
ORIGINAL ARTICLE

Multi-objective optimization of process parameters in plastic
injection molding using a differential sensitivity fusion method

Huifang Zhou1
& Shuyou Zhang1

& Zili Wang1

Received: 16 October 2020 /Accepted: 2 February 2021
# The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Abstract
The product quality, productivity, and cost are mainly considered to make the manufacturing plan in plastic injection molding
(PIM). The process parameters in PIM play a crucial role in determining the product quality, productivity, and cost. There are
actually contradictions between above three properties. Therefore, it is difficult to quickly and accurately obtain the process
parameters setting that meet the product quality requirement under the premise of acceptable productivity and cost. In this paper,
a differential sensitivity fusion method (DSFM) is proposed to perform the multi-objective optimization of process parameters in
PIM for the product quality and productivity improvement and the cost-saving, which integrates sampling strategy, numerical
simulation, metamodeling method, and multi-objective optimization algorithm. The sampling strategy is utilized to generate
sampling points from the design space at different parameter levels. For the sampling points, the numerical simulation is
implemented to calculate the objective responses. Based on the sampling points and their corresponding response, the
metamodeling method is applied to construct the response predictors to calculate the objective responses for any sampling point
in the global design space. The multi-objective optimization algorithm is executed to locate the Pareto-optimal solutions, where
the response predictors are taken as the fitness functions. The automobile front bumper is taken as the case study to verify the
proposed method. The numerical results demonstrate that the proposed metamodeling method has better prediction accuracy and
performance compared to some classical methods (e.g., response surface model, Kriging) and the multiple objectives cannot
reach the optimal simultaneously. Moreover, the trade-off analysis identifies the better solution for decision-making, which helps
to quickly and effectively select the optimal process parameters setting.
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1 Introduction

Plastic injection molding (PIM) is widely used to manufacture
a wide variety of plastic products owing to its high productiv-
ity, low cost, and good flexibility to various complex geome-
tries. PIM is a nonlinear coupled system with multiple inputs
and multiple outputs. The output includes product quality,
manufacturing cost, andmolding efficiency, whereas the input
includes machine characteristics, mold design pattern, process
parameters, polymer material characteristics, and product

geometric characteristics. The machine, mold, material, and
product will determined before manufacturing, which means
that the process parameters should be carefully set to avoid or
reduce quality defects, improve productivity, and decrease
energy consumption and cost.

To reduce the product defects (e.g., warpage, shrinkage,
weldline), processing conditions, material properties, product
design, and mold design have been studies by many re-
searchers. Ozcelik and Sonat [1] used the Taguchi method to
study the effect of process parameters on the warpage of parts
with different thicknesses. Oktem et al. [2] conducted a series
of experiments and used the signal-to-noise (S/N) ratio meth-
od and analysis of variance (ANOVA) to study the effects of
process parameters on warpage and shrinkage of products.
Tang et al. [3] performed warpage experiments on a thin plate
to study the impact factors of the warpage problem. Kurt et al.
[4] investigated the influence of the cavity pressure and mold
surface temperature on the quality of the final parts. Masato
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et al. [5] analyzed and concluded that the shrinkage for thin-
wall parts was caused by fiber orientation and could be re-
duced by higher melt temperature, packing pressure. Wang
et al. [6] investigated the structural carbon emissions and in-
jection molding process carbon emissions and implemented
multi-objective optimization to realize the low-carbon design
for injection molding machine.

Different from the constant process parameter optimiza-
tion, the variable process parameter profile (e.g., packing pres-
sure profile) has been considered to improve product quality
and efficiency. Li et al. [7] performed the optimization of
variable packing pressure profile for the shrinkage evenness
of a slab. Gao and Wang [8] applied the sequential approxi-
mate optimization (SAO) to determine the optimal packing
profile and the optimal process parameters for warpage mini-
mization. For minimizing warpage and cycle time, Kitayama
et al. [9] investigated the multi-objective optimization of var-
iable pressure profile and process parameters. Hashimoto et al.
[10] applied SAO to realize the simultaneous optimization of
variable injection velocity profile and process parameters for
minimizing weldline and cycle time.

Due to the advance of computer technology, computer-
aided simulation software (e.g., Moldflow, Moldex3D)
coupled with design optimization is recognized as an alterna-
tive approach for determining the optimal process parameters.
The numerical simulation in PIM is generally so intensive that
the surrogate-based or metamodeling approach, which can
establish a mathematical relationship between the process pa-
rameters and optimization objectives, is valid to determine the
optimal process parameters with a small number of simula-
tions. Ozcelik and Erzurumlu [11] integrated finite element
analysis (FEA), statistical DOE methods, RSM, and genetic
algorithm (GA) to minimize the warpage of thin-walled parts.
Kurtaran et al. [12] integrated the FEA, statistical DOE
methods, ANN, and GA to minimize the warpage of automo-
tive ceiling lamps. Gao and Wang [13] adopted the Kriging
model for determining the optimal process parameters to min-
imize the warpage of a cellular phone cover. Li et al. [7] used
the radial basis function (RBF) and the expected improvement
(EI) to optimize the process parameters for achieving uniform
shrinkage. Xia et al. [14] adopted the Gaussian process
(GP) model for the front grille’s warpage optimization.
The above researches handle a single objective optimiza-
tion, but there are generally many objectives to optimi-
zation for high product quality and productivity in PIM.
Chen and Kumiawan [15] proposed a two-stage multi-
objective optimization system. Zhao et al. [16] proposed
a two-stage optimization system to optimize the warpage,
shrinkage, and sink marks of injection molded parts si-
multaneously. Zhao and Cheng [17] proposed a hybrid
multi-objective optimization system to simultaneously
optimize the warpage and cycle time of the PIM process.
Cheng et al. [18] developed a novel method to find the

optimal solution set of constrained multi-objective opti-
mization problems that integrated variable complexity
methods (VCMs), constrained non-dominated sorting genetic
algorithm (CNSGA), BPNN, and Moldflow analysis. Liu
et al. [19] proposed a multi-objective optimization method
for process parameters of PIM with the haze ratio (HR) and
peak valley 20 (PV20) of an optical lens as the optimization
target. Xu et al. [20, 21] performed the process parameter
optimization for minimizing the weight, the flash, and the
volume shrinkage of a thin-walled plastic product.

In particular, a sequential approximate optimization (SAO)
that the surrogate model is repeatedly constructed and opti-
mized by adding several new sampling points has gradually
been a popular approach to improve the optimization result.
The general framework of the process parameters optimiza-
tion in PIM using the SAO is summarized in [22]. Several
representative papers using SAO approach is briefly reviewed.
Gao and Wang [8, 13] adopted the modified rectangular grid
(MRG) sampling strategy and the expected improvement (EI)
sampling criterion to improve the accuracy of the Kriging
model, respectively. Xia et al. [14] used an enhanced proba-
bility of improvement criterion to find the direction of adding
training samples and optimize the surrogate model. Shi et al.
[23] used a parametric sampling evaluation (PSE) strategy to
improve the accuracy of the ANN model and speed up the
optimization process to converge to the global optimum. Deng
et al. [24] used the mode-pursuing sampling strategy (MPS) to
obtain new sample points, thereby improving the accuracy of
the Kriging model.

In addition to the optimization of process parameters, the
conformal cooling channel is applied to improve the product
quality and efficiency of PIM. Dimla et al. [25] reported that
the conformal cooling channel could drastically reduce cycle
time. Au and Yu [26] designed various scaffold cooling chan-
nels and evaluated the cooling performance and found that the
conformal cooling channel could offer a more uniform ther-
mal distribution. Wang et al. [27] introduced an approach to
generate conformal spiral cooling channels, which helped im-
prove the uniform of mold cooling. Kitayama et al. [10,
28–30] investigated the cooling performance of the conven-
tional straight-type cooling channels and conformal cooling
channels numerically and experimentally where the process
parameter optimization for warpage, cycle time, weldline, and
clamping force reduction was performed.

Here, the motivation for this paper is summarized as
follows:

1. Multi-objective optimization of process parameters in
PIM is a crucial issue. Several process parameters are
optimized for warpage and weldline reduction, and
clamping force and cycle time minimization.

2. Weldlines are one of the major defects, which cannot be
completely eliminated. The low weldline temperature
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generates long weldlines for the quick solidification. The
minimum weldline temperature is considered to be max-
imized for weldline reduction.

3. The sensitivity information of sampling points is used to
improve the prediction accuracy of the response predictor.
Therefore, the performance of multi-objective optimiza-
tion can be improved.

4. In general, warpage, weldline, clamping force, and cycle
time cannot reach the optimal at the same time. Therefore,
the trade-off analysis is implemented to make the decision
for the multi-objective optimization.

To realize the high product quality, high productivity, and
low energy consumption and cost in PIM, this paper proposes
a differential sensitivity fusionmethod (DSFM) to perform the
multi-objective optimization of process parameters in PIM for
minimizing warpage, weldlines, clamping force, and cycle
time. It integrates the sampling strategy, numerical simulation,
metamodelingmethod, and multi-objective optimization algo-
rithm. The sampling strategy, Latin hypercube sampling
(LHS), is utilized to generate stratified and uniformly distrib-
uted sampling points from the design space. For sampling
points, the numerical simulation based on Moldflow is imple-
mented to calculate the responses. Based on the sampling
points and their corresponding responses, the metamodeling
method is applied to construct the response predictors to cal-
culate the responses for any sampling point in the global de-
sign space. The gradient-enhanced response surface model
(GERSM) combined with the moving least-squares method
(MLSM) is applied to construct the response predictor for
each objective, which simultaneously utilizes the response
and sensitivity information of the sampling point to improve
the accuracy of the response predictors. For the capture of the
sensitivity information, an adaptive sensitivity generation
method (ASGM) is proposed to calculate the gradient vector
for each design variable of the sampling point. The multi-
objective optimization algorithm, non-dominated sorting ge-
netic algorithm-III (NSGA-III), is executed to locate the
Pareto-optimal solutions, where the response predictors are
taken as the fitness functions. The trade-off analysis based
on the spider-web chart is applied to make the decision for
the optimal process parameters. Moreover, for the structural
features of the product, the valve hot runner system is applied
to reduce the weldlines and improve the product surface qual-
ity. The automobile front bumper is taken as a case study to
verify the proposed method DSFM. The numerical results
show that the proposed method can help the manufacturers
to quickly and accurately select the optimal process parame-
ters setting.

The remainder of the rest of this paper is organized as
follows. In Section 2, the multi-objective optimization prob-
lem and the trade-off analysis based on the spider-web chart
are described. In Section 3, the optimization methodologies

and the detailed process for realizing the multi-objective
optimization of the process parameters in PIM are de-
scribed. To verify the proposed method, the automobile
front bumper is taken as the case study and the numerical
results are shown in Section 4. Finally, the conclusion is
drawn in Section 5.

2 Overview of multi-objective optimization
problem

2.1 Multi-objective optimization model

The goal of the injection molding process parameters (IMPP)
optimization is to improve the product quality and productiv-
ity, while reducing cost. It is a typical multi-objective optimi-
zation problem. A multi-objective design optimization prob-
lem can be generally formulated as follows:

find : x ¼ x1; x2;⋯; xD½ �T ;
minimizeF xð Þ ¼ minimize f 1 xð Þ; f 2 xð Þ;⋯; f K xð Þð Þ;

Subject to :
xLi ≤xi≤x

H
i ; i ¼ 1; 2;⋯;D

ð1Þ

where x is the column vector of the design variables, and x-
i(i = 1, 2,⋯,D) represents the i-th deign variable; D is the
number of the design variables; fj(x) (j = 1, 2,⋯,K) is the j-
th objective function to be minimized, and K is the number of
the objective functions; xLi and xHi are the lower and upper
bounds of the i-th design variable, respectively.

2.2 Objective functions

Warpage is one of the major defects in PIM. It causes the
actual dimensions of the product to deviate from the design
requirement, which should be minimized for high product
quality. The first objective function f1(x) is taken as the
warpage.

Weldlines influence the appearance of the product and the
product strength. It is significant to reduce the weldlines of the
product. The weldline will generate when two or more flow
fronts meet. The melted plastic will be quickly solidified with
the low weldline temperature, which causes the generation of
long weldlines. The weldline temperature is one of the impor-
tant factors for the weldline reduction [29, 30]. The minimum
weldline temperature (MinTweld) needs to be maximized for
weldline reduction. Therefore, the opposite of the minimum
weldline temperature is taken as the second objective function
f2(x), and is minimized.

Energy consumption and cost is also an important issue in
PIM. When the melted plastic is injected into the cavity, a
reversed pressure will generate. The clamping force should
be applied to keep the mold closed. Small clamping force
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can reduce the energy consumption and save the cost.
Therefore, clamping force is taken as the third objective func-
tion f3(x) for energy consumption reduction.

Cycle time directly influences the molding efficiency and
should be minimized for high productivity, so it is taken as the
fourth objective function f4(x). The sum of the injection time,
the packing time, and the cooling time can be evaluated as the
cycle time, which is expressed as:

f 4 xð Þ ¼ tinj þ tp þ tc; ð2Þ

where tinj is the injection time; tp is the packing time; tc is the
cooling time.

2.3 Design variables

The melt temperature (Tmelt), the mold temperature (Tmold),
the injection time (tinj), the packing pressure, the packing time,
and the cooling time (tc) are taken as the design variables. To
ensure the improvement of the products dimensional accuracy
and the consistency of the product shrinkage degree, a vari-
able packing pressure profile instead of constant packing pres-
sure is applied, as shown in Fig. 1.

The packing pressure profile consists four parameters
(packing pressure Pp1, Pp2 and packing time tp1, tp2 at point
A and B in Fig. 1). Therefore, the design variables are
x = [Tmelt, Tmold, tinj, Pp1, Pp2, tp1, tp2, tc]

T. The lower and up-
per bound of design variables are shown in Table 1, which
are determined by the recommended values in Moldflow and
the manufacture’s recommendation.

2.4 Trade-off analysis

For the multi-objective optimization problem expressed in
Eq. (1), we want to minimize all the objectives simulta-
neously. Because of the contradiction between the objectives
and their possible incommensurability, it is impossible to find
a solution to ensure that all the objectives are simultaneously
optimal. Thus, there is no single optimal solution but rather a

set of compromise solutions named Pareto-optimal solutions
or non-dominated solutions to such an optimization problem
with multiple conflicting objectives.

After the Pareto-optimal solution set has been generated,
the decision-maker should perform the trade-off analysis to
select the most preferred one or a few solutions among the
alternatives for producing the product. The spider-web chart
or radar chart can visually understand the trade-off over
three objectives, and is one of the useful tools for the
trade-off analysis [31]. An illustrative example of a
spider-web chart for the Pareto-optimal solutions visuali-
zation is shown in Fig. 2, in which four objective func-
tions to be minimized is handled. Each apex of a polygon
in Fig. 2 represents one objective. The outermost polygon
shows the nadir solution, the innermost polygon repre-
sents the ideal solution, and the middle polygons present
the alternatives.

Because of the difference of value range between the ob-
jectives, each apex is normalized using Eq. (3) to draw the
spider-web chart.

f j x ið Þ
p

� �
¼

f j x ið Þ
p

� �
− f Ij

f Nj − f
I
j

i ¼ 1; 2;⋯;

Nalt j ¼ 1; 2;⋯;K

ð3Þ

where x ið Þ
p denotes the i-th alternative (Pareto-optimal solu-

tion); Nalt is the number of the Pareto-optimal solutions; f j

x ið Þ
p

� �
and f j x ið Þ

p

� �
represent the unnormalized and normal-

ized value of the j-th objective of x ið Þ
p , respectively; K is the

number of the objectives; f Ij and f Nj denote the ideal and nadir
value of the j-th objective.

The area of each polygon in the spider-web chart is used to
compare the alternatives. The Pareto-optimal solutions mini-
mizing and maximizing the polygon area in the spider-web
chart are taken as the better solution and the worse solution,
respectively.

Fig. 1 Packing pressure profiles.
a Constant packing pressure
profile; b variable packing
pressure profile
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3 Optimization methodologies

3.1 Multi-objective optimization process

The method, DSFM, is proposed to realize the process param-
eter optimization in PIM for warpage and weldlines reduction
and clamping force and cycle time minimization, which inte-
grates the sampling strategy, numerical simulation,
metamodelingmethod, and multi-objective optimization algo-
rithm. The sampling strategy is utilized to generate sampling
points from the design space at different parameter levels. For
the sampling points, the numerical simulation based on
Moldflow is implemented to calculate the responses (warpage,
minimum weldline temperature, clamping force, and cycle
time). Based on the sampling points and their corresponding
response, the metamodeling method is applied to approxi-
mately represent the mathematical relationship between the
design variables (process parameters) and the responses,
which constructs the response predictors to calculate the re-
sponses for any sampling point in the global design space. The
multi-objective optimization algorithm, NSGA-III, is

executed to locate the Pareto-optimal solutions, where the
response predictors are taken as the fitness functions. The
flowchart of our proposed method to realize multi-objective
process parameter optimization in PIM is shown in Fig. 3.

As shown in Fig. 3, the main steps of the proposed method
include the acquisition and processing of the sampling points,
the response predictor modeling, and the multi-objective op-
timization. The specific process can be described as:

Step 1: Identify the responses as the objectives and the
process parameters related to the selected responses as the
design variables of the optimization problem. Determine
the value range of each design variable as the constraints
of the optimization problem.
Step 2: Implement the sampling strategy, LHS, to gener-
ate stratified, and uniformly distributed sampling points
in the global design space, and execute the numerical
simulation to calculate and obtain the responses for each
sampling point based on the Moldflow.
Step 3: Apply the sensitivity analysis among the design
variables and the responses to identify the most important
design variables that have a significant influence on the
selected objectives.
Step 4: Response predictor modeling based on the
metamodeling method. Taking the sampling points
obtained in Step 2 as the training set (displayed in
Table 11 ~ 12 in Appendix), the proposed method,
ASGM, is implemented to calculate the gradient vec-
tor for each design variable of each sampling point in
the training set as the sensitivity information of the
training set. Then, based on the response and sensi-
tivity information of the sampling points, the GERSM
combined with the MLSM is constructed as the re-
sponse predictor for each selected objective.
Step 5: Multi-objective process parameter optimization
based on NSGA-III algorithm. Set the initial parameters
of NSGA-III algorithm, and then take the response pre-
dictors constructed in Step 4 as the fitness functions to
perform multi-objective global optimization and locate
the Pareto-optimal solution set. For the Pareto-optimal
solutions, the trade-off analysis is implemented to locate
a better solution.
Step 6: Organize the confirmation experiments (as shown
in Table 13 ~ 14 in Appendix) to verify the effectiveness
of the proposed method.

3.2 Response predictor modeling

3.2.1 GERSM metamodeling

Compared with the traditional response surface model (RSM),
the GERSM utilizes not only the response information but

Table 1 Design variables and their lower/upper bounds

Design variable Lower bound Upper bound

Melt temperature Tmelt [°C] 230 250

Mold temperature Tmold [°C] 40 80

Injection time tinj [s] 3 8

Packing pressure Pp1 [MPa] 100 110

Packing pressure Pp2 [MPa] 40 70

Packing time tp1 [s] 20 25

Packing time tp2 [s] 35 40

Cooling time tc [s] 20 40

f
1
 (objective 1)

alternative 2

alternative 3

nadir solution

alternative 1

ideal solution

—

f
2
 (objective 2)
—

f
3
 (objective 3)
—

f
4
 (objective 4)
—

Fig. 2 An illustrative example of spider-web chart including four
objectives
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also the sensitivity information of the sampling points to con-
struct the response surface [32]. The total error consists of
response error and gradient error. In addition, the MLSM is
a local approximation method, which is essentially a weighted
least-squares method, and it uses weighting factors and local
approximation to improve the accuracy of least-squares fitting
when constructing a surrogate model [33].

Combined with the MLSM, the surface was con-
structed by GERSM changes with the position of the
point in the design space. Therefore, the total error
and regression coefficients are functions of the sampling
point position, which can be defined as:

β xð Þ ¼ arg min
β

Etotal xð Þ ¼ arg min
β

1−swgð Þ � Ey xð Þ þ swg � Eg xð Þ� � ð4Þ

x ¼ x1; x2;⋯; xD½ �T ∈ ℝD ð5Þ

where β(x) is the regression coefficient vector; Etotal(x) is the
total error function; x is the general sampling point; D is the
number of the design variables;ℝD is the design space; swg is
the sensitivity control factor for measuring the effect of the
response information and the gradient information on the total
fitting error; Ey(x) and Eg(x) represent the response error func-
tion and the gradient error function, respectively.

Start

Identify the objectives and design variables of the 
optimization problem, and determine the value 

range of each design variable

Implement the sampling strategy LHS to generate
sampling points in the global design space, and
execute numerical simulation to calculate the

responses based on Moldflow 

Apply sensitivity analysis among the design
variables and objectives to identify the most

important design varibles and obtain the training
set, Sample_i = (x_i, y_i) 

Initiate the hyper-parameters of the adaptive
response surface model (AdaRSM)

Construct the base response surface model (BRSM)

Calculate the absolute error of each sampling point
in the training set based on the current BRSM, and

update the weight of each sampling point in the
training set

Number of BRSM < 
max_number？

Number of BRSM += 1

Calculate the weight of each BRSM based on the
total fitting error over the entire training set of

each BRSM, and construct the AdaRSM

Calculate the gradient vector for each design
variable of each sampling point in the training set

based on the AdaRSM and the finite difference (FD)

Adopt the gradient-enhanced response surface model 
(GERSM) combined with moving least square method 
 to construct the response predictor for each objective

Adaptive sensitivity generation

Response predictor modeling based on metamodeling method

Initiate the parameters of the NSGA-III algorithm

Randomly generate the initial population containing
N individuals

Take the current population as the parent population,
and generate the offspring population with a population

size of N by the random selection, simulated binary
intersection,. and polynomial mutation operations

on the parent population

Combine the parent population and the offspring
population to form a new population with a

population size of 2N

Evaluate the fitness of each individual in the new 
population by the response predictors

Select N optimal individuals from the new population to 
enter  next generation by the non-dominated sorting

algorithm and reference point based selection mechanism

gene >= max_generation?

gene += 1

Take the selected N individuals as the Pareto-optimal
solution set, and implement the trade-off analysis

to determine the better solution

Implement the confirmation experiments
to verify the effectiveness of the proposed

method

Meet the desirable requirements?

End

Multi-objective process parameter optimization based on NSGA-III

Sampling
point source

Yes

Yes

No

No

Fig. 3 Flowchart of the proposed method
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The second order polynomial is used to construct the re-
sponse surface, which can be defined as:

by xð Þ ¼ b0 þ ∑
D

i¼1
bi � xi þ ∑

D

i¼1
bii � xi2 þ ∑

D

i¼1
∑
D

j>i
bij � xix j ð6Þ

where by xð Þ is the response surface; mapping b0, bi, bii, bij :
x→ℝ project sampling point to its corresponding regression
coefficients; xi and xj denote the i-th and j-th design variable,
respectively.

According to Eq. (6), the error function Ey(x) and Eg(x) are
formulated as follows:

Ey xð Þ ¼ y−X∙β xð Þð ÞTWy xð Þ y−X∙β xð Þð Þ ð7Þ

Eg xð Þ ¼ ∑
D

i¼1
gxi−Txi ∙β xð Þ� �T

Wg xð Þ gxi−Txi ∙β xð Þ� � ð8Þ

where y is the true response vector; gxi is the true gradient
vector for the i-th design variable of x;X denotes the response
design matrix; Txi denotes the response and gradient design
matrix of the i-th design variable, which is the partial deriva-
tive of X to the i-th design variable; the diagonal matrices
Wy(x) and Wg(x) represent the response and gradient weight
matrix, respectively.

The vector y and β(x), the matrices X, Txi , Wy(x) and
Wg(x) can be formulated as follows:

y¼ y 1ð Þ y 2ð Þ ⋯ y kð Þ ⋯ y Nð Þ
h iT

ð9Þ

β xð Þ¼ b0 b1 ⋯ bi ⋯ bD b11 ⋯ bii ⋯ bij ⋯ b D−1ð ÞD
� �T

ð10Þ

X ¼

1 x 1ð Þ
1 ⋯ x 1ð Þ

i ⋯ x 1ð Þ
D x 1ð Þ

1

2
⋯ x 1ð Þ

i

2
⋯ x 1ð Þ

i x 1ð Þ
j ⋯ x 1ð Þ

D−1x
1ð Þ
D

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 x kð Þ

1 ⋯ x kð Þ
i ⋯ x kð Þ

D x kð Þ
1

2
⋯ x kð Þ

i

2
⋯ x kð Þ

i x kð Þ
j ⋯ x kð Þ

D−1x
kð Þ
D

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
1 x Nð Þ

1 ⋯ x Nð Þ
i ⋯ x Nð Þ

D x Nð Þ
1

2
⋯ x Nð Þ

i

2
⋯ x Nð Þ

i x Nð Þ
j ⋯ x Nð Þ

D−1x
Nð Þ
D

2666664

3777775 ð11Þ

Txi ¼

0 0 ⋯ 1 ⋯ 0 0 ⋯ 2x 1ð Þ
i ⋯ x 1ð Þ

j ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 0 ⋯ 1 ⋯ 0 0 ⋯ 2x kð Þ

i ⋯ x kð Þ
j ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 0 ⋯ 1 ⋯ 0 0 ⋯ 2x kð Þ

i ⋯ x Nð Þ
j ⋯ 0

266664
377775 ð12Þ

Wy xð Þ ¼

ωy x−x 1ð Þ
� �

⋯ 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮
0 ⋯ ωy x−x kð Þ

� �
⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ ωy x−x Nð Þ

� �

26666664

37777775 ð13Þ

Wg xð Þ ¼

ωg x−x 1ð Þ
� �

⋯ 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮
0 ⋯ ωg x−x kð Þ

� �
⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ ωg x−x Nð Þ

� �

26666664

37777775
ð14Þ

where y(k) denotes the true response of the k-th sampling point;
N is the size of the sampling points; x(k) denotes the k-th
sampling point; x kð Þ

i denotes the i-th design variable of the k-
th sampling point. The element ωy(x − x(k)) and ωg(x − x(k)) on

the diagonal denote the weight of x(k) for the calculation of
response and gradient error, respectively. The exponential
function is applied as the weight function to calculate ωy(x −
x(k)) and ωg(x − x(k)). The formulas are as follows:

ωy x−x kð Þ
� �

¼ ωg x−x kð Þ
� �

¼ ω dð Þ ¼
exp −

d
RI

� 	
;
d
RI

≤1

0 ;
d
RI

> 1

8><>: ð15Þ

d ¼ x−xk


 



2
¼ ∑

D

i¼1
xi−x

kð Þ
i

� �2
� �1=2 ð16Þ

where ωy(∙) and ωg(∙) denote the response and gradient weight
function, respectively; RI is the size of the support region,
which means that only the sampling point located in the sup-
port region will have an impact on the prediction of x; d is the
Euclidean distance between x and x(k).
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According to the Eq. (4), the regression coefficient
vector β(x) of GERSM can be obtained by the following
set of equations:

∂Etotal xð Þ
∂β

¼ 1−swgð Þ � ∂Ey xð Þ
∂β

þ swg � ∂Eg xð Þ
∂β

¼ 0 ð17Þ

β xð Þ ¼ A xð Þ−1B xð Þ ð18Þ

A xð Þ ¼ 1−swgð Þ � XTWy xð ÞXþswg � ∑
D

i¼1
Txi

TWg xð ÞTxi ð19Þ

B xð Þ ¼ 1−swgð Þ � XTWy xð Þyþswg � ∑
D

i¼1
Txi

TWg xð Þgxi ð20Þ

Base on the GERSM, the response of x can be predicted as:

ey ¼ 1−swgð Þ � xpβ xð Þ þ swg � ∑
D

i¼1
txiβ xð Þ ð21Þ

xp ¼ 1 x1 ⋯ xi ⋯ xD x12 ⋯ xi2 ⋯ xix j ⋯ xD−1xD
� �

ð22Þ
txi ¼ 0 0 ⋯ 1 ⋯ 0 0 ⋯ 2xi ⋯ x j ⋯ 0½ �

ð23Þ

where x p denotes the response design vector of x; txi denotes
the gradient design vector for the i-th design variable of x.

3.2.2 Adaptive sensitivity generating

The construction of the GERSM simultaneously requires the
response and sensitivity information of the sampling points.
Through numerical or practical experiment, only the response
information can be obtained. Therefore, based on the finite
difference (FD), ASGM is proposed to obtain the sensitivity
information of the sampling points. For the general sampling
point x in the design space, the general process of capturing
the sensitivity information of x is as follows: Firstly, an adap-
tive response surface model (AdaRSM) is constructed as the
strong predictor, which is proposed to explore the compact
neighborhood of x. Then, the response of the new sampling
point in the compact neighborhood of x can be given by the
strong predictor AdaRSM. Finally, the FD is used to calculate
the gradient vector of x.

The AdaRSM is the linear combination of a series of base
response surface model (BRSM), which are generate by iter-
atively updating the weights of the sampling points. The
AdaRSM can be expressed as:

bf xð Þ ¼ ∑
M

m¼1
α mð Þ � RSM mð Þ xð Þ ð24Þ

where bf xð Þ is the adaptive response surface; α(m) denotes the
weight of the m-th BRSM; RSM(m)(x) is the m-th BRSM; x is
the general sampling point, as shown in Eq. (5); M is the
number of the BRSM.

The construction of AdaRSM includes the following steps:
(1) initialize the weights of the sampling points and construct-
ing the BRSM; (2) calculate the total error of the BRSM over
the entire samples; (3) update the weight of each sampling
point according to the prediction error of the BRSM for
each sampling point; (4) iteratively construct the next
BRSM based on the updated weights of the sampling
points. Repeat steps (2)-(4) until the target number of
the BRSM has been reached. (5) Calculate the weight of
each BRSM according to the total error of each BRSM.
The m-th BRSM can be expressed as:

RSM mð Þ xð Þ ¼ a mð Þ
0 þ ∑

D

i¼1
a mð Þ
i � xi þ ∑

D

i¼1
a mð Þ
ii � xi2 þ ∑

D

i¼1
∑
D

j>i
a mð Þ
ij � xix j ¼ x pβ mð Þ

ð25Þ

β mð Þ ¼ XTW mð ÞX
� �−1

XTW mð Þy ð26Þ

where a mð Þ
0 , a mð Þ

i , a mð Þ
ii ; and a mð Þ

ij are the regression coefficients
of the m-th BRSM; β(m) denotes the regression coefficient
vector of the m-th BRSM; x p, X, and y are as shown in
Eq. (22), (11), and (9); W(m) represents the weight matrix
of the sampling points when constructing the m-th BRSM,
which can be formulated as:

W mð Þ ¼

ω mð Þ
1 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮
0 ⋯ ω mð Þ

k ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ ω mð Þ

N

266664
377775 ð27Þ

where ω mð Þ
k denotes the weight of the k-th sampling point

when constructing the m-th BRSM, which can be evalu-
ated by the following equations.

ω mð Þ
k ¼

1 ;m ¼ 1
ω m−1ð Þ

k

Z m−1ð Þ � 1þ exp λε m−1ð Þ
k

� �h i
;m ¼ 2; 3;⋯;M

8<:
ð28Þ

ε m−1ð Þ
k ¼ RSM m−1ð Þ x kð Þ� �

−y kð Þ 
y kð Þ ð29Þ

Z m−1ð Þ ¼ 1

N
∑
N

k¼1
ω m−1ð Þ

k � 1þ exp λε m−1ð Þ
k

� �h i
ð30Þ

where ω m−1ð Þ
k and ω mð Þ

k denote the weight of x(k) when
constrcuting the (m-1)-th and the m-th BRSM, respectively;
ε m−1ð Þ
k denotes the relative error of the (m-1)-th BRSM over
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x(k); RSM (m − 1)(x(k)) denotes the predicted response of the
(m-1)-th BRSM for x(k); Z (m − 1) is the normalization
factor of sampling point weights; λ is the scaling factor.

The weight of each BRSM depends on the total error of
each BRSM over the entire sampling points. The smaller the
total error, the larger the weight of the BRSM. The weight of
the m-th BRSM is defined as follows:

ε mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
� ∑

N

k¼1
RSM mð Þ x kð Þ

� �
−y kð Þ

h i2s
ð31Þ

α mð Þ ¼ exp τ � ε mð Þ� �
∑M

m¼1exp τ � ε mð Þð Þ ð32Þ

where ε(m) is the root mean square error of the m-th BRSM
over the entire samples; RSM (m)(x(k)) denotes the predicted
response of the m-th BRSM for x(k); τ is the scaling factors;
α(m) denotes the weight of the m-th BRSM.

The sensitivity information (gradient vector) of x(k) is ap-
proximate by the FD, which can be defined as follows:

g kð Þ
xi ¼

bf x kð Þ
iþ

� �
−bf x kð Þ

i−

� �
2h

ð33Þ

x kð Þ
iþ¼ x1;⋯; xi−1; xi þ h; xiþ1;⋯; xD½ �T ð34Þ

x kð Þ
i− ¼ x1;⋯; xi−1; xi−h; xiþ1;⋯; xD½ �T ð35Þ

where g kð Þ
xi denotes the gradient vector of x(k) for the i-th design

variable; x kð Þ
iþ and x kð Þ

i− are the new sampling points in the
compact neighborhood of x(k), which are generated by adding
h to the i-th design variable of x(k) and reducing the i-th design
variable of x(k) by h, respectively; bf x kð Þ

iþ
� �

and bf x kð Þ
i−

� �
de-

note the predicted response of the strong predictor AdaRSM
for x kð Þ

iþ and x kð Þ
i− , respectively.

3.3 NSGA-III for locating Pareto-optimal solutions

NSGA-III algorithm [34, 35] utilizes a reference point-based
selection mechanism to select the populations, which can ob-
tain good performance in the case of four or more objectives
optimization. By introducing a set of reference points, the
population is selected according to the distances between the
individuals and the reference points, thereby guiding the pop-
ulation search to approach the reference points. Because the
reference points are evenly distributed over the reference hy-
perplane, the reference point-based selection mechanism can
make the population more evenly distributed on the Pareto
frontier and the optimization process can better converge to
the Pareto-optimal solution set.

The process of locating the Pareto-optimal solution set of
multi-objective optimization problem by the NSGA-III is as
follows:

Step 1: The initial population containing N individuals is
randomly generated, where N is the size of the
population.
Step 2: The original population in the current generation
is set as the parent population. The parent population goes
through random selection, simulated binary intersection,
and polynomial mutation operations to generate the off-
spring population. The size of the offspring population is
N.
Step 3: The parent population and the offspring popula-
tion are combined to form a new population with a pop-
ulation size of 2N. Then, the fitness function is used to
evaluate each individual in the new combined population
by calculating the responses (objectives).
Step 4: According to the fitness of each individual, the
non-dominated sorting algorithm and reference point-
based selection mechanism is used to select N optimal
individuals from the new combined population in Step
3 to enter the next generation.
Step 5: Check whether the convergence condition is sat-
isfied (e.g., generations of the population reach the preset
maximum threshold). If the convergence condition is sat-
isfied, the selected N optimal individuals in Step 4 is the
Pareto-optimal solution set and the optimization process
end; otherwise, the selected N optimal individuals in Step
4 is treated as the original population of next generation
and redirect to Step 2.

3.4 Data analysis

Sensitivity analysis among process parameters and responses
Sensitivity analysis is applied to identify the important process
parameters (design variables) which have significant influ-
ences on responses (objectives). It can exclude irrelevant pa-
rameters to reduce the dimension of the design space.

Correlation coefficient is implemented to indicate the sen-
sitivity among process parameters and responses, which can
be calculated by the following formula.

ρ ¼ Cov X ; Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð ÞVar Yð Þp ¼ E X−μXð Þ Y−μYð Þ½ �

σXσY
ð36Þ

where Cov(X, Y) is the covariance of vector X and vector Y;
Var(X) and Var(Y) are the variance of X and Y respectively; μX
and μY are the mean of X and Y respectively; σX and σY are the
standard deviation of X and Y respectively; ρ is the correlation
coefficient, which is in the range of [-1, 1]. If ρ = 0, it indicates
that there is no correlation between the two vectors; if ρ < 0,
there is a negative correlation between the two vectors; if ρ >
0, there is a positive correlation between the two vectors.
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Prediction accuracy analysis The response predictor is utilized
as the fitness function of NSGA-III algorithm in the multi-
objective optimization process. The prediction accuracy of
the response predictor influences the optimization results,
which may cause the optimization algorithm to not converge.
Therefore, the prediction accuracy analysis is verified by eval-
uating the root mean squared error (RMSE), mean absolute
error (MAE), and coefficient of determination (R2) between
the responses calculated by simulation experiments and the
responses predicted by the response predictor. These evalua-
tion criteria can be formulated as follows:

RMSE j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NV
∑
k¼1

NV by kð Þ
j −y kð Þ

j

� 	2
s

j ¼ 1; 2;⋯;K ð37Þ

MAE j ¼ 1

NV
∑
k¼1

NV by kð Þ
j −y kð Þ

j

  j ¼ 1; 2;⋯;K ð38Þ

R2
j ¼ 1−

∑NV
k¼1 by kð Þ

j −y kð Þ
j

� 	2

∑NV
k¼1 y kð Þ

j −y j
� �2 j ¼ 1; 2;⋯;K ð39Þ

where RMSEj, MAEj, and R2
j denote the RMSE, MAE, and

R2 of the j-th response (objective), respectively; K denotes the
number of the objectives; NV denotes the number of the sam-
pling points for verification; by kð Þ

j and y kð Þ
j denote the j-th re-

sponse of the k-th sampling point predicted by the correspond-
ing response predictor and calculated by simulation experi-
ment, respectively; y j denotes the mean of the j-th response.

4 Case study

Because of the characteristic of lightweight, customization,
good adaptability to variable complex structures, low cost,
high efficiency, etc., the plastic injection molding products
are widely used in automobile industry such as the bumper,
door, and dashboard. The automobile bumper should meet the

mechanical and geometric requirement to ensure the neces-
sary protection function as well as the shape consistency and
appearance beauty. Therefore, the automobile front bumper is
taken as a case study to verify the proposed method.

4.1 Finite element simulation model

An injection plastic product of the automobile front bumper
shown in Fig. 4 is taken into consideration. The maximum
size of this product is 1800mm × 430mm × 725mm, in which
the maximum thickness is 4 mm and the minimum thickness
is 2.5 mm.

Considering the complex structure of the product, the mul-
tiple gates can achieve better filling. However, the utilization
of multiple gates can inevitably cause the generation of
weldlines. The valve hot runner system adopts the valve gate
controllers to control the opening and closing of each gate,
which can realize the sequential filling of the whole cavity.
Therefore, it can reduce the stress concentration at the inter-
section of the melt flow front and effectively eliminate
weldlines. The overview of the conventional and valve hot
runner system is shown in Fig. 5. The gate locations, the
number of gates, and the gate type are determined by the
combination of the “gate location” analysis and the “fill” anal-
ysis. As shown in Fig. 5, three new gates and corresponding
hot runners are added to the valve hot runner system compared
to the conventional runner system in order to balance the run-
ners. For the valve hot runner system, the flow path of the
melted plastic in each runner is as follows: hot sprue → hot
runner→ hot runner→ hot gate→ cold runner→ cold runner
→ cold gate.

The details of numerical simulation are shown in Table 2.
The numerical simulations are executed through the
Autodesk® Moldflow® software (version 2018) [36], where
the processor of the computer is Inter® Core™ i9-9900K
CPU @ 3.60 GHz. The material, acrylonitrile butadiene sty-
rene (ABS), is used to manufacture the product, and its prop-
erties are listed in Table 3.

Fig. 4 The 3D model of the
automobile front bumper
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4.2 Numerical result analysis

4.2.1 Sensitivity analysis for process parameters

The correlation coefficient can show sensitivity among the
design variables and responses, which has been calculated
and displayed in Fig. 6. As shown in Fig. 6, the value in each
sub-box is the correlation coefficient of the two crossed vari-
ables. The positive value indicates the positive correlation,
while the negative value indicates the negative correlation,

and zero value indicates irrelevance. The bigger the absolute
value of the correlation coefficient is, the stronger the relation-
ship between the two variables is.

According to the heat-map plot in Fig. 6, it can be found
that tinj, Pp1, and tc have the negative influence on warpage
with the correlation coefficients equaling to −0.86, −0.5, and
−0.28, respectively; Tmelt has the positive influence on warp-
age with the correlation coefficient equaling to 0.18.
Similarly, Tmelt and tp1 have the positive influence on mini-
mum weldline temperature with the correlation coefficients
equaling to 0.96 and 0.27, respectively; tinj, Pp1, and tp2 have
the negative influence onminimumweldline temperature with
the correlation coefficients equaling to −0.12, −0.19, and
−0.27, respectively. Pp1, Tmelt, tp1, and tp2 have the positive
influence on clamping force with the correlation coefficients
equaling to 0.92, 0.2, 0.15, and 0.1, respectively; tinj and tc
have the negative influence on clamping force with the corre-
lation coefficients equaling to −0.17 and −0.22, respectively.
In fact, cycle time is the sum of tinj, tp1, tp2, and tc. It indicates
that tinj, tp1, tp2, and tc have a significant positive influence on
cycle time. In addition, the correlation coefficients between
warpage and cycle time are −0.48, which indicates that cycle
time changes in the opposite direction with warpage.

4.2.2 Accuracy analysis for response prediction

Fifteen experiments different from thirty-six initial sampling
points, which are both generated by the Latin hypercube sam-
pling (LHS), are implemented to verify the prediction accura-
cy of the response predictors. The cycle time is the sum of the
injection time, packing time ,and cooling time, which can be
accurately calculated based on the design variables of the four-
objective optimization problem. The proposed GERSM, clas-
sical RSM, Kriging, support vector regression (SVR), and
Gaussian process regression (GPR) are applied to construct

Valve gate controller

No.1

No.2
No.3

No.4 No.5

(a)

(b)
Fig. 5 Overview of the hot runner system. a Conventional hot runner
system; b valve hot runner system

Table 2 Detailed settings of the numerical simulations in Moldflow

Mesh type Dual domain

Mesh Element Type: triangle
Count: 104866

Aspect ratio Maximum: 14.96
Minimum: 1.16
Average: 1.61

Match percentage Match percentage:
91.8%

Reciprocal percentage:
88.4%

Boundary
conditions

Valve gate controller Valve gate trigger:
flow front

Trigger location:
specific node

Cooling Coolant: pure water
Coolant inlet

temperature: 25 °C

Injection molding
machine

Maximum machine
injection pressure

180 MPa

Maximum machine clamp
force

7000.22 tonne

Table 3 Material property of acrylonitrile butadiene styrene (ABS)

Property Value

Melt/Solid density [g/cm3] 0.91407/1.0177

Eject temperature [°C] 220

Maximum shear stress [MPa] 0.3

Elastic module [GPa] 2.24

Shear module [MPa] 804.6

Poisson ratio 0.392

Thermal conductivity (66 °C) [W/(m ∙ °C)] 0.13

Specific heat (85 °C) [J/(kg∙ °C)] 1756

Material characteristics Amorphous

Recommended mold temperature [°C] 40–80

Recommended melt temperature [°C] 230–250
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the surfaces of design variables and responses (warpage, min-
imum weldline temperature, and clamping force). The predic-
tion results of responses are displayed in Fig. 7, from which it
can be found that Kriging has the largest prediction error,
while the proposed model works best.

As shown in Fig. 7, the predictions and experiments of the
responses are qualitatively compared. In order to quantitative-
ly compare the performance of different prediction models,
MSE, RMSE, MAE, and R2 are applied to evaluate the per-
formance of the prediction models, which are calculated and
displayed in Tables 4, 5, and 6.

The smaller the MAE and RMSE are, the higher the pre-
diction accuracy of model is. R2 ∈ [0, 1] is closer to 1; the

accuracy of model is higher. As shown in Tables 4, 5, and 6,
it can be found that the proposed model has the highest pre-
diction accuracy for the warpage, minimum weldline temper-
ature, and clamping force, compared with RSM, SVR, GPR,
and Kriging.

4.2.3 Multi-objective optimization results

NSGA-III algorithm is implemented to locate the Pareto-
optimal solutions for the four-objective optimization
problem. The parameters of this algorithm are set as
follows:

Population size ¼ 220 Generation ¼ 600 Refrence point division ¼ 9
Crossover possibility ¼ 1:0 Distribution index of crossover ¼ 30
Mutation possibility ¼ 0:2 Distribution index of mutation ¼ 20

9=;

Fig. 6 Correlation relationship among the design variables and responses
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Fig. 7 Comparison of prediction
models and experiments. a
Warpage; b minimum weldline
temperature; c clamping force
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The triple-objective Pareto frontiers among warpage, min-
imum weldline temperature, clamping force, and cycle time
are shown in Fig. 8, and the pair-wise Pareto frontiers are
shown in Fig. 9. As shown in Fig. 8, the triple-objective
Pareto frontiers show that any three of four objectives cannot
reach the optimal at the same time. Therefore, different pro-
cess parameters have different influences on the results. The
four objectives cannot reach the optimal result at the same
time and the ideal solution of the optimization problem cannot
be located, which leads to the trade-off.

The pair-wise Pareto frontier shown in Fig. 9a indicates
that there is no obvious trade-off between warpage and
MinTweld (minimum weldline temperature). Observing
Fig. 6, warpage is strongly influenced by tinj and Pp1,
while MinTweld is strongly influenced by Tmelt.

The pair-wise Pareto frontier shown in Fig. 9b indicates a
trade-off between warpage and clamping force. Observing
Fig. 6, the correlation coefficient between warpage and
clamping force equals to −0.27, which means that they are
negatively correlated and change in reverse direction. As
shown in Fig. 6, Pp1 has reverse impact on warpage and
clamping force, with correlation coefficients equaling to
−0.5 and 0.92, respectively. It means that smaller Pp1 leads

to smaller clamping force, but larger warpage. They cannot
reach the optimal at the same time.

The pair-wise Pareto frontier shown in Fig. 9c indicates an
obvious trade-off between warpage and cycle time. Observing
Fig. 6, the correlation coefficient between warpage and cycle
time equals to −0.48, which means that they are negatively
correlated and change in reverse direction. As shown in Fig.
6, tc and tinj have reverse impact on warpage and cycle time. It
means that shorter tc and tinj lead to shorter cycle time, but larger
warpage. They cannot reach the optimal at the same time.

The pair-wise Pareto frontier shown in Fig. 9d indi-
cates a trade-off between MinTweld and clamping force.
Observing Fig. 6, the correlation coefficient between
MinTweld and clamping force equals to 0.14, which
means that they are positively correlated and change in
same direction. Therefore, clamping force and the oppo-
site of minimum weldline temperature (−MinTweld)
change in reverse direction. As shown in Fig. 6, Tmelt,
tinj, and tp1 have same impact on MinTweld and clamping
force. It means that smaller Tmelt, larger tinj, and smaller
tp1 lead to smaller clamping force and MinTweld.
However, the melted plastic will be quickly solidified
with the low weldline temperature, which causes the
generation of long weldlines. Therefore, smaller
MinTweld generates larger weldlines. They cannot reach
the optimal at the same time to simultaneously minimize
the weldlines and clamping force.

The pair-wise Pareto frontier shown in Fig. 9e indicates
that there is no obvious trade-off betweenMinTweld and cycle
time. Observing Fig. 6, MinTweld is strongly influenced by
Tmelt, while cycle time is strongly influenced by tinj, tp1, tp2,
and tc.

The pair-wise Pareto frontier shown in Fig. 9f indicates that
there is no obvious trade-off between clamping force and cy-
cle time. Observing Fig. 6, clamping force is strongly influ-
enced by Pp1, while cycle time is strongly influenced by tinj,
tp1, tp2, and tc.

The Pareto-optimal solutions located by NSGA-III are
listed in Table 7. The trade-off analysis is performed

Table 4 Comparison of different prediction models (warpage)

Model Evaluation criteria

MAE RMSE R2

RSM 1.0081 1.1114 0.8256

SVR 0.9495 1.1436 0.8153

GPR 0.4492 0.5405 0.9588

Kriging 2.0905 2.4586 0.1465

Proposed model 0.3216 0.3977 0.9777

Table 5 Comparison of different predictionmodels (minimumweldline
temperature)

Model Evaluation criteria

MAE RMSE R2

RSM 0.8372 1.0178 0.9675

SVR 2.0885 2.6094 0.7862

GPR 1.0145 1.2283 0.9526

Kriging 4.3754 5.1702 0.1606

Proposed model 0.5505 0.6769 0.9856

Table 6 Comparison of different prediction models (clamping force)

Model Evaluation criteria

MAE RMSE R2

RSM 50.245 65.1029 0.8998

SVR 71.724 93.3427 0.7939

GPR 40.3412 50.717 0.9392

Kriging 156.2955 188.239 0.1619

Proposed model 6.7691 8.6446 0.9982

436 Int J Adv Manuf Technol (2021) 114:423–449



to determine the better and worse solution for decision-
making based on the spider-web chart. The ideal and
nadir value of the objectives in Eq. (3) can be set

a s f o l l o w s : f I1; f
I
2; f

I
3; f

I
4

� � ¼ 0;−255; 5400; 75½ �;

f N1 ; f
N
2 ; f

N
3 ; f

N
4

� � ¼ 25;½ −225; 7000; 115�. In the spider-
web chart, the areas of the Pareto-optimal solutions lo-
cated by NSGA-III are calculated and displayed in
Table 8, where there is no preference for all objective.
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The smaller the area of alternative solution, the better
the solution.

The spider-web chart is shown in Fig. 10, in which the
red, blue, and black lines represent the better solution,
worse solution, and alternative solutions, respectively.
As shown in Fig. 10, the area of the better solution is
smaller than that of the worse solution. In addition, warp-
age and weldlines temperature distribution at the better
and worse solution are compared and displayed in Figs.
11 and 12, respectively. As shown in Fig. 11, it can be
found that warpage is well reduced at better solution com-
pared to that at worse solution. As shown in Fig. 12, it
can be found that weldlines are well reduce at better so-
lution compared to that at worse solution. From the per-
spective of process parameters, it can indicate that larger
packing pressure and injection time can reduce warpage.

To verify the effect of the valve hot runner system on
the weldline reduction, the comparison of weldlines under
the conventional hot runner system and under the valve
hot runner system at better solution is shown in Fig. 13. It
can be found that the weldlines are generated in incon-
spicuous positions such as grilles, lamp holes, and prod-
uct edges and effectively eliminated when valve hot run-
ner system is used, compared with conventional hot run-
ner system. The surface quality of the automobile front
bumper is higher when the valve hot runner system is
applied.

According to the result of the trade-off analysis, the
optimized setting of the process parameters is shown in
Table 9 for the product quality and productivity improve-
ment and the cost-saving. The warpage and the weldlines
of the automobile front bumper after the optimization are
compared with them before the optimization, as shown in
Fig. 14. Moreover, the setting of the process parameters is
determined by the recommendation of Moldflow and the
result of the “molding window” analysis.

The verification of prediction accuracy for four objec-
tives at optimized solution is summarized in Table 10,
which shows that relative absolute errors for all objectives

Table 7 Pareto-optimal solutions
located by NSGA-III No. Process parameters

Tmelt[°C] Tmold[°C] tinj[s] Pp1[MPa] Pp2[MPa] tp1[s] tp2[s] tc[s]

1 245.37 40.99 8 102.22 69.86 20 35.05 20.14

2 250 44.87 7.26 108.29 40.04 20.24 39.97 20

3 249.66 78.99 5.91 100 70 20.08 35 20.66

196 249.98 40.02 8 108.85 70 20.28 35 20

203 230 79.74 4.40 100.68 40.13 20 35 20

220 238.19 40 3.05 110 69.90 20.10 35 20

�Fig. 9 Pair-wise Pareto frontiers. a Warpage and minimum weldline
temperature; b warpage and clamping force; c warpage and cycle time;
d minimum weldline temperature and clamping force; e minimum
weldline temperature and cycle time; f clamping force and cycle time

Table 8 Areas of Pareto-optimal
solutions in spider-web chart No. Objective responses Area Decision

making
Warpage
[mm]

Minimum weldline
temperature[°C]

Clamping force
[tonne]

Cycle
time [s]

1 12.1400 246.94 5874.5 93.19 0.1852

2 9.2190 251.32 6336.0 87.48 0.2073

3 19.1652 249.45 5806.7 81.65 0.1792

196 6.2652 248.96 6307.8 83.28 0.1655 Better

203 22.4501 230.33 5671.8 79.41 0.4978 Worse

220 17.4395 236.40 6354.5 78.16 0.4523
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at optimized solution are below 2.5%. With the result of
accuracy analysis displayed in Section 4.2.1, the predic-
tion accuracy can be confirmed and verified.

The proposed multi-objective optimization method
analyzes the correlation between the process parameters
and the objectives and conducts the trade-off analysis to
balance the multiple conflicting objectives. It can effec-
tively locate the optimized process parameters setting to
achieve the product quality and productivity improve-
ment and the cost-saving, which can provide a theoret-
ical basis and reference for the actual injection molding
process.

Fig. 10 Spider-web chart at better and worse solution

Fig. 11 Comparison of warpage
at better and worse solution. a
Better solution; b worse solution
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5 Conclusion

In this paper, the multi-objective optimization of process
parameters in PIM for minimizing the warpage, weldlines,
clamping force, and cycle time is performed to realize
high product quality, high productivity, and low energy
consumption. The melted plastic will be quickly solidified
with low weldline temperature and long weldlines will
generate. To shorten the weldlines, the minimum weldline
temperature is considered to be maximized. In this view,

we propose a differential sensitivity fusion method
(DSFM). The conclusions are as follows:

(1) The variable packing pressure profile and the melt
temperature, mold temperature, injection time, and
cooling time are taken as design variables and opti-
mized. The generic optimization algorithm NSGA-III
is applied to locate the Pareto-optimal solutions.
Pareto frontier shows that selected four objectives
cannot simultaneously reach the optimal, which leads

Fig. 12 Comparison of weldline
temperature distribution at better
and worse solution. a Better
solution; b worse solution
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Fig. 13 Comparison of weldlines at better solution. a Conventional hot runner system; b valve hot runner system
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to the trade-off. The spider-web chart is used to per-
form the trade-off analysis among the four objec-
tives, and the better and worse solutions are identi-
fied for decision-making.

(2) The metamodeling method, GERSM coupling with
the MLSM, is used to construct the response predic-
tors, which fit the mathematical relationship between
design variables and responses and is taken as the
fitness functions in the multi-objective optimization
process. This model simultaneously utilizes the re-
sponse and sensitivity information of the sampling
point to improve the accuracy of the response pre-
dictors. Considering the capture of the sensitivity in-
formation, ASGM is proposed to calculate the gradi-
ent vector for each design variable of the sampling
point. The results of the accuracy analysis for re-
sponse predictors show that the proposed model has

the highest prediction accuracy for the warpage, min-
imum weldline temperature, and clamping force,
compared with RSM, SVR, GPR, and Kriging.

(3) The automobile bumper is taken as the case study, where
the valve hot runner system is used. The numerical
simulation result shows that the weldlines are gen-
erated in inconspicuous positions such as grilles,
lamp holes, and product edges and effectively elim-
inated, compared with the conventional hot runner
system. The valve hot runner system can effectively
improve the product quality.
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tion; writing—original draft; methodology; formal analysis; investiga-
tion; and project administration. Shuyou Zhang’s contributions are
Investigation; resources; and validation. Zili Wang’s contributions are
funding acquisition; project administration; methodology; formal analy-
sis; supervision; visualization; and writing—review and editing.

Table 9 The optimized setting of
the process parameters based on
the trade-off analysis

Solution Setting of process
parameters

Responses of objectives

Parameter Value Objective Value (simulation)

Before optimization Tmelt[°C] 245.56 Warpage [mm] 14.53
Tmold[°C] 80

tinj[s] 5.69 Minimum weldline temperature[°C] 244.9
Pp1[MPa] 105

Pp2[MPa] 55 Clamping force [tonne] 6096.3
tp1[s] 22.5

tp2[s] 37.5 Cycle time [s] 95.69
tc[s] 30

After optimization Tmelt[°C] 249.83 Warpage [mm] 12.89
Tmold[°C] 40.02

tinj[s] 8 Minimum weldline temperature[°C] 249.7
Pp1[MPa] 101.15

Pp2[MPa] 68.68 Clamping force [tonne] 5850.0
tp1[s] 20.68

tp2[s] 35 Cycle time [s] 87.06
tc[s] 23.38
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optimization. a Warpage;
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Appendix

The sampling points for constructing and training the response
predictor are displayed in Table 11, and the objective re-
sponses of them are displayed in Table 12. The sampling
points for confirmation or validation are displayed in
Table 13, and the objective responses of them are displayed
in Table 14.

Table 11 Sampling points for training generated by LHS

No. Design variables

Tmelt[°C] Tmold[°C] tinj[s] Pp1[MPa] Pp2[MPa] tp1[s] tp2[s] tc[s]

1 245.0414 55.0286 6.0794 107.5965 53.4387 23.9714 36.4930 32.4443

2 234.0339 70.1833 3.4851 109.0192 56.6081 20.8847 39.4706 27.7306

3 231.9070 43.9229 7.5325 109.5236 55.0104 24.5062 37.7661 26.7098

4 245.5729 77.3180 4.0796 107.3598 46.7311 20.6767 39.0929 21.6369

5 242.3197 42.7747 5.7035 100.1422 44.5298 21.6432 35.5832 21.9294

6 230.0224 59.8606 5.3209 100.4173 43.8071 22.4999 39.3418 32.1562

7 249.0854 40.9641 3.6849 101.1289 66.3851 22.3030 35.2581 23.6777

8 240.9002 72.3661 3.1271 101.8363 48.5661 23.1266 39.6614 30.6595

9 241.4019 68.2189 7.1572 100.8008 64.1553 22.7556 39.8124 37.0866

10 241.7156 46.3719 6.9709 103.8221 62.1883 21.7129 37.9891 33.9531

11 244.9917 66.8169 4.6495 103.1431 64.2311 20.8308 35.7517 32.9374

12 247.6907 64.3799 3.2162 105.8780 67.8779 23.4556 36.0909 38.1233

13 238.6269 75.0469 5.5140 109.1750 46.2718 20.9789 38.4854 35.4173

14 231.3650 64.7531 3.7842 102.4402 51.2529 22.7811 39.2166 31.5262

15 244.4113 78.5122 6.5944 102.5666 69.7425 24.4402 35.3940 37.3515

16 236.8566 56.2209 5.1432 108.1711 60.8743 20.4870 38.8103 21.0834

17 246.7280 51.6367 4.1285 102.9436 66.6817 24.7413 39.8706 22.9526

18 237.7169 61.2286 7.9516 101.5250 54.5720 20.1052 37.1135 39.0998

19 246.4235 50.2463 6.8831 105.6957 41.6728 24.0508 38.2381 34.5852

20 233.7332 79.9229 7.7025 107.8746 60.4535 24.1926 37.2964 28.9015

21 232.2304 60.8014 3.4060 103.4045 47.9783 20.3293 36.3527 33.6756

22 247.9951 49.5785 3.8694 106.8606 57.3223 22.0830 38.9487 26.5221

Table 10 Verification of the
optimized results Solution Objectives

Warpage
[mm]

Minimum weldline
temperature [°C]

Clamping force
[tonne]

Cycle time
[s]

Optimized
results

Prediction 12.58 250.82 5855.2 87.06

Simulation 12.89 249.7 5850.0 87.06

Error (RAE) 2.40% 0.45% 0.089% 0%
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Table 11 (continued)

No. Design variables

Tmelt[°C] Tmold[°C] tinj[s] Pp1[MPa] Pp2[MPa] tp1[s] tp2[s] tc[s]

23 230.9701 56.8170 6.6866 106.6418 63.1723 24.6695 38.7154 24.5125

24 243.2597 69.5334 6.2405 104.4928 58.4727 21.4022 36.7612 22.3299

25 243.5861 54.1779 7.2084 105.4473 57.7278 23.7944 38.0679 25.2994

26 239.5401 44.8915 4.8651 109.7846 52.8919 22.5863 37.5159 20.5050

27 237.8683 76.1340 4.7182 101.0613 49.3091 23.5233 35.4452 28.5754

28 249.5370 65.6683 5.7948 102.1918 52.0734 23.7162 35.0103 24.3403

29 239.3313 52.2948 7.3525 104.1930 41.2067 20.1984 37.8918 38.5935

30 240.2531 47.9801 5.9340 106.1455 59.8223 21.1136 36.5948 30.3583

31 232.8473 46.9901 5.0184 108.6112 68.6768 22.9375 36.9962 36.4918

32 236.5994 62.5075 4.3693 105.0377 45.7144 21.9051 36.8176 25.7074

33 235.6354 57.8892 6.4628 104.1564 43.2898 24.9052 35.8800 28.0468

34 248.3890 72.1497 4.4286 107.0709 65.2639 23.2836 37.4459 35.6719

35 234.8790 41.8490 5.4572 104.7229 50.3262 22.0851 38.3694 39.8864

36 235.5128 74.4396 7.7679 108.4692 40.6503 21.3772 36.1364 29.6233

Table 12 Numerical simulation
results of responses for sampling
points in Table 11

No. Warpage [mm] Minimum weldline temperature [°C] Clamping force [tonne] Cycle time [s]

1 12.09 244.4 6247.7 98.9880

2 16.35 233.5 6278.8 91.5710

3 9.18 231.1 6163.2 96.5145

4 16.00 245.1 6270.3 85.4861

5 18.69 241.7 5765.4 84.8593

6 17.37 229.2 5631.6 99.3188

7 20.66 248.6 5906.0 84.9238

8 20.11 240.2 5888.7 96.5746

9 12.55 240.7 5740.8 106.8118

10 12.11 241.2 5949.8 100.6260

11 17.29 244.4 5989.2 94.1695

12 16.93 247.1 6191.1 100.8860

13 12.10 238.0 6295.2 100.3955

14 19.49 230.8 5822.2 97.3082

15 13.06 244.0 5906.9 103.7801

16 14.87 236.2 6230.6 85.5238

17 18.99 246.1 5997.0 91.6930

18 10.78 237.4 5707.5 104.2700

19 10.92 245.9 6119.5 103.7571

20 9.343 233.0 6076.3 98.0929

21 19.19 231.5 5902.9 93.7637

22 16.28 247.6 6254.6 91.4232

23 12.44 230.3 6001.7 94.5840

24 14.80 242.6 6039.3 86.7338

25 11.35 242.9 6073.7 94.3702

26 14.61 238.9 6364.6 85.4723

27 19.26 237.1 5791.8 92.2622
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Table 13 Sampling points for validation generated by LHS

No. Design variables

Tmelt[°C] Tmold[°C] tinj[s] Pp1[MPa] Pp2[MPa] tp1[s] tp2[s] tc[s]

1 232.6232 61.0117 3.3646 105.5334 42.4424 22.7746 37.0280 27.1901

2 235.9184 62.4280 5.3734 106.2410 59.1531 22.5703 38.3329 30.4110

3 246.1575 58.0635 4.7274 108.6443 41.8184 24.4427 35.1792 36.3488

4 230.4411 54.9743 6.9131 107.9541 45.4671 20.4350 39.8586 26.3429

5 248.4128 78.4454 6.1352 105.1203 53.6927 20.9773 36.1797 37.4434

6 245.5081 41.9952 7.6592 101.6461 47.4380 21.2484 35.7433 24.9746

7 238.7190 73.8922 7.1916 102.2304 67.1198 21.5920 37.8925 34.9793

8 243.3578 75.6878 4.2291 109.0616 64.9457 24.7774 36.4051 31.7485

9 235.1248 71.2926 5.9462 100.1200 61.0852 24.0519 38.5095 28.9500

10 236.8593 43.1350 3.9404 103.5211 48.2493 20.2185 37.6547 34.5452

11 249.1403 48.0462 3.1924 100.6876 56.9639 21.7398 39.6080 32.5651

12 242.8316 51.3860 6.6353 109.6458 50.1128 23.1082 39.0927 23.0888

13 241.7454 65.7497 5.1338 107.1166 68.7246 22.3311 35.5088 20.6045

14 233.4290 46.4425 4.5097 104.5962 54.0846 23.7993 38.9491 39.4324

15 240.0240 69.0459 7.7680 102.9260 63.5186 23.5377 36.8863 21.8074

Table 14 Numerical simulation
results of responses for sampling
points in Table 13

No. Warpage [mm] Minimum weldline temperature [°C] Clamping force [tonne] Cycle time [s]

1 18.98 232.1 6045.4 90.3573

2 14.71 235.4 6083.5 96.6877

3 13.87 245.5 6341.6 100.6981

4 11.21 229.9 6069.7 93.5495

5 12.62 247.7 6117.8 100.7357

6 13.13 244.8 5843.9 89.6254

7 12.47 238.3 5802.3 101.6554

8 14.97 242.7 6353.1 97.1600

9 16.47 234.3 5664.9 97.4576

10 17.96 236.4 5948.5 96.3589

11 19.69 248.5 5876.2 97.1053

12 10.78 242.2 6350.1 91.9251

13 15.75 241.1 6213.4 83.5783

14 16.18 232.9 5963.0 106.6904

15 12.27 239.3 5856.6 89.9995

Table 12 (continued)
No. Warpage [mm] Minimum weldline temperature [°C] Clamping force [tonne] Cycle time [s]

28 16.68 248.8 5953.9 88.8616

29 10.76 238.7 5928.6 104.0362

30 13.54 239.7 6114.6 94.0007

31 13.86 232.1 6203.7 101.4440

32 17.81 236.1 6040.1 88.7993

33 13.90 235.0 5916.9 95.2948

34 14.83 247.7 6261.7 100.8300

35 14.24 234.2 5965.1 105.7982

36 9.098 234.8 6143.5 94.9048
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