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Abstract
Chatter has a detrimental effect on the milling process, which makes the chatter stability prediction very critical in milling. This
paper presents a new semi-discretization method (SDM) based on predictor-corrector scheme to predict the stability of milling
process. Firstly, the dynamic of the milling system is modelled by delay-differential equation (DDE), and the forced vibration
duration is divided into many parts. Secondly, the DDE is integrated on the small time interval. The time-delay term and the
periodic coefficient matrix are taken as an operator and approximated by second-order interpolation polynomial. And then, the
state transitionmatrix is constructed based on predictor-corrector scheme. The proposedmethod is validated by comparing it with
the benchmark. In general, the proposed method is superior compared with the benchmark in terms of the rate of convergence.
Besides, the proposed method is also a robust method. The computational efficiency of the proposed method is proved to be
good. For a one degree of freedom (1-DOF) milling system under full immersion condition, the stability lobe diagrams obtained
by the proposedmethod are much closer to the reference than those obtained by the PCHDMand UNIM, especially in the peak of
the lobes. The proposedmethod also can be used to predict the stability for a 2-DOFmilling system accurately. It is also indicated
from this study that the prediction accuracy of the SDM can be improved by combining the predictor-corrector scheme.

Keywords Stability . Predictor-corrector scheme .Milling; Semi-discretization

1 Introduction

Chatter has a detrimental effect on the milling process. It may
cause undesirable precision and inefficient processing.
Therefore, for nearly a century, it has been a hot research topic
in the manufacturing field. A great deal of researchers has
been devoted to the study of chatter. Chatter avoidance can
be achieved by predicting the stability of milling in advance
and selecting chatter-free processing parameters. Stability
lobe diagram can be used to determine the chatter-free param-
eters. The model of the milling dynamics can be established
by the delay-differential equation (DDE). Then, the stability
lobe diagram can be acquired by solving DDE using different
methods.

So far, the extensive literature on chatter stability predic-
tion in milling has been reported. In general, the stability
prediction methods mainly fall into two kinds, namely,
frequency-domain methods and time-domain methods.
The most well-known frequency-domain method is the
zeroth-order approximation (ZOA) method. The ZOA
method is proposed by Altintas et al. [1]; it can predict
milling stability efficiently. However, the shortcoming of
this method is that it cannot be used for low immersion
conditions. Then, Budak and Altintas [2, 3] developed a
general formulation for the milling system with multi-
degree of freedom based on the ZOA method. The short-
coming of the ZOA method is overcome in the multi-
frequency method, which is reported by Merdol et al. [4].
The multi-frequency method can predict milling stability
under low immersion conditions accurately.

Compared with the frequency-domain-based methods,
more methods are proposed in the time domain. Bayly et al.
[5] reported a temporal finite element analysis method, which
can only predict the stability of milling with one degree of
freedom. Butcher et al. [6] developed a Chebyshev collocation
method which takes advantage of the derivative property of
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Chebyshev polynomial. Insperger et al. [7] proposed a semi-
discretization method (SDM) to analyze the stability in mill-
ing. In this method, the time-delay term is approximated by
piecewise constant function. To improve accuracy, Insperger
et al. [8] suggested the first-order semi-discretization method
(1st SDM). Recently, Jiang et al. [9] proposed an accurate
second-order semi-discretization method (2nd SDM). In this
method, only the time-delay term is approximate by the
second-order polynomial. Ding et al. [10] presented a famous
full-discretization method (FDM). And then, Ding et al. [11]
proposed the second-order FDM (2nd FDM) followed by the
third-order FDM (3rd FDM) suggested by Guo et al. [12].
Based on least squares approximation scheme, Ozoegwu
et al. [13, 14] presented a series of least squares approximation
methods. Tang et al. [15] proposed a second-order updated
full-discretization method (2nd UFDM). In this method, the
Floquet transition matrix is obtained directly. After that, Yan
et al. [16] suggested a third-order updated full-discretization
method (3rd UFDM). Zhou et al. [17] proposed the high-order
FDMs to predict milling stability. In their work, the time-delay
term is interpolated by different high-order polynomials. Qin
et al. [18] proposed a novel method for milling stability anal-
ysis based on the holistic-interpolation scheme (HIM). And
then, to update the HIM, Qin et al. [19] represented a
predictor-corrector-based holistic-discretization method
(PCHDM) to predict the milling stability accurately and effi-
ciently. Dai et al. [20] proposed an improved full-
discretization method and a precise integration method
(PIM) [21] to predict the stability in milling. After that, Li
et al. [22] presented an improved PIM for milling stability
analysis. Yang et al. [23] recommended the precise
integration-based third-order full-discretization method for
stability analysis in milling. Besides, some methods based
on the numerical solution of the differential equation are also
presented, such as the differential quadrature method [24],
numerical differentiation method [25], Runge-Kutta-based

methods [26], Simpson-based method [27], and the Adams-
Moulton-based method [28]. Some numerical integration-
based methods are also developed to analyze the milling sta-
bility, such as the numerical integration method (NIM) [29],
the updated NIM (UNIM) [30], and the Newton-Cotes-based
method [31].

Generally, most prediction methods are in the framework
of FDM. The corresponding methods based on SDM are rel-
atively scarce. The SDM-based methods are also worthy of
some attention. In the literature [19], it is proved that the
predictor-corrector scheme can be used to improve the accu-
racy of the algorithm. Therefore, this work proposed a new
semi-discretization method based on predictor-corrector
scheme to predict the milling stability by combining the ideal
of semi-discretization and the predictor-corrector scheme.

The rest of this paper is organized as follows: Section 2
presents the dynamic milling model firstly and then gives the
derivation process of the proposedmethod. Section 3 validates
the proposedmethod from the aspect of accuracy and efficien-
cy. Section 4 sums up the main conclusions.

2 Milling dynamic model and the proposed
method

Without loss of generality, the basic dynamic model of milling
is considered here, where the tool is assumed to be flexible
compared with the rigid workpiece. The milling system can
be simplified into a 2-DOF system in two orthogonal directions
(X and Y) with a single mode in each direction, and the feed
direction of the workpiece is along the X-axis [17, 21]. The
schematic of the basic dynamic milling system is as shown in
Fig. 1.

By taking the regenerative chatter into account, the dynam-
ic milling system can be described as follows:

mx 0
0 mx

� �ð x
::
tð Þ

y
::
tð ÞÞ þ cx 0

0 cx

� � ẋ tð Þ
ẏ tð Þ

 !
þ kx 0

0 kx

� �
x tð Þ
y tð Þ

� �
¼ −ap

hxx tð Þ hxy tð Þ
hyx tð Þ hyy tð Þ

� �
x tð Þ−x t−Tð Þ
y tð Þ−y t−Tð Þ

� �
ð1Þ

where ap is the axial depth of cut; T is the time delay which is
equal to the tooth-passing period; mx, cx, and kx are the modal
mass, damping, and stiffness in the X direction, respectively;
and my, cy, and ky are the modal mass, damping, and stiffness
in the Y direction, respectively. Specifically, the modal param-
eters cx, cy, kx, and ky can be further expressed as follows: cx =
2mxζxωnx, cy = 2myζyωny, kx ¼ mxω2

nx, and ky ¼ myω2
ny, where

ζx, ζy, ωnx, and ωny are the modal damping ratios and angular
natural frequencies in the X and Y directions, respectively.

The directional cutting force coefficients hxx(t), hxy(t), h-
yx(t), and hyy(t) are given as follows:

hxx tð Þ ¼ ∑
N

j¼1
g φ j tð Þ
h i

sin
�

φ j tð Þ
� �

Ktcos φ j tð Þ
� �

þ Knsin φ j tð Þ
� �h i

ð2Þ

hxy tð Þ ¼ ∑
N

j¼1
g φ j tð Þ
h i

cos
�

φ j tð Þ
� �

Ktcos φ j tð Þ
� �

þ Knsin φ j tð Þ
� �h i

ð3Þ

hyx tð Þ ¼ ∑
N

j¼1
g φ j tð Þ
h i

sin
�

φ j tð Þ
� �

−Ktsin φ j tð Þ
� �

þ Kncos φ j tð Þ
� �h i

ð4Þ
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hyy tð Þ ¼ ∑
N

j¼1
g φ j tð Þ
h i

cos
�

φ j tð Þ
� �

−Ktsin φ j tð Þ
� �

þ Kncos φ j tð Þ
� �h i

ð5Þ

whereKt andKn are the tangential and the normal cutting force
coefficients, N is the cutter teeth number, g[φj(t)] is a window
function which is used to determine whether the tooth is in cut
[7], and φj(t) is the angular position of the tooth j and it is
given as follows:

φ j tð Þ ¼ 2πΩ=60ð Þt þ j−1ð Þ2π=N ð6Þ

where Ω is the spindle speed in rpm.
Equation (1) can be represented by the matrix equation as

follows:

M
::
q tð Þ þ Cq̇ tð Þ þKq tð Þ ¼ apKc tð Þ q tð Þ−q t−Tð Þ½ � ð7Þ

where the modal mass, damping, stiffness, and the dynamic
response matricesM, C, K, and q(t) are given as follows:

M ¼ mx 0
0 my

� �
;C ¼ 2mxζxωnx 0

0 2myζyωny

� �

K ¼ mxω
2
nx 0

0 myω
2
ny

� �
;q tð Þ ¼ x tð Þ

y tð Þ
� � ð8Þ

The directional cutting force coefficient matrix Kc(t) is
written as follows:

Kc tð Þ ¼ hxx tð Þ hxy tð Þ
hyx tð Þ hyy tð Þ
� �

ð9Þ

Using the transformations x tð Þ ¼ q tð Þ
q̇ tð Þ
� �

¼

x tð Þ
y tð Þ
ẋ tð Þ
ẏ tð Þ

2
6664

3
7775, Eq. (7)

can be rewritten as follows:

ẋ tð Þ ¼ A tð Þx tð Þ þ B tð Þx t−Tð Þ ð10Þ
where A(t) and B(t) are periodic coefficient matrixes that reflect
the dynamic characteristics of the milling system; they can be
given as follows:

A tð Þ ¼ A0−B tð Þ ð11Þ

A0 ¼
0 0 1 0
0 0 0 1

−ω2
nx 0 −2ζxωnx 0
0 −ω2

ny 0 −2ζyωny

2
664

3
775 ð12Þ

B tð Þ ¼

0 0 0 0
0 0 0 0

aphxx tð Þ
mx

aphxy tð Þ
mx

0 0

aphyx tð Þ
my

aphyy tð Þ
my

0 0

2
666664

3
777775 ð13Þ

where A0 represents the time-invariant nature of the system.
The Eq. (10) should be solved by numerical methods since

it has no analytical solution. To solve Eq. (10) numerically,
the relevant time period should be divided into many parts. In
this study, the forced vibration period (Tfc) rather than tooth
passing period (T) is divided intom equal parts, and any part is
expressed as [ti, ti + 1] with the length of h, namely, Tfc =mh.
Then, discrete time points are expressed as follows:

ti ¼ t0 þ Tfr þ i−1ð Þh; i ¼ 1; 2;⋯;mþ 1 ð14Þ

where Tfr is the free vibration duration, and t0 is the intimal
time instant.

The discretization mechanism and the variation of the dy-
namic system with time are shown in Fig. 2. Specifically, Fig.
2a illustrates the variation of the directional cutting force co-
efficient matrix with discrete time, and Fig. 2b illustrates the
variation of the of motion of the dynamic system with discrete
time. In Fig. 2a and b, t0 is the intimal time instant of the
current tooth passing period, and t0 − T is the intimal time in-
stant of the previous tooth passing period.

From Fig. 2a, it is found that the directional cutting force
coefficient matrix becomes zero when the tool is out of cut,
and the dynamic system experiences free vibration process.
Therefore, the free vibration duration Tfr can be determined by
using the directional cutting force coefficient matrix. Then the
forced vibration period Tfc can also be obtained, that is, Tfc = T
− Tfr. In Ding’s work [29], it is pointed out that the Tfr can be
found by sampling the directional cutting force coefficient
matrix Eq. (9) during one tooth passing period with a high
sampling frequency. In this study, the method recommended
by Ding et.al [29] is also adopted to determine the free vibra-
tion duration Tfr. When there are multiple modes in multiple
degrees of freedom, the free vibration period also can be

feed

X

Y

kx

cx

j

j+1

Workpiece

Tool
j-1

O

cy ky

Fig. 1 Schematic of the basic dynamic milling system
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determined by sampling the updated directional cutting force
coefficient matrix during one tooth passing period with a high
sampling frequency.

As shown in Fig. 2b, the dynamic milling system experi-
ences free vibration process from time point tm + 1 − T to time
point t1. When the cutting tool leaves the workpiece, it expe-
riences free vibration process. Accordingly, the directional
cutting force coefficients hxx(t), hxy(t), hyx(t), and hyy(t) become
zero. The matrix A(t) becomes a constant matrix A0.
Therefore, the relation between x(t1) and x(tm + 1 − T) can be
obtained as follows:

x t1ð Þ ¼ eA0Tfrx tmþ1−Tð Þ ð15Þ

As described in Eq. (15), the free vibration period (T-Tfc)
and the matrix A0 co-determine the milling system’s free vi-
bration state. The modal parameters are included in the matrix
A0.

Equation (10) is integrated over the interval [ti, ti + 1]; we
can get

xiþ1 ¼ eAihxi þ ∫tiþ1

ti eAi tiþ1−sð ÞB sð Þx s−Tð Þds ð16Þ

In Eq. (16),Ai is the abbreviation ofA(ti), and s is given by
s = t − ti. It should be noted that the matrix exponential in the
ref. [19] is eA0 which is a constant matrix, while the matrix
exponential in this study is eAi which is a variable matrix. The
matrices Ai (A(ti)) and A0 are given by Eqs. (11) and (12),
respectively.

Let the operator r(s) = B(s)x(s − T), and it is interpolated
over the interval [ti, ti + 1]. In the interpolation process, the time
nodes ti − 1, ti, and ti + 1 and their node values ri − 1, ri, and ri + 1

are employed for calculation. By using the second-order
Newton interpolation, r(s) can be obtained as follows:

r sð Þ ¼ s2

2h2
−

s
2h

� �
ri−1 þ 1−

s2

h2

� �
ri þ s2

2h2
þ s

2h

� �
riþ1 ð17Þ

For a better understanding, the interpolation process of Eq.
(17) is presented, as shown in Fig. 3.

(a)

(b)

1 Tt 2 Tt 3 Tt0 Tt 1mt1t 2t 3t 1mt mt
t

Tool out of cut Tool in cut
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Fig. 2 The discretization
mechanism and the variation of
the dynamic system with time. a
The variation of the specific
cutting force coefficient matrix
with discrete time. b The variation
of the of motion of the dynamic
system with discrete time
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It is seen from Fig. 3 that the interpolation interval is [ti, ti +
1]. The combination (ti − 1, ri − 1), which is located out of the
interpolation interval, is also used in the calculation.

Substituting Eq. (17) into Eq. (16), we can get

xiþ1−Φi;0xi ¼ Fi−1xi−1−T þ Fixi−T þ Fiþ1xiþ1−T ð18Þ
where

Fi−1 ¼ −
Φi;2

2h
þ Φi;3

2h2

� �
Bi−1 ð19Þ

Fi ¼ Φi;1−
Φi;3

h2

� �
Bi ð20Þ

Fiþ1 ¼ Φi;2

2h
þ Φi;3

2h2

� �
Biþ1 ð21Þ

and

Φi;0 ¼ eAih ð22Þ
Φi;1 ¼ A−1

i Φi;0−I
� 	 ð23Þ

Φi;2 ¼ A−1
i Φi;1−hI
� 	 ð24Þ

Φi;3 ¼ A−1
i Φi;2−h2I
� 	 ð25Þ

Then, Eq. (10) is integrated over the interval [ti − 1, ti + 1];
the result is as follows

xiþ1 ¼ eAi−1hxi−1 þ ∫tiþ1

ti−1 e
Ai−1 tiþ1−sð ÞB sð Þx s−Tð Þds ð26Þ

In Eq. (26), Ai − 1 is the abbreviation of A(ti − 1). Since the
lower limit of integral in Eq. (26) is ti − 1, s here is given by s =
t − ti − 1. Then, the operator r(s) = B(s)x(s − T) in Eq. (26) is

approximated over the interval [ti ‐ 1, ti + 1]. The time nodes ti −
1, ti, and ti + 1 and their node values ri − 1, ri, and ri + 1 are also
employed for calculation. By using the second-order Newton
interpolation, the approximation of r(s) is as follows:

r sð Þ¼ 1−
3s

2h
þ s2

2h2

� �
ri−1 þ 2s

h
−
s2

h2

� �
ri þ s2

2h2
−

s
2h

� �
riþ1 ð27Þ

The interpolation process of Eq. (27) is depicted in Fig. 4.
As shown in Fig. 4, the interpolation interval is [ti − 1, ti + 1].

The combinations (ti − 1,ri − 1), (ti, ri), and (ti + 1, ri + 1), which
are all located in the interpolation interval, are used for
calculation.

For the proposed method, Eq. (17) plays the role of a pre-
dictor, and Eq. (27) plays the role of corrector. Generally,
these two equations are both obtained by using the second-
order Newton interpolation, and all the combinations (ti − 1,ri −
1), (ti, ri), and (ti + 1, ri + 1) are employed in the calculation
process. However, the interpolation intervals for obtaining
Eq. (17) and Eq. (27) are different.

Equation (27) is inserted into Eq. (26); the following result
can be acquired

xiþ1−D2
i;0xi−1 ¼ Ei−1xi−1−T þ Eixi−T þ Eiþ1xiþ1−T ð28Þ

where

Ei−1 ¼ Di;0
Di;3

2h2
−
3Di;2

2h
þ Di1

� �
þ Di;3

2h2
−
Di;2

2h

� �
Bi−1 ð29Þ

Ei ¼ Di;0 −
Di;3

h2
þ 2Di;2

h

� �
−
Di;3

h2
−Di;1

� �
Bi ð30Þ

1it1it it
t

r
( )sr

Interpolation interval

1ir
ir

1ir

Fig. 3 The interpolation process of Eq. (17)

1it1it it
t

r
( )sr

Interpolation interval

1ir
ir

1ir

Fig. 4 The interpolation process of Eq. (27)
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Eiþ1 ¼ Di;0
Di;3

2h2
−
3Di;2

2h

� �
þ Di;3

2h2
þ Di;2

2h

� �
Biþ1 ð31Þ

and

Di;0 ¼ eAi−1h ð32Þ
Di;1 ¼ A−1

i−1 Di;0−I
� 	 ð33Þ

Di;2 ¼ A−1
i−1 Di;1−hI
� 	 ð34Þ

Di;3 ¼ A−1
i−1 Di;2−h2I
� 	 ð35Þ

For a 2-DOF milling system with a single mode, the di-
mension of the matrices Ei − 1, Ei, Ei + 1, Di, 0, Di, 1, Di, 2, and
Di, 3 depend on the dimension of the matrixAi − 1, whereAi − 1

is the abbreviation of A(ti − 1). From Eq. (11) and Eq. (12), it
can be found that the matrix Ai − 1 is with the dimension of 4
rows and 4 columns.

Combining Eqs. (15), (18), and (28), the following discrete
map can be obtained

G1

x1
x2
⋮
xm
xmþ1

2
66664

3
77775 ¼ G2

x1−T
x2−T
⋮
xm−T
xmþ1−T

2
66664

3
77775 ð36Þ

where

G1 ¼

I
0

� D2
2;1

0
0
..
.

0
0

0
� Φ2;2

0
0
0
..
.

0
0

0
I
I
0

� D2
4;1

..

.

0
0

0
0
0

� Φ4;2

0
..
.

0
0

0
0
0
I
I
..
.

0
0

� � �
� � �
� � �
� � �
� � �
. .
.

� � �
� � �

0
0
0
0
0
..
.

0
� D2

m�1;1

0
0
0
0
0
..
.

� Φm�1;2

0

0
0
0
0
0
..
.

I
I

0

2
666666666664

3
777777777775

ð37Þ

G2 ¼

0 0 0 0 0 ⋯ 0 0 eA0tf

F1 F2 F3 0 0 ⋯ 0 0 0
E1 E2 E3 0 0 ⋯ 0 0 0
0 0 F3 F4 F5 ⋯ 0 0 0
0 0 E3 E4 E5 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ Fm−1 Fm Fmþ1

0 0 0 0 0 ⋯ Em−1 Em Emþ1

0

2
66666666664

3
77777777775

ð38Þ

By using the matrixes G1 and G2, the Floquet transition
matrix Ψ can be calculated as follows:

Ψ ¼ G1ð Þ−1G2 ð39Þ

The stability of the milling system can be predicted by
using the module of the state transition matrix.

Remarkably, in the PCHDM [19], the periodic coefficient
matrix, state term, and the time-delay term are taken as a unit,
and the second-order Newton polynomial is used to

approximate this unit. However, in this study, only the peri-
odic coefficient matrix and the time-delay term are taken as an
operator, and this operator is approximated by second-order
Newton interpolation polynomial. Besides, the PCHDM is in
the framework of FDM, while the proposed method is in the
framework of SDM.

3 Comparison and discussion

3.1 Rate of convergence

The one degree of freedom (1-DOF) milling system is usually
used for the analysis of rate of convergence [11–21]. For the
1-DOF milling system, the matrixes B(t) and A(t) in Eq. (10)
are given as follows:

A0 ¼ 0 1
−ω2

n −2ξωn

� �
ð40Þ

B tð Þ ¼
0 0

aph tð Þ
mt

0

" #
ð41Þ

A tð Þ ¼ A0−B tð Þ ð42Þ

where the modal mass, damping ratio, and angular natural
frequency are denoted as mt, ξ, and ωn, respectively, ap is
the axial depth of cut, and h(t) is a function of time and it is
defined as

h tð Þ ¼ ∑
N

j¼1
g φ j tð Þ
� �

sin φ j tð Þ
� �

Ktcos φ j tð Þ
� �

þ Knsin φ j tð Þ
� �� �

ð43Þ

The rate of convergence is often used to estimate the accuracy
of the stability prediction methods. It reflects how the local
discretization error varies with the increase of the parameter m,
where the local discretization error is the difference between the
approximated module of the state transition matrix |μ(m)| and
exact one |μ0|. In this work, the classical 1st SDM [8] and recent-
ly proposed methods PCHDM [19], 2nd SDM [9], and UNIM
[30] are taken as the benchmark. The value calculated by the 1st
SDM with m = 1000 is taken as the value of |μ0|. The spindle
speed (Ω = 5000 rpm) and axial depths of cut (w = 0.2, 0.5, 1.0
mm), which are the commonly used values in many works of
literature, are also employed in this study. In the calculation
process, the cutter teeth number is N = 2, and the radial immer-
sion ratio is a/D=1, down milling. The cutting force coefficients
and modal parameters are adopted from ref. [7], and they are as
follows: the angle natural frequency is ωn = 5793 rad/s, the rel-
ative damping ratio is ζ = 0.011, the modal mass of the tool ismt

= 0.03993 kg, and the tangential and normal cutting force coef-
ficients are Kt = 6 × 10

8 N/m2, and Kn = 2 × 10
8 N/m2, respec-

tively. The rate of convergence of the 1st SDM, PCHDM, 2nd
SDM, UNIM, and the proposed method is described in Fig. 5.
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As shown in Fig. 5, the UNIM converges faster than the
other methods when the axial depth of cut is ap = 0.2 mm.
However, it converges slower than the 2nd SDM and the
proposed method when ap is chosen as 1.0 mm. Similarly,
the rate of convergence of the 2nd SDM is higher than the
other methods when ap is set as 1.0 mm. However, it con-
verges slower than the PCHDM, UNIM, and the proposed
method when ap equals to 0.2 mm. That is, the robustness of
the rate of convergence of the UNIM and 2nd SDM requires
further improvement. Besides, although the PCHDM and the
proposed method are both predictor-corrector scheme-based
methods, the proposed method converges faster than the
PCHDM under different parameter combinations. Overall,
the proposed method is superior compared with the bench-
mark methods in terms of the rate of convergence. Besides,
the robustness of the rate of convergence of the proposed
method is also good.

3.2 Stability lobe diagram for 1-DOF milling system

To further evaluate the accuracy and efficiency of the stability
prediction methods, the stability lobe diagrams calculated by
the 1st SDM, PCHDM, 2nd SDM, UNIM, and the proposed
method are obtained. The stability lobe diagrams are computed
on a parameter plane of spindle speed and axial depth of cut,
where the spindle speed belongs to the interval [5000, 10000]
rpm, the axial depth of cut belongs to the interval [0, 0.01] m.
The parameter plane includes an equidistance grid with the size
of 200 × 200. The stability lobe diagrams calculated by the
PCHDM with m = 300 is taken as the reference. The stability
lobes calculated by different methods with m = 30 and 40 are
presented. Figure 6 shows the stability lobe diagrams as well as
the computational time for different methods under full immer-
sion condition (a/D = 1), down milling.

As shown in Fig. 6, the proposed method takes less time
than the 1st SDM and 2nd SDM to obtain stability lobe dia-
grams. Therefore, the efficiency of the proposed method is
proved to be good. For a 1-DOF milling system under full
immersion condition, although the proposed method takes
more time than the PCHDM and UNIM to obtain the stability
charts, the stability lobe diagrams obtained by the proposed
method are much closer to the reference than those obtained
by the PCHDM and UNIM, especially in the peak of the
lobes. That is, the 1st SDM, PCHDM, 2nd SDM, and
UNIM may fall short of the stability prediction when the pa-
rameters are around the peak of the lobes. In the 2nd SDM, the
precise integration scheme is adopted to improve the compu-
tational efficiency. It should be noted that the precise integra-
tion scheme is not used in the calculating process by using the
2nd SDM and the proposed method in this study. Therefore,
the computational efficiencies of the 2nd SDM and the pro-
posed method can be further improved if the precise integra-
tion scheme is adopted in the calculation process.

To further evaluate the effectiveness of the proposed meth-
od, the stability lobe diagrams obtained by different methods
with a/D = 0.05 are also presented, as shown in Fig. 7.
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Fig. 5 The rates of convergence of the 1st SDM, PCHDM, 2nd SDM,
UNIM, and the proposed method. a ap = 0.2 mm, |μ0| = 0.819723. b ap =
0.5 mm, |μ0| = 1.073920. c ap = 1.0 mm, |μ0| = 1.406373
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From Fig. 7, it can be found that the stability lobe diagrams
obtained by the PCHDM, UNIM, and the proposed method
are more accurate than those obtained by the 1st SDM and 2nd

SDM. The comparison result indicates that the prediction ac-
curacy of the SDM can be improved by combining the
predictor-corrector scheme.

1st SDM, m=30, 430 s 1st SDM, m=40, 587 s

PCHDM, m=30, 35 s PCHDM, m=40, 58 s

2nd SDM, m=30, 161s 2nd SDM, m=40, 236 s

UNIM, m=30, 39 s UNIM, m=40, 61 s

The proposed method, m=30, 121 s The proposed method, m=40, 166 s

Fig 6 The stability lobe diagrams calculated by the 1st SDM, PCHDM, 2nd SDM, UNIM, and the proposed method under full immersion condition
(a/D = 1) for 1-DOF milling system
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3.3 Stability lobe diagram for 2-DOF milling system

In this section, the stability lobe diagrams calculated by the 1st
SDM, PCHDM, 2nd SDM, UNIM, and the proposed method
are obtained for the 2-DOF milling system. In the calculation
process, the dynamics of the milling system in the X and Y

directions are considered. The modal parameters are also de-
rived from ref. [7], and they are assumed to be equal inX and Y
directions. The detailed modal parameters are as follows: the
angle natural frequencies are ωnx = ωny = 5793 rad/s, the rel-
ative damping ratios are ζx = ζy = 0.011, and the modal masses
of the tool are mx =my = 0.03993 kg. The tangential and

1st SDM, m=30 1st SDM, m=40

PCHDM, m=30 PCHDM, m=40

2nd SDM, m=30 2nd SDM, m=40

UNIM, m=30 UNIM, m=40

The proposed method, m=30 The proposed method, m=40

Fig 7 The stability lobe diagrams calculated by the 1st SDM, PCHDM, 2nd SDM, UNIM, and the proposed method with a/D = 0.05 for 1-DOF milling
system
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normal cutting force coefficients are still chosen as Kt = 6 ×
108 N/m2 and Kn = 2 × 108 N/m2, respectively.

In the parameter plane, the spindle speed belongs to the
interval [5000, 25000] rpm, and the axial depth of cut belongs
to the interval [0, 0.01] m. The reference is also the stability
lobe diagram calculated by the PCHDM with m = 300. The

stability lobes calculated by different methods under the full
immersion condition (a/D = 1) for a 2-DOFmilling system are
shown in Fig. 8.

The stability lobe diagrams calculated by different methods
under low immersion condition (a/D = 0.05) for a 2-DOF
milling system are also obtained, as shown in Fig. 9.

1st SDM, m=20 1st SDM, m=30

PCHDM, m=20 PCHDM, m=30

2nd SDM, m=20 2nd SDM, m=30

UNIM, m=20 UNIM, m=30

The proposed method, m=20 The proposed method, m=30

Fig 8 The stability lobe diagrams calculated by the 1st SDM, PCHDM, 2nd SDM, UNIM, and the proposed method with a/D = 1 for a 2-DOF milling
system
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From Fig. 8, it shows that all the methods can pre-
dict the stability of milling for a 2-DOF system under
full immersion condition accurately. However, as shown
in Fig. 9, the PCHDM, UNIM, and the proposed meth-
od are more accurate than the 1st SDM and 2nd SDM

under the low immersion condition (a/D = 0.05). The
results about the 2-DOF milling system further demon-
strate that the prediction accuracy of the SDM can be
improved through combining the predictor-corrector
scheme.

1st SDM, m=20 1st SDM, m=30

PCHDM, m=20 PCHDM, m=30

2nd SDM, m=20 2nd SDM, m=30

UNIM, m=20 UNIM, m=30

The proposed method, m=20 The proposed method, m=30

Fig 9 The stability lobe diagrams calculated by the 1st SDM, PCHDM, 2nd SDM, UNIM, and the proposed method with a/D = 0.05 for a 2-DOF
milling system
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4 Conclusion

This study presents a new semi-discretization method based
on predictor-corrector scheme for milling stability analysis. In
this study, the time-delay term and the periodic coefficient
matrix are taken as an operator and approximated by
second-order interpolation polynomial. The main conclusions
sum up as follows:

(1) Generally, the proposed method is superior compared
with the benchmark in terms of the rate of conver-
gence. In addition, the proposed method is also a
robust method.

(2) Although the PCHDM and the proposed method are
both predictor-corrector scheme-based methods, the
proposed method converges faster than the PCHDM
under different parameter combinations.

(3) The proposed method takes less time than the 1st
SDM and 2nd SDM to obtain stability lobe dia-
grams. For a 1-DOF milling system under full im-
mersion condition (a/D = 1), although the proposed
method takes more time than the PCHDM and
UNIM to obtain the stability charts, the stability lobe
diagrams obtained by the proposed method is much
closer to the reference than those obtained by the
PCHDM and UNIM, especially in the peak of the
lobes.

(4) The prediction accuracy of the SDM can be im-
proved by combining the predictor-corrector scheme.
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