and
convection heat dissipation. The complex structure and
randomness of the machine tool create complex boundary
conditions. Most of the existing literature did not consider
the randomness of the influencing factors of thermal
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errors, which makes it difficult to accurately predict ther-
mal errors.

The second method is to establish the correspondence be-
tween system temperatures and thermal errors using artificial
intelligence. Various modern intelligent algorithms have been
employed to model the thermal errors. Ma et al. [7] used back
propagation (BP) and improved BP neural networks to inves-
tigate the temperature variables. Li et al. [8] established a
modified particle swarm optimisation (PSO) to improve the
BP neural network and used it to predict spindle thermal error.
Huang et al. [9] used an improved neural network to develop a
thermal error prediction method, which improved the conver-
gence speed. Abdulshahed et al. [10] proposed a compensa-
tion method for thermal errors in numerically controlled ma-
chine tools using the grey neural network model with convo-
lution integral. The PSO algorithm was applied to improve the
proposed grey neural network; it simplifies the modelling pro-
cess and improves the accuracy of the system. Guo et al. [11]
presented a new neural network modelling method based on
an artificial bee colony and used grey correlation analysis to
obtain the system temperature testing points of a machine tool.
Similarly, Yang et al. [12] used fuzzy clustering to study the
temperature variables. Rojek et al. [13] used the error back
propagation, radial basis function neural network, and
Kohonen network to study a new ball screw thermal deforma-
tion compensation method without sensors. Miao et al. [14]
used support vector machines to establish a thermal error
model. Cheng et al. [15] proposed a radial basis function
(RBF) neural network to calculate the thermal error of a ma-
chine tool, which effectively reduced the temperature mea-
surement data points. Wang et al. [16] proposed a method
based on clustering thermal sensor data using fuzzy C-
means clustering algorithm and iterative self-organising data
analysis and established an artificial neural network thermal
model. Until now, most of the methods adopted the tempera-
ture of the key points collected by the temperature sensor as
the input for the intelligent models, which can capture the
influence of the heat generation rate and convective heat dis-
sipation. However, the randomness in the measuring error of
the temperature sensor itself was not considered in most stud-
ies. Moreover, there are chances of abnormal mutation data
due to the instability of instrument measurement, which can
hinder the accurate prediction of thermal errors.

In summary, most of the literature fails to consider the
influence of random factors on thermal errors, which results
in poor accuracy of thermal error prediction. To address the
above-stated problems, novel inverse random radial basis
function neural network (IR-RBFNN) and forward random
radial basis function neural network (FR-RBFNN) models
are proposed in this paper to accurately predict thermal error
while considering the randomness of influencing thermal error
factors. First, random input and output variables were intro-
duced into the RBF; subsequently, the genetic algorithm was

selected to obtain the statistical characteristics of the random
variables to realise the inverse identification of the random
index of influencing factors. Furthermore, the FR-RBFNN
was used to predict the thermal error distribution according
to the random indices of the identified influencing factors. The
experimental results show that the proposed models consider
the influence of random factors and can quickly obtain a more
accurate description of thermal errors than traditional predic-
tion models.

2 Random radial basis function model

The randomness of frictional heat and convection in the feed
system causes randomness in the temperature rise. In addition,
the randomness of the temperature sensor measurement itself
will cause inaccuracies in the thermal error prediction model.
Therefore, the randomness of the parameters affecting the
thermal errors was considered in the model.

2.1 Random temperature field

The randomness of heat generation in friction heat sources,
surface convection, and temperature collection measurements
causes randomness in the measuring point temperatures.

The temperature field random variables are expressed as
follows:

Tm ¼ N μTm ; δ2Tm
� �

m ¼ 1; 2;⋯;M ð1Þ

where μTm, δTm, and M represent the mean value of the mth
key temperature, standard deviation of the mth key tempera-
ture, and number of temperature key points, respectively.

Considering the influence of random factors on the thermal
error, the random variables of the temperature field were used
as the inputs.

2.2 Random thermal error

The randomness of thermal error was described as follows:

e j ¼ N μej; δ
2
ej

� �
j ¼ 1; 2;⋯; J ð2Þ

where μej, δej, and J denote the mean value for the jth key
point thermal error, standard deviation for the jth key point
thermal errors, and number of thermal error key points,
respectively.

2.3 Random RBFNN model

In this paper, a new random RBFNN model is presented to
solve the randomness problem. The structure of the random

1546 Int J Adv Manuf Technol (2021) 114:1545–1553



RBFNN is illustrated in Fig. 1. The random RBFNN is com-
posed of IR-RBFNN and FR-RBFNN modules.

The radial basis function commonly used in radial basis
neural networks is a Gaussian function, and the activation
function of the RBFNN can be expressed as follows:

H Tn−dið Þ ¼ exp

�
−

1

2σ2
‖Tn−di‖2

�

n ¼ 1; 2; 3; ::: ;N i ¼ 1; 2; 3;⋯; I

ð3Þ

where Tn ¼ Tn
1; T

n
2;⋯; Tn

m

� �T
denotes the nth input sample,

T denotes the temperature vector, ‖Tn − di‖ denotes the
Euclidean norm, di indicates the centre of the ith node in the
hidden layer, N represents the total number of samples, and σ
denotes the variance of the Gaussian function.

However, Eq. 3 was not used to solve the random inputs.
In this study, to solve the random inputs and outputs, Eq. 3

was modified as follows:

H Tn−dið Þ ¼ exp

�
−

1

2σ2
‖μTn−di‖

2

�

n ¼ 1; 2; 3; ::: ;N i ¼ 1; 2; 3;⋯; I

ð4Þ

The output of random RBFNN was further deduced as

e j ¼ ∑
I

i¼1
wijexp −

1

2σ2
μTn−dik k2

� �
i ¼ 1; 2; 3;⋯; I j ¼ 1; 2; 3⋯; J

ð5Þ
where wij denotes the connection weight of the ith node of the
hidden layer to the jth node of the output layer, I represents the
number of hidden layer nodes, and ej denotes the output value
of the jth output node.

The variance σi of random RBFNN was expressed as fol-
lows:

σi ¼ Dmaxffiffiffiffiffi
2I

p i ¼ 1; 2;⋯; Ið Þ ð6Þ

where D max denotes the maximum distance between centres.
The least-squares methodwas used to calculate the connection
weights from the hidden layer to the output layer.

In this study, the connection weights between the hidden
and output layers are obtained as shown in Eq. 7.

w ¼ exp −
I

D2
max

μTn−dij jj j2
� �

i ¼ 1; 2;⋯; I n

¼ 1; 2;⋯;N ð7Þ

2.3.1 IR-RBFNN model

To accurately investigate the randomness of the parame-
ters in practical applications, the standard deviation in
the input of the key point temperatures was obtained
from inverse identification through the experiments.
Hence, a genetic algorithm (GA), which is a parallel
stochastic search optimisation method, was combined
with a random RBFNN to realise inverse random param-
eter identification.

In this study, the generated random variables were used as
the input of the trained random RBFNN. Initially, the simula-
tion calculation was repeatedK times. From the results of the K
times simulations, the mean value and standard deviation of the
random parameters were obtained. Then, the mean value dif-
ferences and the standard deviation between the simulation re-
sults and experimental data were used as the individual fitness
values to execute GA. Subsequently, random RBFNN and GA
were combined. The differences in the mean values and the
standard deviation between the simulation results and experi-
mental data were the objective functions, and the minimum
values of the two objective functions were searched by GA.

Fig. 1 Structure of random
RBFNN
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Encode In this study, individual coding was real number cod-
ing. During the execution of the genetic algorithm, the initial
variables T and δ were coded separately.

Fitness function The absolute value of the mean difference
between the simulated results and the experimental data was
used for the individual fitness value F1, which can be
expressed as

F1 ¼ abs μSim
e −μExp

e

� � ð8Þ

where μExp
e represents the mean value of the measuring results

obtained through experiment.
The mean value of the thermal errors μSim

e of the random
RBFNN simulation output is expressed as

μSim
e ¼

∑
K

k¼1
μk
ej

K
ð9Þ

where K represents the number of repeated simulations with
random parameters and μk

ej denotes the mean value of the jth
key point thermal error after simulations repeated k.

The absolute value of the standard deviation difference
between the simulation calculation and the experimental data
was used for the individual fitness value F2, which can be
expressed as

F2 ¼ abs δSime −δExpe

� � ð10Þ

where δExpe denotes the standard deviation of the measuring
data.

The standard deviation δSime of the network simulation out-
put value is expressed as

δSime ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
K

k¼1
μk
ej−μSim

e

� �2

K

vuuut
ð11Þ

Selection, crossover, and mutation operations The selection
operation in GA directly affects its performance. In this algo-
rithm, the probability of its selection pi was obtained as fol-
lows:

pi ¼
f i

∑N
j f i

ð12Þ

where fi = 1/Fi. Fi indicates the fitness value of the individual
Xi, and N denotes the number of population individuals.

The real crossover method was used in this study, and the g
chromosome zg and the h chromosome zh are used in the l bit
cross operation method as follows:

zgl ¼ zgl 1−rð Þ þ zilr
zhl ¼ zhl 1−rð Þ þ zglr

	
ð13Þ

where r represents a random number between [0, 1].

2.3.2 FR-RBFNN model

To predict the thermal errors accurately while considering the

randomness of the parameters, random inputs Tm ¼ N

μTm; δ
2
Tm

� �
were introduced to the RBFNN. The standard de-

viation δTm of the inputs was obtained from the identification
of the IR-RBFNN.

In most of the existing literature, the inputs of the network
are obtained directly by reading temperature data from the
sensors. Although this method can obtain the key point tem-
perature data, this data contains the randomness of the instru-
ment’s measurement. Furthermore, large amounts of abnor-
mal data caused by instrument instability may occur. Directly
reading the data cannot exclude the measurement error of the
instrument, which affects the accuracy of the thermal error
prediction.

In this paper, a new real-time dynamic moving average
algorithm is proposed to solve the problem of randomness
and instability caused by instrument measurement errors.

The exponential moving average algorithm can be written
as

Fiþ1 ¼ αY t þ 1−αð ÞαY t−1 þ 1−αð Þ2αY t−2 þ…

þ 1−αð ÞnαY t−n þ…þ 1−αð Þt Fi ð14Þ

where Yt, α, Fi, and Fi + 1 represent the actual measuring value
of the tth period, smoothing coefficient, average prediction
value of the tth period, and average prediction value of the
(t+1)th period, respectively.

Equation 14 is suitable for data without abnormal mutation.
However, owing to the instability of instrument measure-
ments, there is a probability of abnormal mutation data occur-
rence. Therefore, this method is not applicable in our case.

In this paper, an improved real-time dynamic moving av-
erage algorithm that eliminates abnormal mutation data is
proposed.

The mutation value was identified by comparing the pre-
dicted and measured values. If the difference between the
predicted and measured values is larger than the mutation
threshold, the measured value considered abnormal and will
be replaced by the predicted value.

Y tþ1−Fiþ1j j > Δ; Y tþ1 ¼ Fiþ1

Y tþ1−Fiþ1j j < Δ; Y tþ1 ¼ Y tþ1
ð15Þ

where Δ represents the mutation threshold.
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This method is suitable for removing abnormal mutations
in gradually changing signals; the temperature rise in machine
tools corresponds to gradually changing signals.

Using the real-time measuring temperature data, the mean
μTm of the inputs can be obtained through the new real-time
dynamic moving average algorithm.

2.4 Flowchart of the random RBF model

The algorithm consists of IR-RBFNN and FR-RBFNN mod-
ules. The IR-RBFNNmodule realises random parameter iden-
tification, and the FR-RBFNN module completes the thermal
error prediction. A flowchart for random RBFNN is shown in
Fig. 2.

In this study, an IR-RBFNN model was first established,
which uses GA for searching the dataset to obtain the distri-
bution characteristics of random parameters. Subsequently,
the FR-RBFNN model was used for thermal error prediction.
The implementation process is as follows:

1) The RBFNNwas trained with experimental data to obtain
the network model.

2) The μTm and σTm values of the initial variables were set,
and the normrnd function was used to generate the values
of normal random variable, which were used as an IR-
RBFNN input. The mean of the thermal error μs

e was
obtained as output after the network repeated the

Fig. 2 Algorithm flowchart of the
random RBFNN
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simulation Q times. The difference between the mean of
the random RBF output and the mean of the experimental
thermal error was calculated.

3) The GA was first used to encode the initial temperature
variable, and the absolute difference of the mean value
was considered the fitness value. Subsequently, selection,
crossover, and mutation were performed to generate a
normal random variable for each new individual, and
the network simulation was iterated K times to produce
the output.

4) The fitness value F1 was calculated through Eq. 8. If the
fitness value did not meet the conditions, the model
returned to the selection operation and repeated the cycle
until the best fitness value was obtained. If the required
conditions were met, the results were directly considered
output. Finally, the optimal value of the temperature var-
iable was returned, and the inverse identification of the
mean of the temperature input was realised.

5) The initial temperature variable was updated by replacing
the original temperature with the optimal temperature.
Then, normrnd function was used to generate the normal
random variable values, RBFNN was used again, and
thermal error standard deviation δse was obtained after Q
iterations. The difference between the standard deviation
of the output thermal error and the measured thermal error
was determined.

6) The GA was used to encode the standard deviation of the
initial temperature. The absolute value of the difference in
the standard deviation was considered the fitness value
according to Eq. 10, and the selection, crossover, and
mutation were carried out. The new individuals obtained
were generated into the normal random variables again,
and the network simulation was continued K times to
output the thermal error standard deviation. Then, the
operation of fitness value was calculated. If the fitness
value did not meet the conditions, the model returned to

the selection operation and repeated the cycle until the
best fitness value was obtained. If the required conditions
were met, the results were considered output directly.
Finally, the optimal temperature standard deviation was
returned; that is, the reverse identification of the temper-
ature standard deviation was realised.

7) Using the real-time temperature value read from the sen-
sors, the mean μTm of the inputs can be obtained by the
new real-time dynamic moving average algorithm.

8) According to the results of step 7, the random variables
were generated and then used in the FR-RBFNN to com-
plete the thermal error prediction.

3 Experimental setup and testing process

3.1 Experimental setup

In this study, the thermally deduced positioning error of a ball
screw system was investigated experimentally using a com-
puter numerical control (CNC) lathe. The entire experimental
device was composed of a CNC lathe, laser interferometer,
temperature acquisition equipment, and microcomputers, as
shown in Fig. 3.

A random time-varying prediction model based on an x-
axis feed system is investigated in this study. Table 1 lists the
parameters of the system.

3.2 Distribution of measuring points

The three temperature measuring points T1, T2, and T3 were
at the bearing 1 seat, screw-nut flange, and bearing 2 seat,
respectively. The stroke of the thermal error measuring points
was 220 mm, and 6 measuring points P1–P6 were evenly
distributed, as shown in Fig. 4.

Fig. 3 Components of
experimental device
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According to ISO 230–2 standards, the temperature of key
points T1, T2, and T3 were observed by a thermocouple at an
interval of 0.5 s. The positioning error of the system was
recorded using a laser interferometer. The positioning errors
of uniformly distributed P1–P6 points were recorded at a dis-
tance of 44 mm between the measuring points. During the
experimental measurement, the lathe was operated at a feed
rate of 15 m/min. Positioning errors of points P1–P6 after
heating on the lathe for 10, 20, 30, 40, and 50 min were
measured and recorded with a laser interferometer. In this
study, 30 independent experiments were conducted under
the same initial and operating conditions. Under a constant
temperature without a cutting load, the thermal error caused
by screw rotation at a spindle speed of 0 r/min was measured.
The time-varying random prediction model of the random
RBFNN was verified through 30 cutting-free load tests.

4 Results and discussion

In this study, the measured values of the three temperature
sensors and the corresponding thermal errors of the measuring
points were considered the training data set. A set of temper-
ature and thermal error values were recorded after every 10
min, and 30 sets of data were selected as training sets to train
the RBFNN. The normrnd function was used to generate the
normal random temperature variables as input to predict the
thermal errors. The mean and standard deviation of the

thermal error were calculated using the random RBFNN and
compared with those obtained from the experimental data.

The standard deviation of the thermal error was calculated
from the experimental data, and the value was δe = 0.029. The
parameters of GA used in this study are listed in Table 2.

Figures 5, 6, and 7 show the axial thermal errors of the
screw obtained by the random RBFNN model, FEM simula-
tion, and experiment for heating the machine under a feed rate
of 15 m/min for 10, 30, and 50 min, respectively. As shown
from these figures, the mean value of the thermal error calcu-
lated by the random RBFNN is in good agreement with the
mean value of the experimental values and FEM calculation
results. The upper and lower limits of the thermal error calcu-
lated by the random RBFNN are in good agreement with the
experimental data of the system. Moreover, the standard de-
viation of the thermal error is in good agreement with the
experimental data.

In addition, there are some differences between the random
RBFNN model and the FEM simulation results.

Figure 5 shows the thermal error distribution at different
screw positions at the 10thmin. According to the FEM results,
the screw thermal error from 0 to 176 mm is less than the
threshold value of 10 μm, which is deemed “qualified.”
However, according to the random RBFNNmodel and exper-
imental data, the failure probability of the screw gradually
increased from 0 to 50%—from 150 to 176 mm. According
to the FEM results, when the thermal error of the screw from
176 to 220 mm is larger than the threshold value of 10 μm,
this is considered “failure.”However, according to the random
RBFNN model and experimental data, the screw failure prob-
ability from 176 to 215 mm gradually increased from 50 to
100%.

Figure 6 shows the thermal error at different positions of
the screw at 30th min. Based on the FEM results, when the
thermal error of the screw from 0 to 110 mm is less than the
threshold value of 10 μm, it is considered “qualified,” similar
to the 10th min case. However, according to the random RBF
model and the measured data, the failure probability of the
screw from 100 to 110 mm gradually increased from 0 to
50%. According to the FEM results, when the thermal error
of the screw from 110 to 220 mm is larger than the threshold
value of 10μm, it is considered “failure.”However, according

Table 1 Parameters of the x-axis system

Parameters Symbols Value (mm)

Screw length Ls 300

Screw diameter d 32

Screw lead p 10

Screw Stroke L 220

Inner diameter of the bearings Di 30

Outer diameter of the bearings Do 62

Width of the bearings B 16

Fig. 4 Structure of feed system and distribution of measurement points
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to the random RBFNN model and experimental data, the fail-
ure probability from 110 to 123 mm gradually increased from
50 to 100%.

Figure 7 shows the thermal error at different positions of
the screw at 50th min. Based on the FEM simulation, the
screw thermal error from 0 to 98 mm is less than the threshold
value of 10 μm, which is deemed qualified, similar to the 10th
min case. However, according to the random RBFNN model
and the measurement results, the failure probability of the
screw from 87 to 98 mm gradually increases from 0 to 50%.
The FEM simulation results indicate that the thermal error of
the screw from 98 to 220 mm is larger than the threshold value
of 10 μm, which denotes failure. However, according to the
random RBFNN model and experimental data, the failure
probability from 98 to 110 mm gradually increases from 50
to 100%.

From Figs. 5, 6, and 7, it can be seen that the random RBF
model proposed herein considers the parameter randomness.

Hence, it can describe the real-time thermal error of the screw
from the perspective of reliability, which is more accurate.

In addition, the aforementioned results show that the mean
value and the discreteness of the thermally induced error of the
screw were affected by the mean value and standard deviation
of the random variable. In this study, because the influence of
random factors is considered, the prediction results of the ran-
dom RBFNNmodel are more accurate than those of the FEM.

Table 2 The parameters of GA

Parameters Symbols Value

Population size S 20

Number of evolution G 5

Crossover probability PC 0.4

Mutation probability PM 0.2

Fig. 5 Thermal error at different positions of screw at the 10th min

Fig. 6 Thermal error at different positions of screw at the 30th min

Fig. 7 Thermal error at different positions of screw at the 50th min
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Moreover, the running time of the random RBFNN prediction
model was approximately 190 ms and that of the FEM model
was approximately 50 min. The comparison results show that
the running speed of the proposed model is significantly
higher than that of the FEM model. Therefore, the random
RBFNN prediction model can quickly obtain accurate results.

5 Conclusions

In this study, a novel IR-RBFNN model is proposed by com-
bining the stochastic theory, GA, and RBFNN. Subsequently,
using IR-RBFNN, the randomness index of the influencing
factors was identified. Furthermore, through the combination
of the stochastic theory, RBFNN, and the modified exponen-
tial moving average method with abnormal data elimination,
the FR-RBFNN model is established according to the identi-
fied influencing factor random index. Using the two models, a
novel prediction model for thermal error is proposed, consid-
ering the randomness of factors affecting the thermal error.
This work considers the randomness of the friction heat, am-
bient temperature, and equipment measurement that directly
affect the accuracy of thermal error prediction of the feed
system. Compared with the traditional method, the experi-
mental data of the lathe show that the proposed random
RBFNN can obtain a more accurate error description consid-
ering the randomness of factors affecting thermal error.
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