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Abstract
In this paper, a generic method based on fuzzy aggregation operator for multi-criterion decision-making problems in design
for additive manufacturing is proposed. Firstly, a fuzzy power weighted Maclaurin symmetric mean operator based on
Hamacher T-norm and T-conorm is constructed via a combination of fuzzy numbers, power average operator, weights,
Maclaurin symmetric mean operator, and operational rules of fuzzy numbers based on Hamacher T-norm and T-conorm.
Based on the constructed operator, a generic method for solving the multi-criterion decision-making problems in design for
additive manufacturing is then developed. After that, an example of additive manufacturing machine and material selection
and an example of optimal build direction selection are introduced to illustrate the developed method. Finally, a set of
numerical experiments are reported to demonstrate the effectiveness and capabilities of the method. The demonstration
results suggest that the method can effectively solve a multi-criterion decision-making problem in design for additive
manufacturing and has the characteristics in considering the interactions of criteria, reducing the effect of noise criterion
values, and capturing the risk attitude of decision-makers.

Keywords Design for additive manufacturing · Additive manufacturing machine · Additive manufacturing material ·
Build direction · Multi-criterion decision-making · Fuzzy aggregation operator

1 Introduction

Multi-criterion decision-making (MCDM) problems, also
known as multi-attribute decision-making problems, refer
to a set of problems in which the preference decisions
are made via evaluating and sorting a limited number of
alternatives on the basis of multiple criteria. In design
for conventional manufacturing, there are many problems
belonging to MCDM problems [1–8]. This is also the case
in design for additive manufacturing (AM). Design for AM
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is an activity of designing an AM part and determining
appropriate process variables to build the part, in which the
quality and other key factors such as property, cost, and
manufacturability of the part are optimised simultaneously
subjected to the capabilities of the used AM technique
[9–12]. This activity includes a set of successive tasks,
which are conceptual design, detailed design, build direction
determination, support structure generation, slicing, and
path planning.

Conceptual design is the very first task in design for AM.
It serves to give a description of the outline of functionality
and the form of an AM part [13]. Detailed design is the
task in which the design is refined. It mainly involves the
design of the geometry and specifications of an AM part
and the selection of an AM machine and certain materials
to build the part [10]. Build direction determination, support
structure generation, slicing, and path planning are four
process planning tasks [14–16], which aim to design proper
direction, support structure, slices, and tool path and process
parameters, respectively, to build an AM part.

In these successive tasks, there are a number of problems
that can be regarded as MCDM problems. As one example,
in the detailed design of an AM part, a designer needs
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to select an AM machine and certain materials from a
certain number of available AM machines and materials
based on certain multiple considerations, such as material
property, part quality, part property, surface quality, build
time, and part cost [17]. An AM machine or material
selection problem like this is a typical MCDM problem.
As another example, in the build direction determination of
an AM part, a designer needs to determine a proper build
direction from an infinite number of theoretical directions
or a certain number of alternative directions on the basis of
certain multiple factors, such as part property, part accuracy,
surface quality, support structure, manufacturing time, and
manufacturing cost [14]. A build direction determination
problem also belongs to an MCDM problem.

Since the problems above are essentially MCDM
problems, they can naturally be solved via MCDMmethods.
In the literature, a number of researchers either developed
some specialised MCDM methods or applied some existing
MCDM methods to address the problems. To be specific,
aiming at the AM machine or material selection problem,
[18–25] introduced the analytic hierarchy process (AHP);
[26] and [27] applied the technique of knowledge value
measuring; [28–30] used the technique for order of
preference by similarity to ideal solution (TOPSIS); [31]
presented an MCDM method based on graph theory and
matrix; [32] proposed an improved preference ranking
organisation method for enrichment of evaluations; [33]
applied the multi-objective optimisation method by ratio
analysis; [34] and [35] respectively introduced the theories
of fuzzy logic and fuzzy set; [36] developed an MCDM
method based on grey relational analysis; [37] constructed
a specialised ranking model; [38] established an integrated
MCDM model based on deviation and similarity; [39]
presented a fuzzy axiomatic design method based on
the rough set theory; [40] and [41] adopted a combined
AHP-TOPSIS method; [42] applied the best-worst method;
[43] presented an MCDM method based on a linear
combination of a fuzzy power weighted Bonferroni mean
(FPWBM) operator and a fuzzy power weighted geometric
Bonferroni mean (FPWGBM) operator. To slove the build
direction determination problem, [44] and [45] determined
the alternative directions via a set of feature-based rules and
selected the optimal direction via an MCDM method based
on the weighted average (WA) operator; [46] developed
a decision support system where the MCDM module was
implemented using the WA operator; [47] generated the
alternative directions via a feature-based approach and
selected the best direction using an MCDM method based
on deviation function; [48, 49] determined the alternative
directions according to the surfaces of convex hull and
selected the most desirable direction via an MCDM method

based on the WA operator; [50] introduced the concept of
AM feature and determined the alternative directions and
the optimal direction using an AM feature-based approach
and the integrated MCDM model in [38], respectively;
[51] determined the alternative directions via quaternion
rotation and selected the best direction using an MCDM
method based on the ordered weighted average operator;
[52] presented an MCDM method based on a fuzzy power
weighted partitioned Muirhead mean (FPWPMM) operator
and a fuzzy power weighted prioritised average (FPWPA)
operator; [53] determined the alternative directions through
quaternion rotation and selected the optimal direction via
a negative feedback MCDM model; [54] and [55, 56]
generated the alternative directions via facet clustering and
selected the best direction using the WA operator.

In practical MCDM problems in design for AM, the
considered multiple criteria are usually interacted with each
other. For example, the material property may affect the part
quality, part property, and surface quality and the build time
may influence the part cost in the AM machine or material
selection problem; The surface quality may be affected by
the support structure and the manufacturing cost may be
influenced by the support structure and manufacturing time
in the build direction determination problem. To produce
reasonable decision-making results in this case, the used
MCDM methods should be generic and flexible enough
to capture the interactions of the considered criteria [57].
Further, the values of the considered criteria are generally
obtained from evaluation of domain experts, estimation
of theoretical models, or prediction of simulations or
experiments. These approaches may produce a few extreme
values. To obtain consistent decision-making results under
this situation, the used MCDM methods should also have
the capability to reduce the influence of noise criterion
values [58]. Apart from the interactions of criteria and the
noise of criterion values, the risk attitude of decision-makers
is also a critical factor that should be taken into considera-
tion in the used MCDM methods, as different risk attitudes
could affect the decision-making results significantly [59].

Among the MCDM methods reviewed above, the
methods of [31] and [39] express the interactions among
criteria via digraph and matrix. The method of [30]
represents them by regression coefficients. The methods of
[43] capture the interactions between any two criteria using
the FPWBM and FPWGBM operators. The method of [52]
capture the interactions between any two criteria or among
any multiple criteria using the FPWPMM and FPWPA
operators. In addition to these methods, the remaining
methods assume that all criteria are independent of each
other. That is, they do not consider the interactions of
criteria. Further, apart from the methods of [43, 52], the
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remaining methods do not take into account the reduction of
the effect of noise criterion values on the decision-making
results. As for the risk attitude of decision-makers, only
the method of [43] takes it into consideration. To sum
up, the methods of [43, 52] could be more desirable in
terms of the consideration of the interactions of criteria, the
noise of criterion values, and the risk attitude of decision-
makers. However, the method of [43] can only capture the
interactions between any two criteria and cannot express the
interactions among more than two criteria. The method of
[52] cannot capture the risk attitude of decision-makers.

In this paper, a generic method to solve the MCDM
problems in design for AM is proposed. This method is
based on a fuzzy power weighted Maclaurin symmetric
mean (FPWMSM) operator based on Hamacher T-norm and
T-conorm (HTT), which is constructed via a combination
of fuzzy numbers (FNs) [60], power average (PA) operator
[61], weights, Maclaurin symmetric mean (MSM) operator
[62], and operational rules (ORs) of FNs based on HTT.
The FNs are effective mathematical tools for quantifying
the values of different criteria in a unified range. The PA
operator is a function for aggregating two or more positive
numbers to obtain a single summary positive number. It
has the capability to reduce the influence of those extreme
positive numbers to be aggregated on the aggregation
results. The weights are general means for quantifying
the degree of importance of criteria. The MSM operator
is also a function for aggregating two or more positive
numbers to obtain a single summary positive number. It
can produce consistent aggregation results when all of the
positive numbers to be aggregated are independent, when
any two of them are interacted, and when any multiple
of them are interacted. The ORs of FNs based on HTT
are a set of rules for performing the operations between
two FNs and the operations between an FN and a positive
number. They were found to have the capability to capture
different risk attitudes in MCDM [63]. Benefiting from the
combination, the proposed method can effectively solve
an MCDM problem where all criteria are independent,
any two criteria are interacted, or any multiple criteria are
interacted. It also has the capabilities to reduce the effect of
extreme criterion values and to capture the risk attitude of
decision-makers.

The remainder of the paper is organised as follows.
Section 2 gives a brief introduction of some basic concepts
involved in the construction of the FPWMSM operator
based on HTT. Section 3 explains the details of the proposed
method. Two MCDM examples in design for AM are
reported to illustrate the application of the method in
Section 4. A set of experiments for demonstrating the
effectiveness and capabilities of the method are documented
in Section 5. Section 6 ends the paper with a conclusion.

2 Preliminaries

In this section, some basic concepts involved in the
construction of an FPWMSM operator based on HTT are
introduced.

2.1 Fuzzy set theory

The concept of fuzzy sets was introduced by Zadeh [60].
A fuzzy set is somewhat like a set whose elements have
degrees of membership. Its definition is as follow:

Definition 1 A fuzzy set A over a universe of discourse X

is defined as x, μ(x) x ∈ X}, where μ : X → [0, 1] is
a membership function whose value indicates the degree to
which x belongs to A.

In general, the value of the membership function μ(x)

(denoted as μ) is called a degree of membership or an FN.
An FN β is usually denoted as μ . Any two FNs can be
compared by the following rule:

Definition 2 Let β1 μ1 and β2 μ2 be two arbitrary
FNs. Then: if μ1 < μ2, then β1 < β2; if μ1 = μ2, then
β1 = β2; if μ1 > μ2, then β1 > β2.

The distance between any two FNs can be calculated
using an Euclidean distance measure of FNs:

Definition 3 Let β1 μ1 and β2 μ2 be two arbitrary
FNs. Then the Euclidean distance between β1 and β2 is
given by

d(β1, β2) = (μ1 − μ2)2 (1)

2.2 ORs of FNs based on HTT

HTT is a type of Archimedean t-norm and t-conorm.
It has a flexible parameter that can be used to capture
different risk attitudes in MCDM [63]. ORs of FNs are rules
for performing the operations between two FNs and the
operations between an FN and a positive number. The ORs
of FNs based on HTT, which can be regarded as the special
cases of the ORs of intuitionistic fuzzy numbers based on
HTT in [64] and the ORs of picture fuzzy numbers based on
HTT in [65], are defined as follows:

Definition 4 Let β1 μ1 , β2 μ2 , and β μ be
three arbitrary FNs and λ and δ be two arbitrary positive
numbers. Then the sum operation of β1 and β2, the product
operation of β1 and β2, the operation of β multiplied by λ,
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and the operation of β to the power of λ can be respectively
performed using

β1 ⊕ β2 = μ1 + μ2 − μ1μ2 − (1 − δ)μ1μ2

1 − (1 − δ)μ1μ2
(2)

β1 ⊗ β2 = μ1μ2

δ + (1 − δ)(μ1 + μ2 − μ1μ2)
(3)

λβ = (1 + (δ − 1)μ)λ − (1 − μ)λ

(1 + (δ − 1)μ)λ + (δ − 1)(1 − μ)λ
(4)

βλ = δμλ

(δ − 1)μλ + (1 + (δ − 1)(1 − μ))λ
(5)

2.3 PA operator

The PA operator was introduced by Yager [61]. It has the
capability to reduce the effect of those unduly large or
unduly small positive numbers to be aggregated on the
aggregation results. This capability is achieved via assigning
dynamic weights to the positive numbers to be aggregated
according to the degrees of support between them. The
definition of the PA operator is as follow:

Definition 5 Let y1, y2, ..., yn be n positive numbers to be
aggregated, d(yi, yj ) (i, j = 1, 2, ..., n and j i) be the
distance between yi and yj , and s(yi, yj ) = 1 − d(yi, yj )

be the degree of support for yi from yj that satisfies the
following conditions: 0 ≤ s(yi, yj ) ≤ 1; s(yi, yj ) =
s(yj , yi); if yi − yj < yi − yj , then s(yi, yj ) ≥
s(yi , yj ). Then the PA operator is given by

PA(y1, y2, ..., yn) =

n

i=1
1 +

n

j=1,j i

s(yi, yj ) yi

n

i=1
1 +

n

j=1,j i

s(yi, yj )

(6)

2.4 MSM operator

The MSM operator was introduced by Maclaurin [62].
It is an all-in-one aggregation operator for capturing the
interactions of the positive numbers to be aggregated, since
it can generate consistent aggregation results when all of the
positive numbers to be aggregated are independent of each
other, when any two of them have interactions, and when
any multiple of them have interactions. The definition of the
MSM operator is as follow:

Definition 6 Let y1, y2, ..., yn be n positive numbers to be
aggregated and k = 1, 2, ..., n. If (i1, i2, ..., ik) traverse all

of the k-tuple combinations of (1, 2, ..., n), then the MSM
operator is given by

MSM(k)(y1, y2, ..., yn) =
⎛

⎝k!(n − k)!
n!

1≤i1<i2<...<ik≤n

k

j=1

yij

⎞

⎠

1
k

(7)

3 Generic MCDMmethod

In this section, a generic method for solving the MCDM
problems in design for AM is presented. The general
flow of this method is shown in Fig. 1. The presented
method takes as input a decision matrix for a set of
alternatives and a set of criteria of alternatives and the
weights of criteria. It outputs a sequence of alternatives
together with the best alternative. Firstly, the decision matrix
is transformed into a fuzzy decision matrix via a ratio
model. The fuzzy decision matrix is then normalised and a
normalised fuzzy decision matrix is obtained. After that, a
constructed FPWMSM operator based on HTT is applied
to aggregate the fuzzy information in the obtained matrix.
Finally, a sequence of alternatives is generated via sorting
the input alternatives according to the aggregation results,
and the best alternative is determined from the generated
sequence of alternatives.

The present section first explains the details of the
constructed FPWMSM operator based on HTT. It then
describes the specific process of the presented method.

3.1 FPWMSM operator based on HTT

An FPWMSM operator based on HTT is a function for
grouping together one or more FNs to obtain a single
summary FN. This operator is established via combining the
MSM and PA operators of FNs with weights, in which the
operations are performed via the ORs of FNs based on HTT
in Definition 4. It can be regarded as a special case of the
picture fuzzy power weighted MSM operator based on HTT
in [65]. The definition of the FPWMSM operator based on
HTT is as follow:

Definition 7 Let β1 μ1 , β2 μ2 , ..., βn μn be
n FNs to be aggregated, w1, w2, ..., wn be respectively the
weights of β1, β2, ..., βn such that 0 ≤ w1, w2, ..., wn ≤ 1
and w1 + w2 + ... + wn = 1, k = 1, 2, ..., n, d(βi, βj )

(i, j = 1, 2, ..., n and j i) be the distance between βi and
βj , and s(βi, βj ) = 1 − d(βi, βj ) be the degree of support
for βi from βj that satisfies the following conditions: 0 ≤
s(βi, βj ) ≤ 1; s(βi, βj ) = s(βj , βi); if d(βi, βj ) <

d(βi , βj ), then s(βi, βj ) ≥ s(βi , βj ). If (i1, i2, ..., ik)
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Fig. 1 General flow of the proposed generic MCDM method

traverse all of the k-tuple combinations of (1, 2, ..., n), then
the FPWMSM operator based on HTT is given by

FPWMSM
(k)
HTT(β1, β2, ..., βn)

=
⎛

⎝k!(n − k)!
n!

1≤i1<i2<...<ik≤n

k

j=1

Wij βij

⎞

⎠

1
k

(8)

where

Wij =
nwij 1 +

n

q=1,q ij

s(βij , βq)

n

p=1
wp 1 +

n

q=1,q p

s(βp, βq)

(9)

and all of the operations related to FNs are performed using
the ORs of FNs based on HTT in Definition 4.

Equation (8) is an implicit expression of the FPWMSM
operator based on HTT. If the ORs of FNs based on HTT in
Definition 4 are applied to this expression, then an explicit
expression of the operator can be derived:

Definition 8 The explicit expression of the FPWMSM
operator based on HTT is given by

FPWMSM
(k)
HTT(β1, β2, ..., βn)

= δ(μ − 1)
1
k

(μ + δ2 − 1)
1
k + (δ − 1)(μ − 1)

1
k

(10)

where

μ =
1≤i1<i2<...<ik≤n

μ + δ2 − 1

μ − 1

k!(n−k)!
n!

(11)

μ =
k

j=1

δ + (1 − δ)(1 − μij )
Wij + (δ2 − 1)(1 − μij )

Wij

δ + (1 − δ)(1 − μij )
Wij − (1 − μij )

Wij

(12)

There are three important parameters in the FPWMSM
operator based on HTT. They are k, δ, and Wij .
The parameter k determines how the interactions of
β1, β2, ..., βn are considered in the operator: If k = 1, then
the interactions are not considered (i.e. β1, β2, ..., βn are
independent of each other); If k = 2, then the interactions
between any two of β1, β2, ..., βn are considered; If
k = 3, 4, ..., n, then the interactions among any multiple
(3, 4, ..., n) of β1, β2, ..., βn are considered. The parameter
δ reflects the risk attitude captured in the operator. The
larger the value of this parameter, the more pessimistic the
aggregation expectation. The parameter Wij is the dynamic
weight assigned to βij . Its value is calculated via the
degrees of support between βij and the remaining FNs to
be aggregated. Because of the use of this parameter, the
operator has the capability to reduce the influence of those
unduly large or unduly small FNs to be aggregated on the
aggregation results.

3.2 Specific process of themethod

The basic components of an MCDM problem in design
for AM include m alternatives A1, A2, ..., Am, n cri-
teria C1, C2, ..., Cn, n weights w1, w2, ..., wn (0 ≤
w1, w2, ..., wn ≤ 1 and w1 + w2 + ... + wn = 1), and
a decision matrix M = [yi,j ]m×n (i = 1, 2, ..., m; j =
1, 2, ..., n; yi,j > 0), where wj is the weight of Cj and
yi,j is the value of Cj of Ai . Based on these components,
the objective for the problem can be described as: To deter-
mine an alternative from A1, A2, ..., Am that best meets
C1, C2, ..., Cn on the basis of w1, w2, ..., wn and M . Using
the constructed FPWMSM operator based on HTT, this
objective is achieved through the following steps:
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(1) Construct a fuzzy decision matrix. In an MCDM
problem in design for AM, the values of criteria
of alternatives are generally quantified by positive
numbers. To establish a fuzzy decision matrix for the
problem, these values need to be converted into FNs. A
direct way for such conversion is to use a ratio model.
Brauers et al. [66] tested a number of different ratio
models and found that the best ratio model is

yi,j = yi,j

m

i=1
y2
i,j

(13)

Using this model, each positive number yi,j in the
decision matrix M can be converted into an FN yi,j .
Then M is transformed into a fuzzy decision matrix
M = yi,j m×n.

(2) Normalise the fuzzy decision matrix. The criteria
considered in an MCDM problem in design for AM
can be classified into positive criteria and negative
criteria, which respectively have positive influence and
negative influence on the decision-making result. To
unify the influence of different types of criteria, a
complement rule is usually used to normalise the FNs
representing the values of negative criteria [43, 52,
56]. This rule is also applied to normalise the fuzzy
decision matrix M in the presented method. That is,
M is normalised as M = yi,j m×n = [βi,j ]m×n,
where

yi,j = yi,j if Cj is a positive criterion
1 − yi,j if Cj is a negative criterion

(14)

(3) Calculate the dynamic weight of each FN in the
normalised fuzzy decision matrix. Using Eq. (9), the
dynamic weights of the FNs βi,j in M are calculated
as W = [Wi,j ]m×n. It is worth noting that the distance
between two FNs in this equation can be measured via
Eq. (1).

(4) Aggregate the FNs in each row of the normalised fuzzy
decision matrix into a single FN. Using the explicit
expression of the constructed FPWMSM operator
based on HTT in Eq. (10), the FNs βi,1, βi,2, ..., βi,n

in M are aggregated into m single FNs βi . It is
worth noting that the values of the parameters k and
δ are respectively assigned according to the actual
interactions among criteria and the actual risk attitude.
If the actual interactions are unclear, the value of k can
be specified as n/2 ( is the round down function)
[67]. If the actual attitude is uncertain, the value of δ

can be assigned as 3 [65, 68].

(5) Sort the alternatives on the basis of the aggregation
results. According to the aggregated FNs β1, β2, ..., βm

and the comparison rule in Definition 2, the alterna-
tives A1, A2, ..., Am are sorted and a sequence of them
is obtained.

(6) Determine an alternative that best meets the criteria.
Each of the alternatives that are at the first place of the
sequence can be selected as the best alternative.

4 Application examples

In this section, an example of AM machine and material
selection and an example of optimal build direction
selection are introduced to illustrate the application of the
proposed method.

4.1 AMmachine andmaterial selection example

This example was developed by [38]. Its objective is to
select the best combination of AM machine and material
from six alternative combinations. In the example, a frame
structure whose three-dimensional model is shown in Fig. 2
is about to be manufactured using an AM machine and an
AM material. According to a preliminary assessment of the
KARMA platform, there are six desirable combinations of
AM machine and material for selection, which are listed
in Table 1. The selection criteria of these combinations
are surface roughness (C1), mechanical strength (C2), part
density (C3), build time (C4), and build cost (C5). The
values of these criteria of the six combinations are predicted
by the KARMA platform and also listed in Table 1. The
degrees of importance of the five criteria are quantified by
the weights 0.50, 0.10, 0.10, 0.15, and 0.15, respectively.

Using the proposed generic MCDM method, the objec-
tive for the example is achieved via the following six
steps:

(1) Construct a fuzzy decision matrix. Using the ratio
model in Eq. (13), the positive numbers in Table 1 are

Fig. 2 Three-dimensional model of a frame structure
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Table 1 Predicted values of criteria in the first application example

Alternative combination C1 C2 C3 C4 C5

Unit of criterion values μm MPa g/cm3 h e

A1: Viper & ProtoGen 18420 3.49 61.38 1.20 5.40 47.70

A2: Viper & Somos NeXt 7.80 55.10 1.17 2.32 35.08

A3: M3 Linear & CL 20 (316L) 3.12 475.00 7.80 6.66 211.42

A4: EOSINT & PA 2200 19.03 47.22 1.05 3.40 146.14

A5: EOSINT & PA 3200 GF 19.81 37.92 1.32 3.40 146.14

A6: APCAMA2 & Ti6Al4V ELI 24.96 936.60 4.42 9.02 481.78

converted into FNs. Based on this, a fuzzy decision
matrix is constructed as

M =

⎡

⎢⎢⎢⎢
⎣

0.0913 0.0582 0.1294 0.3988 0.0839
0.2041 0.0522 0.1261 0.1713 0.0617
0.0816 0.4502 0.8409 0.4918 0.3720
0.4980 0.0448 0.1132 0.2511 0.2571
0.5184 0.0359 0.1423 0.2511 0.2571
0.6532 0.8877 0.4765 0.6661 0.8477

⎤

⎥⎥⎥⎥
⎦

(2) Normalise the fuzzy decision matrix. For the AM
machine and material selection problem, surface
roughness, part density, build time, and build cost are
four negative criteria, and mechanical strength is a
positive criterion. According to Eq. (14), the fuzzy
decision matrix is normalised as

M =

⎡

⎢⎢⎢⎢
⎣

0.9087 0.0582 0.8706 0.6012 0.9161
0.7959 0.0522 0.8739 0.8287 0.9383
0.9184 0.4502 0.1591 0.5082 0.6280
0.5020 0.0448 0.8868 0.7489 0.7429
0.4816 0.0359 0.8577 0.7489 0.7429
0.3468 0.8877 0.5235 0.3339 0.1523

⎤

⎥⎥⎥⎥
⎦

(3) Calculate the dynamic weight of each FN in the
normalised fuzzy decision matrix. Using Eq. (9), the
dynamic weights of the FNs βi,j (i = 1, 2, ..., 6; j =
1, 2, ..., 5) in M are calculated as

W =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.5308 0.0541 0.1072 0.1495 0.1584
0.5333 0.0472 0.1063 0.1613 0.1519
0.4452 0.1161 0.0908 0.1766 0.1713
0.5117 0.0641 0.0973 0.1633 0.1636
0.5088 0.0645 0.0998 0.1633 0.1636
0.5299 0.0730 0.1014 0.1585 0.1372

⎤

⎥⎥⎥⎥⎥⎥
⎦

(4) Aggregate the FNs in each row of the normalised fuzzy
decision matrix into a single FN. Using the explicit
expression of the constructed FPWMSM operator
based on HTT in Eq. (10) (k = 2 since mechanical
strength and part density are interacted and build time
and build cost are interacted and δ = 3), the FNs
βi,1, βi,2, ..., βi,5 in M are aggregated into six single
FNs β1 0.6247 , β2 0.6812 , β3 0.5020 ,
β4 0.5823 , β5 0.5724 , and β6 0.3841 .

(5) Sort the alternatives on the basis of the aggregation
results. According to the aggregated FNs β1, β2, ..., β6

and the comparison rule in Definition 2, the alter-
native combinations of AM machine and material
A1, A2, ..., A6 are sorted and a sequence of them is
obtained as A2 A1 A4 A5 A3 A6.

(6) Determine an alternative that best meets the criteria.
Since A2 is the only alternative that is at the first place
of the sequence, it is selected as the best alternative.
That is, Viper & Somos NeXt is selected as the most
desirable combination of AM machine and material.

For the example above, a sequence of alternatives and the
best alternative generated by the method of [38] under the
same conditions are respectively A1 A2 A3 A4

A5 A6 and A1. These results are different from the
results of the proposed method. This is mainly because the
method of [38] does not consider the interactions of criteria
and does not have the capabilities to reduce the effect
of noise criterion values and capture the risk attitude of
decision-makers, while the proposed method can capture the
interactions between mechanical strength and part density
and the interactions between build time and build cost and
has such capabilities. The difference in results indicates the
importance of properly considering the interactions among
criteria, reducing the influence of noise criterion values, and
capturing the risk attitude in an AM machine and material
selection problem.

4.2 Optimal build direction selection example

This example was developed by [50]. Its objective is to
select the optimal build direction from seven alternative
directions. In the example, seven alternative build directions
for the frame structure in Fig. 2 are generated by an AM
feature-based approach. The schematic diagram of these
directions is shown in Fig. 3. The selection criteria of the
directions are feature favourableness (C1), support volume
(C2), surface roughness (C3), build time (C4), and build cost
(C5). The values of these criteria of the seven directions
are also predicted by the KARMA platform and listed in
Table 2. The degrees of importance of the five criteria are
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Fig. 3 Schematic diagram of the seven alternative build directions

quantified by the weights 0.125, 0.125, 0.500, 0.125, and
0.125, respectively.

Using the proposed generic MCDM method, the objec-
tive for the example is achieved via the following six
steps:

(1) Construct a fuzzy decision matrix. Using the ratio
model in Eq. (13), the positive numbers in Table 2 are
converted into FNs. Based on this, a fuzzy decision
matrix is constructed as

M =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.3268 0.3203 0.3370 0.2888 0.3039
0.5388 0.4082 0.2222 0.2855 0.2986
0.3268 0.4471 0.3595 0.2888 0.3039
0.5388 0.4408 0.2403 0.2855 0.2986
0.1684 0.2480 0.5192 0.4567 0.4479
0.3862 0.4094 0.3301 0.5055 0.4905
0.1684 0.3278 0.5211 0.4540 0.4425

⎤

⎥⎥⎥⎥⎥⎥
⎦

(2) Normalise the fuzzy decision matrix. For the optimal
build direction selection problem, feature favourable-
ness is a positive criterion, and support volume, surface
roughness, build time, and build cost are four nega-
tive criteria. According to Eq. (14), the fuzzy decision
matrix is normalised as

M =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.3268 0.6797 0.6630 0.7112 0.6961
0.5388 0.5918 0.7778 0.7145 0.7014
0.3268 0.5529 0.6405 0.7112 0.6961
0.5388 0.5592 0.7597 0.7145 0.7014
0.1684 0.7520 0.4808 0.5433 0.5521
0.3862 0.5906 0.6699 0.4945 0.5095
0.1684 0.6722 0.4789 0.5460 0.5575

⎤

⎥⎥⎥⎥⎥⎥
⎦

(3) Calculate the dynamic weight of each FN in the
normalised fuzzy decision matrix. Using Eq. (9), the

dynamic weights of the FNs βi,j (i = 1, 2, ..., 7; j =
1, 2, ..., 5) in M are calculated as

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.1002 0.1291 0.5146 0.1274 0.1287
0.1217 0.1261 0.4941 0.1288 0.1293
0.1066 0.1261 0.5145 0.1257 0.1271
0.1227 0.1244 0.4967 0.1279 0.1283
0.1017 0.1136 0.5208 0.1321 0.1318
0.1214 0.1288 0.4881 0.1306 0.1311
0.1014 0.1205 0.5163 0.1311 0.1307

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(4) Aggregate the FNs in each row of the normalised fuzzy
decision matrix into a single FN. Using the explicit
expression of the constructed FPWMSM operator
based on HTT in Eq. (10) (k = 3 since support volume,
build time, and build cost are interacted and δ = 3),
the FNs βi,1, βi,2, ..., βi,5 in M are aggregated into
seven single FNs β1 0.5313 , β2 0.5563 ,
β3 0.5063 , β4 0.5491 , β5 0.4487 ,
β6 0.4640 , and β7 0.4379 .

(5) Sort the alternatives on the basis of the aggregation
results. According to the aggregated FNs β1, β2, ..., β7

and the comparison rule in Definition 2, the alternative
build directions A1, A2, ..., A7 are sorted and a
sequence of them is obtained as A2 A4 A1

A3 A6 A5 A7.
(6) Determine an alternative that best meets the criteria.

Since A2 is the only alternative that is at the first place
of the sequence, it is selected as the best alternative.
That is, the build directionD2 is selected as the optimal
build direction.

Table 2 Predicted values of criteria in the second application example

Alternative direction C1 C2 C3 C4 C5

Unit of criterion values N/A mm3 μm h e

A1: Build direction D1 1.65 510.00 5.40 4.32 57.00

A2: Build direction D2 2.72 650.00 3.56 4.27 56.00

A3: Build direction D3 1.65 712.00 5.76 4.32 57.00

A4: Build direction D4 2.72 702.00 3.85 4.27 56.00

A5: Build direction D5 0.85 395.00 8.32 6.83 84.00

A6: Build direction D6 1.95 652.00 5.29 7.56 92.00

A7: Build direction D7 0.85 522.00 8.35 6.79 83.00

2090 Int J Adv Manuf Technol (2021) 115:2083–2095



For the example above, a sequence of alternatives and the
best alternative generated by the method of [50] under the
same conditions are respectively A5 A1 A7 A2

A4 A3 A6 and A5. These results are different from
the results of the proposed method. This is mainly because
the method of [50] does not consider the interactions of
criteria and does not have the capabilities to reduce the
effect of noise criterion values and capture the risk attitude
of decision-makers, while the proposed method can capture
the interactions among support volume, build time, and
build cost and has such capabilities. The difference in
results indicates the importance of properly considering the
interactions among criteria, reducing the influence of noise
criterion values, and capturing the risk attitude in an optimal
build direction selection problem.

5 Demonstration experiments

In this section, a set of numerical experiments are carried
out to demonstrate the effectiveness and capabilities of the
proposed method.

5.1 Effectiveness demonstration experiment

In general, the effectiveness of a new MCDM method
can be demonstrated using a benchmark consisting of a
certain number of MCDM examples where the sequences of
alternatives are generated by an existing MCDMmethod. In
the method of [56], twelve optimal build direction selection
examples were developed and the sequences of alternatives
for these examples were produced on the basis of
comprehensive consideration of support volume, volumetric
error, surface roughness, build time, and build cost. The
twelve examples and their sequences of alternatives can
form a benchmark for validating the proposed method.

In this subsection, a numerical experiment based on
this benchmark was conducted. The twelve examples were
solved by the proposed method in the experiment. The
sequences of alternatives for these examples generated
by the proposed method (k = 3 since support volume,
build time, and build cost are interacted according to their
estimation models in [56] and δ = 3), as well as those
produced by the method of [56], are listed in Table 3. It can
be seen from the table that the optimal alternative for each

Table 3 Results of the effectiveness demonstration experiment

Example Sequence of alternatives of the method of [56] Sequence of alternatives of the proposed method

Example 1 A02 A01 A06 A03 A05 A04 A02 A01 A06 A03 A05 A04

Example 2 A02 A04 A01 A03 A06 A05 A02 A04 A01 A03 A06 A05

Example 3 A02 A04 A03 A05 A06 A01 A02 A04 A03 A05 A06 A01

Example 4 A01 A02 A05 A07 A03 A08 A06 A04 A01 A02 A05 A07 A03 A08 A06 A04

Example 5 A01 A02 A07 A08 A04 A05 A06 A03 A01 A02 A07 A08 A04 A05 A06 A03

Example 6 A02 A01 A04 A05 A08 A03 A06 A07 A02 A01 A04 A05 A08 A03 A06 A07

Example 7 A04 A16 A21 A15 A07 A08 A18 A12 A04 A16 A21 A15 A18 A07 A11 A12

A11 A03 A06 A17 A22 A02 A14 A05 A08 A17 A22 A06 A03 A14 A02 A20

A10 A20 A09 A01 A19 A13 A23 A24 A05 A10 A19 A09 A01 A23 A13 A24

Example 8 A09 A03 A15 A13 A07 A01 A02 A22 A09 A03 A15 A13 A07 A01 A02 A22

A18 A10 A08 A23 A05 A11 A16 A17 A18 A10 A08 A23 A05 A16 A11 A17

A21 A12 A20 A06 A19 A24 A14 A04 A21 A12 A20 A06 A19 A24 A14 A04

Example 9 A17 A05 A23 A06 A24 A18 A21 A08 A17 A05 A23 A06 A21 A24 A18 A22

A09 A22 A14 A07 A10 A12 A11 A16 A09 A08 A14 A10 A07 A12 A11 A19

A15 A19 A13 A20 A04 A03 A02 A01 A16 A15 A13 A20 A04 A03 A02 A01

Example 10 A08 A09 A10 A07 A18 A17 A12 A23 A08 A09 A10 A07 A18 A17 A12 A23

A24 A11 A05 A14 A13 A06 A20 A19 A24 A11 A05 A14 A13 A06 A20 A19

A01 A02 A04 A16 A03 A15 A22 A21 A04 A01 A02 A16 A15 A03 A22 A21

Example 11 A01 A02 A08 A10 A07 A16 A09 A15 A01 A02 A08 A10 A07 A06 A16 A09

A06 A22 A12 A24 A11 A21 A23 A14 A15 A22 A24 A12 A21 A23 A11 A14

A18 A20 A04 A05 A17 A13 A03 A19 A18 A20 A04 A05 A17 A13 A03 A19

Example 12 A15 A02 A11 A23 A01 A16 A24 A05 A15 A02 A11 A23 A01 A16 A05 A24

A12 A08 A04 A07 A06 A17 A09 A03 A12 A08 A04 A07 A09 A06 A17 A03

A14 A18 A10 A22 A13 A19 A21 A20 A14 A10 A18 A19 A22 A20 A13 A21

The optimal alternative for each example is highlighted in bold
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example generated by the proposed method is the same as
that produced by the method of [56]. This demonstrates the
feasibility and effectiveness of the proposed method.

5.2 Capability demonstration experiments

In this subsection, three numerical experiments based on
the two MCDM examples in Section 4 were conducted to
demonstrate the capabilities of the proposed method.

The first experiment was carried out to illustrate that
the proposed method has the capability to consider the
interactions of criteria. In this experiment, five different
values of the parameter k and the two MCDM examples
in Section 4 were taken as the input of the proposed
method (δ = 3). The results of the experiment are the
calculated degrees of membership of alternatives and the
generated sequences of alternatives for each example, which
are shown in Fig. 4. As can be seen from the figure, the
proposed method works well under different k values and
the best alternative and sequences of alternatives could vary
with respect to different k values, which indicates that
the proposed method is suitable for the situation where
all criteria are independent or any two or multiple of
them have interactions. This also reflects the importance
of properly considering the interactions of criteria in an
MCDM method. In general, the value of k in the proposed
method is specified according to the actual interactions of
criteria in the MCDM problem to be solved. For example,
the value of k can be assigned 2 in the first MCDM example,
since there are interactions between mechanical strength
and part density and there are interactions between build
time and build cost. This value can be assigned 3 in the

second MCDM example, because there are interactions
among support volume, build time, and build cost.

The second experiment was conducted to demonstrate
that the proposed method has the capability to reduce the
influence of noise criterion values. In this experiment, the
two MCDM examples in Section 4 were used as the input of
the proposed method (k = 1 since all criteria are assumed to
be independent of each other to facilitate the demonstration
and δ = 3). The value of β1,1 in M for the AM machine
and material selection example and the value of β2,3 in
M for the optimal build direction selection example are
constantly decreased according to the two abscissas in
Fig. 5. After decreasing to a certain value, the decreased
value for each example will be automatically considered as a
noise value by the method, and thus the weight of this value
(i.e. W1,2 for the former example and W2,3 for the latter
example), as depicted in Fig. 5, will be reduced dynamically.
As the weight of a noise criterion value decreases, the
contribution of this value to the aggregation result for
the corresponding alternative also decreases accordingly.
Because of this, the effect of the noise criterion value on the
aggregation result is reduced.

The third experiment was carried out to show that the
proposed method has the capability to capture the risk
attitude of decision-makers. In this experiment, the values
from 0.01 to 6 of the parameter δ and the two MCDM
examples in Section 4 were used as the input of the proposed
method (k = 1 since all criteria are assumed to be
independent of each other to facilitate the demonstration).
The results of the experiment are the calculated degrees
of membership of alternatives for each example, which
are depicted in Fig. 6. It can be seen from the figure

Fig. 4 Results of the first capability demonstration experiment. aAMmachine and material selection example. bOptimal build direction selection
example
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Fig. 5 Results of the second capability demonstration experiment. a AM machine and material selection example. b Optimal build direction
selection example

that the degrees of membership of all alternatives for each
example continue to decrease as the value of δ increases.
This indicates that the risk attitude becomes more and more
pessimistic. If δ = 0.01 and δ = 6 are used to denote
an optimistic risk attitude and a pessimistic risk attitude,
respectively, then δ = 3 can be leveraged to express
a neutral risk attitude [65, 68]. Although different risk
attitudes do not have obvious influence on the generated
sequences of alternatives for the two examples, this does not
mean that the risk attitude is not important for an MCDM
method. As investigated by [59], the risk attitude is a critical
factor that should be captured in an MCDM method, as it
could affect the decision-making results significantly. To
this end, the value of δ in the proposed method should be
assigned according to the actual risk attitude in the MCDM
problem to be solved.

6 Conclusion

In this paper, an FPWMSM operator based on HTT has
been constructed and a generic method based on this
operator for solving the MCDM problems in design for
AM has been presented. The presented method mainly
consists of fuzzification, normalisation, and aggregation
of criterion values and generation of alternative sequence.
In the fuzzification of criterion values, the values of
criteria of alternatives are converted into FNs via a ratio
model. The converted FNs are normalised according to a
complement rule in the normalisation of criterion values.
In the aggregation of criterion values, the normalised
FNs quantifying the values of criteria of each alternative
are aggregated into a summary FN using the constructed
FPWMSM operator based on HTT. A sequence of

Fig. 6 Results of the third capability demonstration experiment. aAMmachine and material selection example. bOptimal build direction selection
example
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alternatives is produced on the basis of the aggregation
results of the operator in the generation of alternative
sequence. The paper has also introduced an example
of AM machine and material selection and an example
of optimal build direction selection to illustrate the
application of the presented method and demonstrated
the effectiveness and capabilities of the method via a
set of numerical experiments. The demonstration results
show that the method is feasible and effective which can
capture the interactions of criteria and the risk attitude
of decision-makers and reduce the influence of extreme
criterion values on the decision-making results. Future
work will aim especially at studying the application of the
presented method in more MCDM problems in additive
manufacturing environment.
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