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Abstract

Manual surface inspection methods performed by quality inspectors do not satisfy the continuously increasing quality standards
of industrial manufacturing processes. Machine vision provides a solution by using an automated visual inspection (AVI) system
to perform quality inspection and remove defective products. Numerous studies and works have been conducted on surface
inspection algorithms. With the advent of deep learning, a number of new algorithms have been developed for better inspection.
In this paper, the state-of-the-art in surface defect inspection using deep learning is presented. In particular, we focus on the
inspection of industrial products in semiconductor, steel, and fabric manufacturing processes. This work makes three contribu-
tions. First, we present the prior literature reviews on vision-based surface defect inspection and analyze the recent AVI-related
hardware and software. Second, we review traditional surface defect inspection algorithms including statistical methods, spectral
methods, model-based methods, and learning-based methods. Third, we investigate recent advances in deep learning-based
inspection algorithms and present their applications in the steel, fabric, and semiconductor industries. Furthermore, we provide
information on publicly available datasets containing surface image samples to facilitate the research on deep learning-based
surface inspection.
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1 Introduction

Surface defect inspection refers to surface inspection of a fin-
ished product to identify defects such as scratches, pits, pro-
trusions, and stains. Manual surface inspection methods per-
formed by quality inspectors have the disadvantages of low
efficiency, high labor intensity, low accuracy, low real-time
performance, etc. They cannot satisfy the continuously in-
creasing quality standards of industrial manufacturing pro-
cesses. As one of the key technologies in manufacturing, ma-
chine vision provides a solution to fulfill the increasing de-
mands on the documentation of quality and the traceability of
products, by using engineering systems to perform quality
inspection and remove defective products from production
lines [1]. The machine vision system has the advantages of

high precision, high efficiency, high speed and continuous
detection, non-contact measurement, etc. Thereby, a large va-
riety of solutions and applications has been inspired and uti-
lized in this field since the 1980s, and their number has con-
tinued to grow. European and North American market data
reveal that the growth of machine vision applications general-
ly outperform the overall economic growth. Moreover, China
has also become a major market for machine vision in recent
years [2]. According to [3], the size of the global machine
vision market was approximately USD $7.2 billion in 2017,
growing 6.8% year-on-year.

Golnabi and Asadpour [4] classified the applications of
machine vision into four categories: visual inspection, process
control, part identification, and robotic guidance and control
mechanisms. Among these, automated visual inspection
(AVI) is the most significant and widely used application.
Numerous studies and works have been performed on the
research of AVI algorithms. Traditional AVI algorithms can
be classified into statistical methods, spectral methods, model-
based methods, and learning-based methods [5], which gen-
erally comprise two stages (feature extraction and defect

* Xiaoqing Zheng
zhengxiaoqing@hdu.edu.cn

1 School of Automation, Hangzhou Dianzi University,
Hangzhou 310018, China

https://doi.org/10.1007/s00170-021-06592-8

/ Published online: 25 January 2021

The International Journal of Advanced Manufacturing Technology (2021) 113:35–58

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-021-06592-8&domain=pdf
mailto:zhengxiaoqing@hdu.edu.cn


identification). Evidently, these depend heavily on human
expert-designed features and are sensitive to variations in the
application conditions. In recent years, deep learning has
achieved remarkable performance in face recognition, speech
recognition, natural language processing, etc. However, it has
relatively few applications in the field of AVI. The probable
reason is that deep learning relies strongly on a large amount
of training data, whereas surface defect datasets are generally
small and challenging to be collected or labeled. Nonetheless,
compared to traditional defect detection methods, deep
learning-based methods can learn high-level features automat-
ically from training data without the design of manual fea-
tures. They are more versatile in detecting different types of
defects and less sensitive to variations in application condi-
tions. In our work, recent advances and applications of deep
learning-based AVI algorithms are investigated. In particular,
we focus on AVI of industrial products in semiconductor,
steel, and fabric manufacturing processes. Our literature sur-
vey indicates that a large number of AVI methods and appli-
cations have been studied in these fields. We believe that they
are the most important application areas of AVI for the fol-
lowing reasons. The complexity and miniaturization of
printed circuit boards (PCBs) and integrated circuits (ICs)
may make inspection feasible only through AVI systems.
Presently, many steps in semiconductor production can be
performed reliably only through the use of machine vision
[6]. AVI is also essential for quality control in the steel
manufacturing process, because traditional manual surface in-
spection procedures are inadequate for guaranteeing quality
surfaces [7]. In the fabric manufacturing process, AVI is def-
initely an important means to replace manual inspection, al-
though it continues to be a challenging task owing to the
variability in texture and diversity of defects [8]. This moti-
vates many studies to identify a better solution.

The remainder of this paper is organized as follows: Prior
literature reviews are presented in Section 2. The hardware,
software, and algorithms of AVI are described in Section 3. In
Section 4, traditional surface defect detection approaches are
reviewed, including statistical methods, spectral methods,
model-based methods, and learning-based methods. In
Section 5, our analysis of deep learning networks and public
datasets for surface defect inspection is presented. Our inves-
tigation of the deep learning-based inspection approaches and
their applications in steel, fabric, and semiconductor industry
is described. The challenges and solutions in this field are also
discussed. This work is concluded in Section 6.

2 Prior literature review

A number of reviews and surveys of AVI methods have been
conducted since the 1980s. The reviews published in the early
years are available in [9], whereas recent review papers are

presented chronologically in this section and illustrated in
Table 1.

Malamas et al. [10] presented a review on industrial vision
systems, applications, and tools in 2003 and discussed the
important issues and directions for designing and developing
industrial vision systems. In 2008, Xie [11] systematically
reviewed the advances in surface inspection using computer
vision and image processing techniques, particularly based on
texture analysis methods under four categories: statistical ap-
proaches, structural approaches, filter-based methods, and
model-based approaches. Kumar [12] surveyed the computer
vision-based fabric defect detection methods, in 2008. He di-
vided the methods into three categories: statistical, spectral,
andmodel-based approaches. The paper also indicated that the
combination of statistical, spectral, and model-based ap-
proaches could yield better results than any individual ap-
proach. Mahajan et al. [13] reviewed and described the fabric
defect detection methods for visual inspection. They charac-
terized the feature extraction and decision-making methods
into three categories: statistical, spectral, and model-based
methods. Hani et al. [14] presented a literature review of the
pattern recognition algorithms for automated visual inspection
of surface mount device printed circuit board (SMD-PCB).
The review focused on segmentation algorithms, feature ex-
traction algorithms, and performance evaluation of different
types of classifiers. Ngan et al. [15] offered a survey of fabric
defect detection methods with description of their characteris-
tics, strengths, and weaknesses in 2011. They divided the
methods into seven approaches (statistical, spectral, model
based, learning, structural, hybrid, and motif based). Neogi
et al. [7] presented a comprehensive review of vision-based
steel surface inspection systems, in 2014. The review covered
overall aspects of steel surface inspection and classified steel
surfaces into six types: slab, billet, plate, hot strip, cold strip,
and rod/bar. In 2015, Huang and Pan [9] studied AVI systems
and reviewed their applications in the surface inspection of
semiconductor products including wafer, TFT-LCD, and
light-emitting diode (LED). They classified the inspection al-
gorithms to projection methods, filter-based approaches,
learning-based approaches, and hybrid methods. Hanbay
et al. [16] presented a comprehensive literature review of fab-
ric defect detection methods in 2016. Defect detection
methods were divided into structural approaches, statistical
approaches, spectral approaches, model-based approaches,
learning approaches, and hybrid approaches. The main con-
cepts underlying these approaches as well as with their
strengths and weaknesses were discussed. Anitha and Rao
[17] reviewed the defect detection methods for various cate-
gories of PCB such as single layer, double layer, and multi-
layer bare PCB and assembled PCB, in 2017. In 2018, Sun
et al. [3] studied the research status and trends of steel inspec-
tion from the perspectives of detected object, hardware, and
software. In addition, the detection algorithms were divided
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into statistical method, filtering-based methods, model-based
methods, and machine learning-based methods.

3 AVI system

The principle of designing an automated visual inspection
system is to replace the manual inspection process completely
[18], as shown in Fig. 1. AVI is composed mainly of the
following processes: image acquisition, defect detection, and
quality control. An image acquisition process is aimed at mea-
suring and acquiring images of the object to be inspected,
using an optical system. The optical system consists of a dig-
ital camera or analog camera with a CCD or CMOS sensor as

well as lighting system. The defect detection process refers to
defect detection and recognition using image-processing tech-
niques such as image preprocessing, feature extraction, and
classification. The detection results are output to a quality
control system to serve as a guide for defective product rejec-
tion. The detection results may include information on wheth-
er a sensed image is defective or defect free, the severity of the
defects, and the category of the defects.

3.1 Camera and lighting

The sensor is the most important part of a camera. It is used to
generate the image. There are two main sensors: CCD sensor
and CMOS sensor. Compared with CCD, CMOS image

Table 1 Recent literature review
papers Reference Year Content of the review Object

detected

[10] 2003 Reviewed the industrial vision systems, applications, and tools Industrial
products

[11] 2008 Analyzed texture analysis methods under four categories: statistical
approaches, structural approaches, filter-based methods, and
model-based approaches

Texture

[12] 2008 Studied fabric defect detection methods including statistical, spectral,
and model-based approaches

Fabric

[13] 2009 Reviewed fabric defect detection methods under three categories:
statistical, spectral, and model-based methods

Fabric

[15] 2011 Reviewed fabric defect detection methods and divided them into seven
approaches (statistical, spectral, model based, learning, structural,
hybrid, and motif based)

Fabric

[16] 2016 Reviewed fabric defect detection methods and divided them into six
categories (structural, statistical, spectral, model based, learning
based, and hybrid approaches)

Fabric

[14] 2011 Reviewed pattern recognition algorithms for automated visual
inspection of SMD-PCB

Semiconductor

[9] 2015 Studied AVI systems in semiconductor industry and classified the
inspection algorithms into projection methods, filter-based
approaches, learning-based approaches, and hybrid methods

Semiconductor

[17] 2017 Reviewed defect detection methods for PCB categories including
single layer, double layer, and multilayer bare PCB and assembled
PCB

Semiconductor

[7] 2014 Reviewed the overall aspects of steel surface inspection and classified
the steel surface types as slab, billet, plate, hot strip, cold strip, and
rod/bar

Steel

[3] 2018 Studied steel surface inspection methods and divided the detection
algorithms into four categories (statistical, filtering-based,
model-based, and machine learning-based methods)

Steel

Fig. 1 Fundamental principle of
automated visual inspection system
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sensors are advanced technologies and are predominantly
used in digital circuits. It is convenient for CMOS to incorpo-
rate the functions, such as analog-to-digital conversion, ad-
dressing, windowing, gain and offset adjustments, and smart
preprocessing, on the chip for smart use. It is considered that
CMOS will become the dominant sensor technology for ma-
chine vision in the future [2]. The trends of AVI also include a
smart camera consisting of a sensor and a processing core that
performs major image processing operations in situ and trans-
mits only necessary information to the computer workstation
[19].

Cameras can be categorized as analog or digital cameras
depending on whether they produce an analog or digital video
signal after acquiring an image. The transmission of an analog
signal requires a special interface card called frame grabber,
whereas a digital camera performs an analog-to-digital con-
version internally and transmits the digital video signal to a
computer. Analog video transmission has been the dominant
technology in the machine vision industry for a long time.
However, because analog video transmission may cause im-
age quality degradation, its applications have declined in re-
cent years. Advanced AVI systems typically use digital video
transmission. Apart from higher image quality, digital cam-
eras offer the advantages of significantly higher resolutions
and frame rates, significantly smaller size, and less power
requirement than those of analog cameras [1].

A suitable lighting system makes the entire vision inspec-
tion system more efficient and accurate. The types of light
sources that are commonly used in machine vision include
incandescent lamps, xenon lamps, fluorescent lamps, and
light-emitting diode (LED) [1]. Presently, LED is the primary
illumination method for machine vision. LED has a long life
cycle, and its lifetime is commonly longer than 100,000 h. Its
brightness can be controlled conveniently with low power
consumption and low heat production. It can be designed into
different sizes and shapes and can irradiate at different angles.
Guidelines for setting LED light sources include the achieve-
ment of good contrast between the foreground and back-
ground for reliable measurement and of good contrast among
the internal features [20].

3.2 Software and algorithms

The most frequently used imaging processing software for
AVI includes OpenCV, Halcon, VisionPro, etc. OpenCV
[21] is an open source image processing library with algo-
rithms: smoothing images, morphology transformations, im-
age pyramids, image moments, thresholding operations, his-
togram calculation, histogram comparison, template
matching, etc. In addition, machine learning algorithms (such
as support vector machines) and deep neural networks (such
as GoogLeNet network) are included. Halcon [22] contains
the image processing library used for blob analysis,

morphology, matching, measuring, and identification. In ad-
dition, it provides 3D vision using shape-based 3D matching
and surface-based 3D matching, as well as deep learning al-
gorithms based on CNN. VisionPro [23] is a library with
pattern matching, blob, caliper, line location, and image filter-
ing algorithms. It also offers deep learning-based image
analysis.

The frequently used online defect detection algorithms of
industrial AVI are reference-based approaches and rule-based
approaches. Reference-based approaches consist primarily of
image subtraction and template matching. These measure the
difference between a sensed image of the object to be
inspected and a predefined reference pattern [9]. Image sub-
traction conducts pixel-by-pixel subtraction of a sensed image
and a reference ideal image. The defects of the object are
displayed in the subtracted images. Image subtraction is sim-
ple and can be implemented directly. However, it is excessive-
ly sensitive to image variation and may cause a lot of false
positives. Template matching is feature-level comparison of
the extracted object features and the predefined ideal tem-
plates, which are composed of feature patterns or models.
The fundamental form of template matching is to move an
image of the object to be detected across the template image
and compute a similarity measure at each position [24]. The
reference-based approach is intuitive, convenient for practical
application, and reliable for detecting possible defects.
However, it exhibits problems including inflexibility to vari-
ation and the need to store and maintain a large number of
reference patterns.

A rule-based approach involves the extraction of features
from the sensed object and comparison of those features to a
list of rules that describes an ideal model. It can circumvent the
need for an extensive database of templates by examining the
sensed object with respect to a list of design rules or against
the features that can be extracted from design rules [6]. The
rules can utilize attributes such as surface area, perimeter, ratio
of perimeter to area, number of holes, area of holes, minimum
enclosing bounding box area, maximum radius, and minimum
radius [25]. For PCB, the design rules can be [26] (1) the
minimum and maximum trace widths for all the traces used,
(2) the minimum andmaximum circular pad diameters, (3) the
minimum and maximum hole diameters, (4) the minimum
conductor clearance, and (5) the minimum annular rings and
trace termination rules. The disadvantage of the rule-based
approach is that it may omit the flaws that do not violate the
rules [27] or may require complicated schemes to eliminate
false alarms [28].

In the early years, most of the industrial inspection systems
utilized the template matching approach and rule-based com-
parison schemes [6]. However, these have been evolving into
intelligent classifiers that have the capability to learn complex
and subtle classification strategies [19]. With the advent of the
state-of-the-art deep learning techniques, a number of new
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algorithms have also been developed for better surface defect
detection. As these algorithms mature, they will eventually
promote the development of industrial surface defect detection
algorithms.

3.3 Evaluation metrics

The evaluation metrics include error escape rate, false alarm
rate, accuracy, precision, recall, and F1-score. Escape rate and
false alarm rate are frequently used in addition to accuracy, for
the performance evaluation of defect detection algorithms.
Whereas error escape rate is the ratio of the number of defec-
tive samples detected as defect free to the total number of
defective samples, false alarm rate is the ratio of the number
of defect-free samples detected as defective to the total num-
ber of defect-free samples.

Error Escape Rate ¼ FP= TN þ FPð Þ
False Alarm Rate ¼ FN= TP þ FNð Þ
Accuracy ¼ TP þ TNð Þ= TP þ FN þ TN þ FPð Þ
Precision ¼ TP= TP þ FPð Þ
Recall ¼ TP= TP þ FNð Þ
F1−Score ¼ 2� Precision� Recallð Þ= Precisionþ Recallð Þ
where TP represents the numbers of true positives, FN represents
the numbers of false negatives, TN represents the numbers of
true negatives, and FP represents the numbers of false positives.

4 Traditional AVI algorithms

Traditional methods for defect detection proceed in two
stages: feature extraction and defect identification. Features
could be in the spatial domain, such as histogram, local binary
pattern (LBP), and co-occurrence matrix, or in the transform
domain, such as Fourier transform, wavelet transform, and
Gabor transform [29]. Following feature extraction, defect
identification can be performed by using common pattern
classifiers such as SVM, K-nearest neighbor, random forest,
and K-means. From the perspective of feature extraction and
identification, surface defect detection can be categorized
mainly into four general approaches: statistical methods, spec-
tral methods, model-based methods, and learning-based
methods [5]. The comparative studies are available in [3, 5,
9, 11–13, 15, 16]. Traditional defect inspection methods and
their applications are illustrated in Table 2.

4.1 Statistical methods

Statistical methods measure the spatial distribution of pixel
values with the assumption that the statistics of defect-free
regions are stationary [13]. The defects are detected using
the first-order statistics such as mean-, variance-, and
histogram-based computations, in conjunction with the

second-order statistics based on the co-occurrence matrix
[30]. Popular statistical methods include histogram properties,
co-occurrence matrix, mathematical morphology, and local
binary pattern (LBP). Commonly used histogram statistics
include range, mean, geometric mean, harmonic mean, stan-
dard deviation, variance, and median, as well as histogram
comparison statistics such as L1 norm, L2 norm,
Bhattacharyya distance, and Matusita distance [11].
Histogram properties have been successfully used in real-
world applications as they are convenient to implement and
invariant to rotation and translation [31]. The spatial gray level
co-occurrence matrix (GLCM) introduced by Haralick [32] is
widely used for texture defect detection. It describes the spa-
tial distribution of texture by calculating the gray correlation
between two pixels. Commonly used GLCM features include
contrast, correlation, energy, entropy, and uniformity.
Mathematical morphology is based on lattice theory and to-
pology. It includes operations such as corrosion and expan-
sion, open and closed operations, skeleton extraction, limit
corrosion, hit-and-miss transformation, morphological gradi-
ent, top-hat transformation, particle analysis, and watershed
transformation [3]. Mathematical morphology is highly suit-
able for defect detection of random or natural textures [16].
LBP, introduced by Ojala [33], considers the neighborhood of
an image and compares the gray value of the pixel in the
center with those of the other pixels in the neighborhood
[34]. LBP is widely used in surface defect detection as they
are robust to grayscale level variance such as illumination
[35].

Several recent applications of statistical methods are avail-
able in [36–39]. Ashour et al. [36] presented a method based
on gray-level co-occurrence matrix and discrete shearlet trans-
form in 2018. Luo et al. [37] proposed a generalized complet-
ed local binary pattern framework with two variants for steel
surface defect classification, in 2018. Li et al. [38] presented a
fabric defect detection algorithm based on saliency histogram
features, in 2019. Luo et al. [39] investigated the LBP method
and proposed a selectively dominant LBP to quantitatively
exploit the functional information from non-uniform patterns,
in 2019.

4.2 Spectral methods

Spectral methods are also called filter-based methods. These
transform signals from the spatial domain to the frequency
domain by mathematical transformation, for feature extrac-
tion. Examples are Fourier transform, Gabor filter, and wave-
let transform. There are a number of applications of these
filter-based methods. Fourier transform is an important
frequency-based analysis method for defect detection. It pro-
vides global information through an analysis of the frequency
of signal over an entire time period. However, it cannot ana-
lyze local details of an image [35]. A Gabor filter is a type of
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short-term Fourier transform and applies a function of the
Gaussian distribution. It is used extensively in texture defect
detection because it can be customized with different scale
and angle values based on different texture structures [16].
Wavelet transform is based on multi-resolution signal decom-
position theory. It offers localized information from the hori-
zontal, vertical, and diagonal directions on an input image
[15]. Li and Tsai [40] presented a wavelet-based defect detec-
tion in solar wafer images with inhomogeneous texture, in
2012. Malek et al. [41] optimized the automated online fabric
inspection by fast Fourier transform and cross-correlation, in
2013. Bissi et al. [42] adopted a Gabor filter for automated
defect detection of uniform and structured fabrics, in 2013. Hu
et al. [43] presented automated defect detection in textured
materials using wavelet-domain hidden Markov models, in
2014. Wen et al. [44] developed a new fabric defect detection
method based on adaptive wavelet by designing appropriate
wavelet bases for different fabric images, in 2014. Hu et al.
[45] presented an unsupervised defect detection method in
textiles based on Fourier analysis and wavelet shrinkage, in
2015. Bi et al. [46] presented a defect detection method for

LCD using Gabor filters, in 2015. Hu [47] presented an ap-
proach that addressed defect detection in textured surface by
using an optimized elliptical Gabor filter, in 2015. Tong et al.
[48] established a defect detection model using an optimized
Gabor filter to address the woven fabric inspection problem in
the textile industry, in 2016. Chol et al. [49] presented an
algorithm for detecting pinholes in steel slabs by using a
Gabor filter combination and morphological features, in
2017. Ma et al. [50] presented a surface defect detection meth-
od based on improved Gabor filters for scratch identification
in industrial pipeline, in 2018.

4.3 Model-based methods

Model-based methods construct representations of images by
modeling multiple properties of defects [51]. The popular
model-based methods are the Markov random field (MRF)
[52] and auto-regressive model [53]. In MRF, two random
fields named the labeling field and feature field are used to
describe the image, and a distribution function is used to de-
scribe the distribution of feature vectors under the condition of

Table 2 Traditional defect
inspection methods and their
applications

Methods Characteristics Applications

Statistical
methods

Histogram statistics include range, mean, geometric mean, and harmonic
mean. Histogram methods are widely used owing to their computational
simplicity and invariance to rotation, etc.

[38]

GLCM calculates the gray correlation between two pixels. GLCM is widely
used in texture defect detection with high detection accuracy

[36]

LBP considers the neighborhood of an image. LBP is widely used in surface
defect detection owing to their robustness to grayscale level variance
such as illumination

[37, 39]

Mathematical morphology is based on lattice theory and topology. It is
suitable for random or natural textures

/

Spectral
methods

Fourier transform is an important frequency-based analysis method for de-
fect detection. It provides global information through an analysis of the
frequency of signal over an entire time period. However, it cannot ana-
lyze local details of an image

[41, 45]

AGabor filter is a type of short-term Fourier transform. It can be customized
with different scale and angle values based on different image texture
structures. It is used extensively in texture defect detection.

[42, 46–50]

Wavelet transform is based on the multi-resolution signal decomposition
theory. It offers localized information from the horizontal, vertical, and
diagonal directions on an input image

[40, 43, 44]

Model-based
methods

Markov random field (MRF) used two random fields named the labeling
field and feature field to describe an image

[55]

An auto-regressivemodel describes the linear dependence between different
pixels of an image by using linear equation systems. These incur low
computational effort and cost

[56]

Learning-based
methods

Support vector machine (SVM) is one of the most widely used machine
learning and pattern recognition algorithms for traditional surface defect
detection

[60–66]

Artificial neural network (ANN) is also a frequently used machine learning
and pattern recognition algorithm

[67–72]

Other learning-based algorithms include random forest, clustering methods,
and generic algorithms

[73–77]

Combination
methods

Combining different categories of the aforementioned methods is effective
for achieving optimal performance

[78–80]
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the labeling field [3]. The application of MRFs for surface
inspection can be traced to the 1990s [54]. Recently, Xu and
Huang [55] developed a Gaussian Markov random field mod-
el for automatic pattern extraction and defect detection in
nanomaterials, in 2012. An auto-regressive model describes
the linear dependence between different pixels of an image by
using linear equation systems, which incur less computational
effort and cost than nonlinear systems [16]. Recently,
Kulkarni et al. [56] presented an automatic surface defect de-
tection algorithm using a two-dimensional auto-regressive
model for fringe-projected-surface images, in 2019.

4.4 Learning-based methods

Learning-basedmethods are developed with machine learning
and pattern recognition algorithms [9]. The highly popular
pattern recognition algorithms such as support vector machine
(SVM) [57], artificial neural network (ANN), k-nearest neigh-
bor (k-NN) [58], random forest [59], generic algorithms, and
clustering methods are applied frequently for defect classifi-
cation. Among these, SVM is one of the most widely used
classifiers for traditional surface defect detection.

4.4.1 SVM for surface inspection

Jia et al. [60] presented a real-time visual inspection system
that used SVM to automatically learn complicated defect pat-
terns for steel surface inspection, in 2004. Gao et al. [61]
presented an algorithm for fabric defect detection based on
dimensional histogram statistic and SVM, in 2006. Kang
et al. [62] proposed an automated defect classification algo-
rithm based on machine learning and the SVM classifier for
TFT-LCD panel inspection, in 2009. Baly and Hajj [63] ap-
plied SVM for wafer classification and illustrated the selection
of the values of SVM parameters, in 2012. Huang and Lu [64]
proposed an automatic defect classification algorithm for
TFT-LCD by using a linear SVM based on features including
shape, histogram, and color, in 2013. Xie et al. [65] presented
a defect detection and classification approach for PCBs and
wafers, using SVMwith a combination of median filter, back-
ground removal, morphological operation, and segmentation,
in 2013. Zhang et al. [66] introduced an automated defect
detection method for PCB, in 2018. In this method, detection
was achieved by obtaining the defect region based on template
matching, extracting the histogram and geometric features of
the defect region, and using SVM classifier for recognition
and classification.

4.4.2 ANN for surface inspection

Kumar et al. [67] proposed an approach for segmenting local
textile defects using a feed-forward neural network, in 2003.
Herein, principal component analysis (PCA) for dimension

reduction of feature vectors was applied. Kang and Liu [68]
introduced a method for detecting local defects in cold rolled
strips, in 2005. PCA using singular value decomposition was
also employed to reduce the dimension of the extracted feature
vector. The feed-forward neural network was then adopted to
detect the defects in the steel strips. Yang et al. [69] recom-
mended a hybrid defect recognition method for steel surface
inspection, in 2007. They used neural networks for identifica-
tion and morphology processing for noise filtering. Ashour
et al. [70] proposed a supervised texture classification method
based on the feed forward ANN and the multi-class SVM, in
2008. Chen et al. [71] adopted four neural networks, namely,
backpropagation, radial basis function, and two learning vec-
tor quantization networks, for TFT-LCD defect identification,
in 2009. Tseng et al. [72] proposed an automatic defect clas-
sification scheme for color-filter production through three
stages, namely, defect extraction, feature description, and
defect-type classification using a neural network decision tree
classifier, in 2011.

4.4.3 Other learning-based algorithms

Other learning-based algorithms include random forest, clus-
tering methods, and generic algorithms. Several application
examples are presented here. Kwon and Kang [73] proposed
a defect detection algorithm based on random forest to deter-
mine the irregularity of the variety surface, in 2011. Tseng
et al. [74] proposed an automatic detection method for
multicrystalline solar cells, using binary clustering of features,
in 2015. Hu et al. recommended a hybrid chromosome genetic
algorithm for surface defect classification of a large-scale strip
steel image collection, in 2016 [75]. Tian and Xu [76] devel-
oped an algorithm for identifying surface defects in hot rolled
steel plates, based on a genetic algorithm and an extreme
learningmachine, in 2017. Piao et al. [77] proposed a decision
tree ensemble learning-based method for wafer map failure
pattern recognition, in 2018.

4.5 Combination methods

In different literature, defect detection methods are divided
into different categories. It generally includes statistical, spec-
tral, and model-based methods and occasionally also includes
learning-based methods, structural methods, or other methods
not described in this paper. The literature survey in our work
reveals that regardless of how these methods are classified, the
combinations of these methods can achieve optimal
performance.

Several representative applications of combinations of
methods are presented. Celik et al. [78] developed a system
for fabric inspection through feature extraction based on
wavelet transform, double thresholding binarization, and mor-
phological operations and for defect classification using the
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gray level co-occurrence matrix and a feed forward neural
network. Wang et al. [79] proposed an online diagnosis sys-
tem based on clustering techniques to identify spatial defect
patterns for semiconductor manufacturing. Specifically, a spa-
tial filter was used to assess whether the input data contained
systematic cluster and to extract it from the noisy input. Then,
an integrated clustering scheme combining fuzzy C means
was adopted to separate the defect patterns. Furthermore, a
decision tree was applied for decision-making. Nguyen et al.
[80] proposed an automatic defect detection system for organ-
ic light-emitting diode (OLED) panels by combining three
learning-based algorithms: SVM, random forest, and k-NN.
Possible features were designed, and feature selection using
PCA and random forest was adopted. Then, a hierarchical
structure of classifiers (SVM, random forest, k-NN) was ap-
plied for defect identification.

5 Deep learning-based AVI algorithms

5.1 Deep learning networks and defects database

5.1.1 Deep learning networks

In its initial year (2006) [81], deep learning’s application was
focused on the MNIST digit image classification problem,
thereby breaking the supremacy of SVMs [82]. Then, the
breakthrough was achieved on the ImageNet [83] dataset
and in ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). Recently, Feng et al. [84] discussed how the deep
neural network algorithms accomplish the computer vision
tasks such as image classification, object detection, and image
segmentation. The survey covered image classification net-
works including AlexNet, VGGNet, GoogLeNet, ResNet,
and DenseNet and object detection algorithms including
Faster-RCNN, YOLO, and SSD.

As a deep convolutional neural network, AlexNet [85] con-
sists of five convolutional layers, three max-pooling layers,
and three fully connected layers, having 60million parameters
and 650,000 neurons. AlexNet is known as the foundation
work of modern deep CNN [84]. VGGNet [86] is a signifi-
cantly deeper CNN network achieved by stacking
convolutional layers and using an architecture with very small
(3 × 3) convolution filters. It is capable of pushing the depth to
16–19 weight layers. In VGGNet, a stack of convolutional
layers is followed by three fully connected layers and a final
soft-max layer. GoogLeNet [87] modifies the convolution
layers by using the Inception module to extend the depth
and width of the networks. It has 22 layers. In the Inception
module, 1 × 1 convolutions are used before 3 × 3 and 5 × 5
convolutions to reduce the computation cost. Google
Inception-v3 [88] saves computation cost further by
factorizing convolutions into smaller convolutions or

asymmetric convolutions. For example, the 5 × 5 convolution
is decomposed into two 3 × 3 convolution operations, and the
convolution of kernel size n × n is decomposed into two con-
volutions of sizes 1 × n and n × 1. Although increasing the
depth of networks aids in obtaining higher accuracy, as the
number of network layers increase to a certain extent, the
training accuracy saturates and then declines rapidly. ResNet
[89] proposes residual building blocks to address this degra-
dation problem. This involves the addition of parameter-free
identity shortcut connections to feed-forward neural networks.
The residual building blocks with short connections fully uti-
lize features from previous layers to alleviate the degradation
problem. Therefore, the network performance can be im-
proved by stacking more residual blocks. This enables
ResNet to have up to 152 layers. To further strengthen feature
reuse and propagation, DenseNet [90] connects each layer to
every other layer in a feed-forward fashion. A DenseNet net-
work with L layers has L × (L + 1) / 2 direct connections.
Owing to this dense connection structure, DenseNets can scale
up to hundreds of layers without optimization challenges.

Apart from the aforementioned deeper and larger CNNs, a
set of lightweight CNNs has been developed to reduce com-
putation complexity while maintaining high accuracy. They
are suitable for mobile or real-time applications that have lim-
ited computation resources or high computation speed re-
quirements, such as the online AVI applications discussed in
this paper.

The classical lightweight neural networks include
SqueezeNet, MobileNet, and ShuffleNet. SqueezeNet [91] is
a deep CNN network using the fire module, which comprises
a squeeze layer and an expand layer. The squeeze layer is used
to decrease the number of input channels to the expand layer
and thereby reduce the quantity of parameters. Furthermore,
the majority of the 3 × 3 filters are replaced by 1 × 1 filters to
reduce the number of parameters. Although SqueezeNet has a
minimal number of parameters, it achieves an accuracy level
similar to that of AlexNet, on ImageNet with 50× fewer pa-
rameters. MobileNet [92] is also a lightweight neural network
adapted for mobile and embedded vision applications with
high accuracy. It utilizes depthwise separable convolution
[93] and factorizes a standard convolution into a depthwise
convolution and pointwise convolution to reduce computation
and model size substantially. The depthwise convolution ap-
plies a filter to each input channel. Then, the pointwise con-
volution applies 1 × 1 convolution to combine the outputs of
depthwise convolution. The cost of 3*3 depthwise separable
convolution is 3*3*M*D*D +M*N*D*D, and the cost of 3*3
standard convolution is 3*3*M*N*D*D, whereM is the num-
ber of input channels, N is the number of output channels, and
D*D is the size of output feature map. Therefore, compared
with the standard convolution, the 3*3 depthwise separable
convolution can save 8 to 9 times the amount of calculation at
only a small reduction in accuracy [92]. MobileNet-v2 [94]
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introduces a novel inverted residual layer to decrease the num-
ber of operations further. ShuffleNet [95] is also a computa-
tionally efficient CNN model designed for mobile devices. It
has two novel operations: pointwise group convolution and
channel shuffle. Pointwise group convolution is used to re-
duce computation complexity, whereas channel shuffle is
used to aid the information flow across feature maps.
ShuffleNet-V2 [96] introduces an operation called channel
split to further improve the performance of its first version.

An object detection task is occasionally a part of a defect
detection process. It is aimed at identifying the location of the
object of interest. The most popular deep learning-based object
detection algorithms are Faster-RCNN, YOLO, and SSD.
Faster-RCNN [97] introduces a region proposal network
(RPN), which is a fully convolutional network for proposal
generation. It integrates RPN and Fast-RCNN [98] to share
convolutional features and achieve high object detection accu-
racy. However, the Faster R-CNN still has a low detection
speed, because it is a two-stage method that detects objects
through region proposal and region classification. YOLO [99]
and SSD [100] are one-stage object detection methods that
detect objects using regression. In YOLO, a neural network
predicts bounding boxes and class probabilities directly from
full images in an evaluation. Although YOLO can achieve real-
time speed, it is less accurate than the two-stage Faster-RCNN.
The single shot multibox detector (SSD) outperforms YOLO in
accuracy owing to two major improvements. First, SSD ex-
tracts important features from multi-scale CNN feature maps.
Second, it adopts a number of default bounding boxes by fol-
lowing the concept of anchor proposed by Faster R-CNN [84].

Another set of deep learning algorithm suitable for surface
defect inspection is unsupervised or semi-supervised learning
methods. The representative methods are auto-encoder and
generative adversarial network (GAN). Auto-encoder is a typ-
ical unsupervised learning algorithm based on two neural net-
works called encoder and decoder. It was introduced by
Rumelhart et al. [101] in 1986 and extended to deep auto-
encoder by Hinton et al. [102] in 2006. To achieve a higher
robustness than that of the deep auto-encoder, the denoising
auto-encoder [103] (introduced in 2008) adopts an approach
that combines corruption and denoising to make the learned
representations robust to partial corruption of the input pattern.
The denoising auto-encoder is one of the common options for
surface defect detection when considering unsupervised deep
learning algorithms. GAN is an unsupervised learning frame-
work introduced by Goodfellow et al. [104] in 2014 and has
since developed [105]. It contains a generative model G and
discriminative model D. G captures the data distribution with
the aim ofmaximizing the probability of D committing an error.
D estimates the probability that a sample originated from the
training data rather than the generative model. The framework
corresponds to a minimax two-player game. In addition, GAN
can be extended for semi-supervised learning [106], which

combines supervised learning and unsupervised learning in a
framework. The above-mentioned deep learning networks suit-
able for defect dection are illustrated in Table 3.

5.1.2 Defects database

We have conducted a survey on publicity available datasets
containing surface image samples of steel, textile, and semi-
conductor products. The information on a few datasets is pre-
sented in Table 4. This database information is provided with
the aim of facilitating researchers from the AVI community or
deep learning community in initiating further innovation and
applications of deep learning in solving traditional AVI
problems.

The DAGM texture database [107] was provided by the
open competition “Weakly supervised learning for industrial
optical inspection” organized by DAGM (German chapter of
the International Association for Pattern Recognition) and the
GNSS (German Chapter of the European Neural Network
Society). The DAGMdataset consists of six types of artificial-
ly generated texture images. Each type has 1000 non-defective
images and 150 defective images with a labeled defect on the
background texture.

WM-811K [108] is a large publicly accessible dataset of
wafer maps, containing 811,457 real-world wafer maps.
Among these, 696,599 images are unique wafer maps.
Approximately 20% of the wafer maps are labeled from one
of the nine types (54,356 in the training set and 118,595 in the
test set), which include eight defective types (Center, Donut,
Edge-local, Edge-ring, Local, Near-full, Random, and
Scratch) and a normal type.

The Northeastern University (NEU) surface defect data-
base [109] contains six types of typical surface defects ob-
served on hot-rolled steel strips: rolled-in scale (RS), patches
(Pa), crazing (Cr), pitted surface (PS), inclusion (In), and
scratches (Sc). The database contains 1800 grayscale images,
each having 300 samples.

The DeepPCB dataset [110] contains 1500 image pairs of
PCBs. Each of these consists of a defect-free template image
and an aligned tested image with annotations including posi-
tions. Six common types of PCB defects are provided: open,
short, mousebite, spur, pin hole, and spurious copper.

The magnetic tile defect dataset [111] contains 2688 defect
images of six common magnetic tile defects, with their pixel
level ground-truth labeled. The solar cell dataset [112] con-
tains 2624 samples of 300 × 300 pixel 8-bit grayscale images
of functional and defective solar cells with varying degrees of
degradations, extracted from 44 solar modules.

RSDDs [113] contain images of two types of rail surface
defects. One type comprises images of express rails (67 im-
ages), whereas the other type comprises images of common/
heavy haul rails (128 images). Every image contains at least one
defect and has a complex background with substantial noise.
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TILDA [114] is a benchmark database for textile defect
detection. It contains 3200 images of eight representative tex-
tile types. Each textile is classified into seven defective types
and a defect-free type, and each type consists of 50 images
(768 × 512 pixel, 8-bit, gray level image).

In addition to the above-mentioned defect datasets, a few
datasets are available that contain fabric or texture images
without defects. For example, Fabrics Dataset [116] consists
of approximately 2000 images of garment and fabric samples.
The Kylberg texture dataset [115] contains 28 texture classes
with 160 unique texture patches per class. The texture patch
size is 576 × 576 pixels, and all the patches are normalized.
The KTH-TIPS database [117] presently contains images of
ten types of texture materials: sandpaper, crumpled aluminum
foil, Styrofoam, sponge, corduroy, linen, cotton, brown bread,

orange peel, and cracker B. Although there are no defect im-
ages in these datasets, they can be used for image classifica-
tion or defect detection by synthesizing defects on them.

5.2 Research status of deep learning-based AVI algo-
rithms and applications

The advent of the aforementioned deep learning techniques
has inspired a number of novel deep learning-based defect
detection algorithms. They integrate the two phases of the
traditional detection methods, i.e., feature extraction and de-
fect identification, into one phase. They extract features and
classify defects simultaneously by learning from the training
samples. They are not required to design a set of human fea-
tures such as statistical or spectral features, as in traditional

Table 3 Deep learning networks suitable for defect detection

Category Reference

Classical deep CNNs AlexNet [85] As the foundation work of modern deep CNN, AlexNet consists of five convolutional layers, three
max-pooling layers, and three fully connected layers

VGGNet [86] VGGNet uses 3×3 convolution filters and has a network depth of 16 to 19 weight layers. In
VGGNet, a stack of convolutional layers is followed by three fully connected layers and a final
soft-max layer

GoogLeNet [87] GoogLeNet has 22 layers and introduces the inception module. In the Inception module, 1×1
convolutions are used before 3×3 and 5×5 convolutions to reduce the computation cost

Google Inception-v3 [88] Inception-v3 factorizes convolutions into smaller convolutions or asymmetric convolutions to save
computation cost. For example, the 5×5 convolution is decomposed into two 3×3 convolution
operations, and the convolution of kernel size n×n is decomposed into two convolutions of sizes 1
×n and n×1

ResNet [89] ResNet [89] proposes residual building blocks to address degradation problem. The network
performance can be improved by stacking more residual blocks. This enables ResNet to have up
to 152 layers

DenseNet [90] DenseNet connects each layer to every other layer in a feed-forward fashion. Owing to this dense
connection structure, DenseNets can scale up to hundreds of layers without optimization chal-
lenges.

Lightweight CNNs SqueezeNet [91] SqueezeNet is a lightweight CNN network by using the fire module to decrease the quantity of
parameters. Furthermore, the majority of the 3×3 filters are replaced by 1×1 filters to reduce the
number of parameters

MobileNet [92, 94] MobileNet is also a lightweight neural network adapted for mobile and embedded vision
applications with high accuracy. It utilizes depthwise separable convolution

ShuffleNet [95, 96] ShuffleNet is also a computationally efficient CNN model designed for mobile devices. It has two
novel operations: pointwise group convolution to reduce computation complexity and channel
shuffle to aid the information flow across feature maps

Object detection
algorithms

Faster-RCNN [97, 98] Faster-RCNN introduces a region proposal network for proposal generation. It is a two-stage method
that detects objects through region proposal and region classification

YOLO [99] YOLO is a one-stage object detection method that detects objects using regression. Although YOLO
can achieve real-time speed, it is less accurate than the two-stage Faster-RCNN

SSD [100] SSD is also a one-stage object detection method. SSD outperforms YOLO in accuracy owing to two
major improvements

Unsupervised
learning algorithms

Auto-encoder [101–103] Auto-encoder is a typical unsupervised learning algorithm based on two neural networks called
encoder and decoder. One of its improved versions is the denoising auto-encoder, which is
commonly used in defect detection when considering unsupervised deep learning algorithms

GAN [104–106] GAN is an unsupervised learning framework, which contains a generative model and a
discriminativemodel. GAN’s framework corresponds to a minimax two-player game. In addition,
GAN can also be extended for semi-supervised learning
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methods. Without using an expert-designed feature set, deep
learning-based detection algorithms can automatically gener-
ate distinct features from the training set and enable users to
circumvent manual identification of rules for feature extrac-
tion or classification. Furthermore, they are generally capable
of achieving higher detection accuracy [118].

A literature survey indicates that most of deep learning-
based surface defect detection approaches employ deep
CNN-based supervised learning for defect recognition. CNN
is the most popular and used group of deep learning algo-
rithms because of their wide application potential in pattern
recognition [119]. It is a deep neural network architecture
specialized in image processing and pattern recognition and
whose hierarchical structure enables the extraction of multi-
level image features to achieve accurate pattern identification
[120]. CNN consists of three types of layers: convolutional
layer, pooling layer, and fully connected layer. The
convolutional layer learns feature representation of the input
and outputs a feature map. The pooling layer is used for di-
mensionality reduction of the feature map. The fully connect-
ed layer performs the mapping of input data to a feature vector
for final classification. As CNN exhibits a unique feature-
learning capability, wherein it learns features from image sam-
ples automatically and exhibits strong reliability, it is general-
ly the preferred option for surface quality inspection using
deep learning.

The deep CNN-based approaches and applications of sur-
face defect detection in the semiconductor industry are de-
scribed in Table 5. The deep CNN-based approaches and ap-
plications for surface defect inspection of fabrics are

illustrated in Table 6. The deep CNN-based approaches and
applications for surface inspection of steel and other products
are presented in Table 7. Semi-supervised learning methods
and unsupervised learning methods are demonstrated in
Table 8. These employ auto-encoder-based methods, Faster-
RCNN, YOLO, SSD, and GAN for unsupervised or semi-
supervised learning of surface defects.

5.2.1 CNN-based supervised learning methods
for semiconductors

Yang et al. [121] presented an online detection method for
Mura defects by combining a deep convolutional feature ex-
tractor and a sequential extreme learning machine classifier. It
is capable of learning and recognizing a Mura defect image
within 1.5 ms. Kim et al. [122] proposed a CNN network for
surface mount technology (SMT) defect detection by modify-
ing AlexNet and adopting the ResNet structure. Additional
input image transformation was conducted by histogram
stretching and chip region extraction to improve the detection
accuracy. Kim et al. [123] proposed a CNN-based defect im-
age classification model based on residual network for
through-silicon via (TSV) process. They achieved classifica-
tion performance of up to 97.2% accuracy. Jang et al. [124]
proposed a defect inspection method by using deep CNN and
defect probability images obtained from traditional inspection
techniques. It outperforms a conventional CNN model using
RGB or grayscale image. Zhang et al. [125] proposed a multi-
task CNN model to handle the multi-label PCB classification
problem by defining each label learning as a binary

Table 4 Publicly available surface image datasets

Dataset Data type Description Download

DAGM texture dataset [107] Texture images Six types, each has 1000 non-defective images and 150
defective images

Link

WM-811 K [108] Wafer maps 172,951 labeled images of wafer map (54,356 in training
set and 118,595 in test set) with eight failure patterns and
a normal pattern

Link

NEU surface database [109] Defects images of hot-rolled steel strip 1800 grayscale images: six types, each has 300 samples Link

DeepPCB [110] PCB images 1500 image pairs, each consists of a defect-free template
image and an image with six common defects

Link

Magnetic tile defect dataset [111] Magnetic tile defect images 2688 images: six types of common magnetic tile defects Link

Solar cell dataset [112] Solar cell images 2624 grayscale images of functional and defective solar
cells

Link

RSDDs dataset [113] Rail surface defect images Two types of rail surface images (67 images and 128
images)

Link

TILDA [114] Textile images 3200 images of eight representative textile types. Each
textile is classified into seven defective types and a
defect-free type, and each type consists of 50 images

Link

Kylberg texture dataset [115] Texture images 28 texture classes with 160 unique texture patches per class Link

The Fabric dataset [116] Fabric images 2000 samples of garments and fabrics Link

KTH-TIPS database [117] Texture images Ten types of texture materials including sandpaper and
crumpled aluminum foil

Link
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classification task. They achieved good performance on the
PCB defect dataset. Deng et al. [126] proposed an automatic
defect verification system by fast circuit comparison and deep

CNN-based defect classification to decrease the false alarm
rate of AVI for the PCB industry. Ghosh et al. [127] proposed
a transfer learning-based method to classify PCB defects

Table 5 Deep CNN-based supervised learning approaches for surface inspection in semiconductor industry

Reference Year Deep learning methods Dataseta Accuracyb Object detected

[121] 2017 CNN (AlexNet) and sequential ex-
treme learning machine

14,491 images
(TN: 11,500; TS: the rest)

94% Flat panel
displays

[122] 2018 CNN (AlexNet and ResNet) and image
transform

Not supplied 91.1% SMT

[123] 2018 CNN (ResNet) TN: 37,400; TS: 9444 and 220,281,
respectively

97.2% Through-silicon
via (TSV)

[124] 2018 CNN using defect probability image 1500 defect and 1796 good images
(TN 50%; TS 50%)

98.813% Chip-size
package (CSP)

[125] 2018 CNN 1350 images
(TN: 1200; TS: 150)

Multi-categories: 89.89%; two
categories: 92.86%

PCB

[126] 2018 CNN 4526 images of normal and defect
images

99.7% PCB

[127] 2018 CNN (Inception v3) 7543 images
(TN 6167; VS 576; TS 800)

91.125% PCB

[128] 2018 CNN 1818 images for six types of PCB
defects

(TN 1069; VS 323; TS 426)

95.7% PCB

[129] 2018 CNN 28,600 images
(TN 15,400; VS 6600; TS 6600)

98.2% Wafer

[130] 2019 CNN and extreme gradient boosting 11,730 images
(TN 9384; TS 2346)

99.2% Wafer

[131] 2019 CNN (VGG) WM-811K
(TN 54,355 and TS 118,595)

94.7% for multiple failure
pattern

Wafer map

[132] 2019 CNN and k-NN 2123 images of five defect classes
(TN70%; VS 15%; TS 15%)

96.2% Wafer

[133] 2018 CNNs (LeNet, CifarCNN, and
GoogleNet)

658 images
(TN: 600; VS: 48; TS: 10)

98% Photovoltaic cell

[112] 2019 SVM and CNN(VGG-19) 2624 images
(TN 1968; TS 656)

88.42% Photovoltaic cell

[134] 2019 CNN combined with class activation
mapping technique

LEDC-GD-C1: TN 24,000; TS 6000
LEDC-GD-C2: TN 10,400; TS 2600

LEDC-GD-C1: 94.96%;
LEDC-GD-C2: 94.49%

LED chip

a Number of image samples for the experiments. TN training set, TS testing set, VS validation set
b The best or average accuracy achieved

Table 6 Deep CNN-based supervised learning approaches for fabric inspection

Reference Year Deep learning methods Dataseta Accuracyb Object detected

[135] 2016 CNN 12 datasets, each has 2000 images of six types of surfaces 98% Fabric, stone, wafer, wood, and
solid/pearl color paint

[136] 2016 CNN DAGM dataset (6 classes, each class consists of 1000
defect-free images and 150 defective images)

99.2% Texture surfaces

[137] 2018 CNN DAGM dataset (6 classes, each class consists of 1000
defect-free images and 150 defective images)

99.8% Texture surfaces

[138] 2018 CCN with a multi-scaling
averaging scheme

TILDA public dataset (1500 defective images containing
six defects; 350 defect-free images)

96.55% Fabric

[8] 2019 CNN 1200 images (50% defect; 50% defect free) 96.52% Fabric

[118] 2019 CNN and multilayer
perceptron

27,200 images (four subsets, each subset: TN 5400 TS
1400)

97.82% Fabric

a Number of image samples for the experiments. TN for training set, TS for testing set, VS for validation set
b The best or average accuracy achieved
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without reference images or the need to locate the defects in
the images. An adaptation network was trained by extracting
mid-level representations of PCB images from an intermediate
layer of a pre-trained Inception-v3 network. Wei et al. [128]

studied the method of extracting defect areas using morphol-
ogy and deep CNN for PCB defect classification. They
achieved significantly better results than a traditional classifi-
cation algorithm based on digital image processing, on a

Table 7 Deep CNN-based supervised learning approaches for inspecting steel and other products

Reference Year Deep learning methods Dataseta Accuracyb Object detected

[139] 2018 Preprocessing and CNN (AlexNet,
GoogleNet, ResNet)

NEU public dataset (six types of
defects and 300 samples for each
class)

99.95% Steel

[140] 2018 CNN (integrating ResNet-32 and
WRN-28-10 and WRN-28-20)

NEU public dataset (six types of
defects and 300 samples for each
class)

99.889% Steel

[141] 2019 CNN (Google Inception dual
network)

4000 images of steel strips images 99.47% Steel

[142] 2019 CNN (VGG, Inception, ResNet,
DenseNet)

4806 images of steel strips (TN+VS:
3938; TS:868)

About 90% Steel

[143] 2018 CNN The training set consists of 3000
image samples expanded based on
230 defect-free screws, 287 stripped
screws, 205 surface-damaged
screws, and 256 surface dirty
screws

98.4% Metal screw

[144] 2018 CNN (Alexnet) and SVM 6283 images (TN 70%; TS 30%) 98.248% Industrial products

[145] 2014 CNN 2532 images 99.44% Rail

[51] 2018 CNN, thresholding, and
segmenting

Three public dataset and an industrial
dataset

99.27%, 90.50%, and 94.29%
on the three public datasets

Weld, wood, steel,
titanium fan
blades

a Number of image samples for the experiments. TN for training set, TS for testing set, VS for validation set
b The best or average accuracy achieved

Table 8 Semi-supervised learning and unsupervised learning-based approaches for surface defect detection

Reference Year Deep learning methods Dataseta Accuracyb Object detected

[29] 2017 Denoising auto-encoder 2600 samples of jacquard pattern
fabric (TN 2000; TS 600)

98~99.47% Fabric

[146] 2018 Convolutional denoising
auto-encoder network

Four texture datasets 83.8%, 85.2%, 80.3%, and 84.0% on
the four datasets

Fabric

[147] 2018 Auto-encoder network and data
augmentation

Scratch images from NEU dataset,
solder defect images, and
industrial defect images for
evaluation

True positive rate and false positive
rate are given rather than accuracy

Surface defects

[148] 2018 CNN (VGG and ResNet), RPN, and
Faster-RCNN

2132 images
(TN 1549; VS 297; TS 286)

95.48% Fabric

[149] 2018 YOLO 6 classes of 4655 steel strip surface
images (TN 3455; TS 1200)

97.55% Steel

[150] 2018 SSD and CNN(MobileNet) Data augmentation based on 400
images obtained from the
real-world

96.73% Sealing surface

[151] 2019 SSD and speed model 3000 images
(TN: 2140; TS: 860)

98.00%, 99.00%, 97.80%, and
79.40% for the four defect types

Darning needle

[152] 2019 Convolutional auto-encoder and
semi-supervised GAN

(1) Hot rolled plates: TN 5000, TS
1400; (2) hot rolled steel strips:
TN 9000, TS 1800; (3) cold rolled
strips: TN 4000, TS 1800

97.2% for hot rolled plates, 98.2%
for hot rolled steel strips, and
96.7% for cold rolled strips

Steel

[153] 2020 CNN with Pseudo-label NEU dataset (TN 1500, TS 300) 90.7% Steel

a Number of image samples for the experiments. TN for training set, TS for testing set, VS for validation set
b The best or average accuracy achieved
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dataset containing 1818 images. Nakazawa et al. [129] pre-
sented a CNN-based wafer map defect pattern classification
method for synthetic wafer maps, containing 22 defect classes
generated theoretically. They achieved an overall classifica-
tion accuracy of 98.2%. Yuan-Fu [130] employed CNN and
extreme gradient boosting for wafer map retrieval tasks and
defect pattern classification. They observed CNN to be more
applicable for wafer map image classification because it is
capable of learning relevant features from the input image.
Ishida et al. [131] proposed a deep CNN network based on
VGG to recognize wafer map failure patterns. A data augmen-
tation technique with noise reduction was used for data pro-
cessing. Experimental results on a benchmark dataset demon-
strated the high accuracy of the method. Cheon et al. [132]
proposed a wafer surface defect detection method by combin-
ing CNN and k-NN. It can extract effective features for defect
classification without additional feature extraction algorithms
and achieve high defect classification performance in wafer
surface defect. Banda et al. [133] used deep learning for iden-
tifying defective photovoltaic cells automatically, based on
CNNs including LeNet, CifarCNN, and GoogleNet architec-
ture. The method successfully distinguished between a defec-
tive and a normal photovoltaic cell. Deitsch [112] investigated
two approaches for automatic defect detection in solar photo-
voltaic cells: an approach based on hand-crafted features that
are classified in an SVM and an end-to-end deep CNN ap-
proach. Experiments revealed the CNN-based approach to be
more accurate than the SVM-based approach. Lin et al. [134]
proposed an application of CNN in LED chip defect inspec-
tion. In the CNN, a class activation mapping technique was
introduced to localize defect regions exactly. They achieved
an accuracy of 94.96% for LED chip defects inspection.

5.2.2 CNN-based supervised learning methods for fabric

Park et al. [135] proposed a new surface defect inspection
method for automatic visual inspection of dirties, scratches,
burrs, and wears on surface parts. CNNs with different depths
and layer nodes were tested to select an adequate structure for
defect inspection. Weimer et al. [136] proposed a CNN meth-
od for texture surface defect recognition. They utilized 70% of
1,299,200 samples obtained after data augmentation for train-
ing and achieved a classification accuracy of 99.2%. Wang
et al. [137] proposed a deep CNN for defect detection with
less prior knowledge on the images and robust to noise. They
achieved fast detection as well as high accuracy on a bench-
mark database. Jeyaraj et al. [138] proposed a multi-scaling
CNN algorithm for fabric defect detection. They achieved an
average accuracy of 96.55% on six different fabric materials.
This is higher than that of conventional fabric defect detection.
Gao et al. [8] investigated the problem of woven fabric defect
detection using a CNN with multi-convolution and max-
pooling layers. They obtained an overall detection accuracy

of 96.52%. Furthermore, the authors constructed a high-
quality database that includes images of common defects in
woven fabric with solid color. Li et al. [118] proposed a com-
pact CNN architecture with multilayer perceptron for detect-
ing a few common fabric defects. In addition, multi-scale
analysis, filter factorization, multiple locations pooling, and
parameter reduction were used to improve the detection
accuracy.

5.2.3 CNN-based supervised learning methods for steel

Saiz et al. [139] proposed an automatic defect classifier meth-
od for steel surfaces with two independent stages: preprocess-
ing and CNN. They achieved a classification rate of 99.95%,
outperforming other traditional detection methods on a pub-
licly available dataset. Chen et al. [140] proposed an ensemble
approach that integrates three deep CNNs for steel surface
defect recognition: ResNet-32 and wide residual networks
(WRNs) WRN-28-10 and WRN-28-20. Liu et al. [141] pro-
posed a new neural network by utilizing Google Inception
architecture and residual structure for steel defect detection.
They achieved an accuracy of over 99.47%. Vannocci et al.
[142] proposed an application of CNN in classifying steel strip
images and a comparison with classical machine learning ap-
proaches. Thereby, they established the effectiveness and gen-
eral validity of deep learning. Song et al. [143] developed a
deep CNN-based detection method for micro defects on metal
screw surfaces. A comparison with traditional template
matching-based techniques and LeNet-5 has demonstrated
the superiority of the proposed deep CNN-based method.
Chun and Zhao [144] combined CNN and SVM to inspect
industrial products more effectively. Here, CNN was used for
feature extraction and SVM for decision-making. Soukup
et al. [145] trained classical deep CNN on a database of pho-
tometric stereo images of rail surfaces in a purely supervised
manner. They achieved significantly higher performance than
that of a traditional model-based approach. Ren et al. [51]
presented a deep learning-based approach requiring small
training data for automated surface inspection on three public
and an industrial datasets. It was realized by extracting patch
feature using deep CNN, generating the defect heat map based
on patch features, and predicting the defect area by
thresholding and segmenting the heat map.

5.2.4 Semi-supervised learning and unsupervised learning
methods

Li et al. [29] proposed a Fisher criterion-based stacked denoising
auto-encoder with the objective of learning more discriminative
features for patterned fabric defect detection when limited defec-
tive samples are available. Mei et al. [146] proposed an unsuper-
vised learning-based automated approach by using a multi-scale
convolutional denoising auto-encoder network and Gaussian
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pyramid to detect and localize fabric defects. They achieved good
overall performance. Mujeeb et al. [147] proposed an unsuper-
vised learning algorithm to detect surface level defects by using a
deep auto-encoder network and training input reference images.
During training, various copies were generated automatically
through data augmentation. The unsupervised algorithm does
not rely on the availability of defect samples for training.
Siegmund et al. [148] presented a comprehensive defect detec-
tion method for two common fabric defects groups. The pro-
posedmethod employedVGG andResNet for feature extraction.
Then, a regional proposal network (RPN) and Faster-RCNN
were used to generate the region proposal and detect objects. Li
et al. [149] provided an end-to-end solution for the surface de-
fects detection in steel strips. They improved YOLO by making
it completely convolutional and capable of simultaneously
predicting the class, location, and size information of defect re-
gions. Li et al. [150] proposed a surface defect detection method
by adopting an SSD network combined with MobileNet to iden-
tify the types and locations of surface defects. The method can
automatically detect surface defects more accurately and rapidly
than traditional machine learning methods. Yang et al. [151]
proposed a real-time defect detection algorithm for tiny parts,
based on an SSD and the speed model. The values of accuracy
of detection of defect types 1, 2, 3, and 4 are 98.00%, 99.00%,
97.80%, and 79.40%, respectively. Di et al. [152] proposed a
semi-supervised learning method based on convolutional auto-
encoder and semi-supervised GAN to classify surface defects on
steel. It has yielded remarkable performances. Gao et al. [153]
proposed a semi-supervised deep learning method called
PLCNN for steel surface defect recognition. PLCNN is a
convolutional neural network improved by Pseudo-label that un-
labeled data can be used in the training process. Comparative
analysis with other conventional methods demonstrated that the
proposed method has a significant improvement with the help of
the unlabeled samples.

6 Discussions

6.1 Analysis of the deep learning-based defect
dection algorithms

There are three paradigms for deep-learning defect detection:
supervised learning, unsupervised learning, and semi-
supervised learning. Supervised learning is most widely used
and capable of achieving high detection accuracy and is reliable
for online industrial application given sufficient training data.
This is illustrated in Table 5, Table 6, and Table 7. We can
conclude from the three tables that supervised learning-based
defect detection methods generally utilize convolutional neural
networks by adopting one of three approaches: the transfer
learning approaches, the approach of constructing a CNN based
on classical network structures such as ResNet, and the

approach of constructing a CNN from scratch by stacking
convolutional layers, pooling layers, and fully connected layers.

The transfer learning approach is to utilize transfer-learning
technology to transfer a pre-trained model that has already
been trained in a large dataset, to the target detection problem
(which generally has a small training dataset). Transfer learn-
ing relaxes the hypothesis that the training data must be inde-
pendent and identically distributed with the test data [154].
This enables a deep learning model to utilize the knowledge
(including the model structure and pre-trained parameters) of a
trainedmodel from other fields. The common transfer learning
approach is to leverage a pre-trained network and alter the
final layers to fine tune the weight parameters on the target
dataset [155]. For example, Ghosh et al. [127] proposed a
transfer learning-based method to classify PCB defects by
utilizing a pre-trained Inception-v3 network.

The second approach is to utilize the classical network
structures such as AlexNet, VGGNet, Google Inception net-
works, and ResNet and perform a few modifications to make
them adaptive for solving the target detection problems. This
is the common way of utilizing CNN for defect detection. The
aforementioned papers including Yang et al. [121], Kim et al.
[122], Kim et al. [123], Ishida et al. [131], Banda et al. [133],
Saiz et al. [139], Chen et al. [140], Liu et al. [141], Vannocci
et al. [142], and Chun and Zhao [144] can be assigned into this
category.

The third approach is to propose a novel CNN structure
with different depth and width by stacking three types of
layers (convolutional layer, pooling layer, and fully connected
layer) in different ways. The convolutional layer learns the
feature representation of the input and outputs a feature map.
The pooling layer is used for dimensionality reduction of
the feature map. The fully connected layer performs the
mapping of input data to a feature vector for final classifi-
cation. The best depth or width of a proposed CNN net-
work can be obtained through comparison experiments and
testing. The aforementioned papers including Zhang et al.
[125], Deng et al. [126], Wei et al. [128], Nakazawa et al.
[129], Cheon et al. [132], Park et al. [135], Wang et al.
[137], Jeyaraj et al. [138], Gao et al. [8], Li et al. [118],
Song et al. [143], and Soukup et al. [145] can be assigned
to this category.

Another conclusion from Table 5–Table 7 is that a few of
these CNN-based supervised learning methods introduce and
combine other image processing technologies or pattern rec-
ognition methods. For example, Yang et al. [121] utilized
CNN as well as sequential extreme learning machine for
Mura defect detection. Cheon et al. [132] proposed a wafer
defect detection method by combining CNN and k-NN. Li
et al. [118] proposed a compact CNN architecture with mul-
tilayer perceptron for fabric defect detection. This is a feasible
and occasionally effective approach to combining different
methods to achieve the objective.
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Moreover, we plotted a graph to illustrate the number of
total images of the datasets used by the CNN-based methods
listed in Table 5, Table 6, and Table 7 and the accuracy of
these methods. There are 29 application examples listed in the
three tables. We omit four of them: [122], the one which has
not supplied image information; [123, 131], the two which
have maximum number of images; and [51], the one which
uses three datasets. The data number of the remaining 25
application examples are analyzed and illustrated in Fig. 2.
As shown in Fig. 2, most of these use approximately 5000
image samples for training and testing. They can achieve high
defect detection accuracy with an average accuracy of
96.82%. Therefore, for defect detection, CNN-based methods
generally use thousands of original image samples to obtain
high detection accuracy. Its demand for the number of training
data is not as high as anticipated. Furthermore, as shown in
Fig. 2, the trend of the accuracy curve does not match that of
the curve of the number of images, which indicates that a
higher amount of training images does not guarantee a higher
accuracy. This contradicts our usual belief that a higher
amount of training data can improve the performance of the
model and alleviate the overfitting problem. Overfitting prob-
lem is a highly common problem that occurs when a large
deep CNN model is applied to a small dataset. We may ex-
plain it this way. Obtaining sufficient training data is an im-
portant means to enable the training set generalize well to the
test set and avoid overfitting. Alternative means can be to use
regularization technology or to modify the neural network
architecture. In addition to improving the generalization capa-
bility, we also need tominimize the gap between training error
and human-level error by using larger neural networks,
adopting appropriate hyperparameters or trying better optimi-
zation algorithms during training. Once we have obtained
both good generalization capability and high training accura-
cy, the accuracy of a specific defect detection problem de-
pends on the difficulty of the detection problem itself. For
instance, if it is difficult for humans to recognize tiny defects
or distinguish defects with similar features, then the super-
vised learning-based methods will face the same dilemma.

That may explain why PCB and solar cell defects are not easy
to be recognized in the following methods: [125], its accuracy
is 89.89% for multi-categories; [127], its accuracy is
91.125%; and [112], its accuracy is 88.42%. The samples of
these defects are described in Fig. 3.

As shown in Fig. 3, it is not easy for humans to clearly
identify and classify these defects, let alone supervised learn-
ing methods. In this case, it is particularly important to set up a
suitable lighting system to achieve good contrast between the
foreground and background; thereby, AVI system can clearly
capture these defective images without introducing additional
noise. If there is noise, it may make supervised learning
methods more confusing in defect recognition. Furthermore,
it is also significant to correctly label these defects; otherwise,
it may cause supervised learning methods more prone to make
incorrect judgments. On the contrary, as illustrated in Fig. 4,
the defects in NEU dataset are larger and more obvious, and
the features of various defects are also significantly different;
thereby, they are easier to be recognized by humans, and the
same is true for supervised learning methods. As shown in
Table 7, [139, 140] have achieved much higher accuracy, up
to 99.95% and 99.889%, respectively.

Compared to above CNN-based supervised learning ap-
proaches, very few studies on unsupervised learning or
semi-supervised learning-based defect detection approaches
have been conducted. The frequently used unsupervised learn-
ing frameworks are auto-encoder and GAN. As presented in
Table 8, Li et al. [29] and Mei et al. [146] proposed a
denoising auto-encoder for fabric defect detection. Mujeeb
et al. [147] utilized a deep auto-encoder network for surface
defect detection. However, unsupervised learning is less reli-
able than the supervised learning method. Therefore, it has
few online industrial AVI applications. Semi-supervised
learning provides an alternative solution when insufficient la-
beled data are provided. It can achieve similar precision as
supervised learning albeit using fewer labeling samples.
However, the state-of-the-art semi-supervised learning tech-
nology innovated by the deep learning community has rarely
been employed for defect detection.
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6.2 Challenges and solutions

As demonstrated in the previous section, most of deep
learning-based surface defect detection approaches employ
deep CNN-based supervised learning for defect recognition.
And they are frequently implemented in three ways. The first
way is to use the transfer learning method, which utilizes the
knowledge (including model structure and pre-trained param-
eters) of a trained model from other fields and fine tunes them
on the target datasets in order to reduce the amount of training
data or training time. The second way is to adopt classic
convolutional neural network structures, such as Inception-
v3 and ResNet, and modify them to a certain extent to make
them suitable for the target defect detection problems. The
third way is to construct a convolutional neural network from
scratch by stacking convolutional layers, pooling layers, and
fully connected layers together and train them to achieve the
desired accuracy. However, these methods mainly consider
the accuracy of defect recognition and classification and less
consider how to achieve high efficiency and low computation-
al cost. In order to improve the detection accuracy, these
methods generally tend to deepen or expand network scale,
which consumes a lot of computing time and requires high-

performance computing resources. They are less able to meet
the millisecond-level real-time detection requirements in in-
dustrial AVI applications, thereby limiting their application in
industrial fields. Therefore, how to build a deep CNN-based
defect detection model that meets both high precision and
real-time requirements is a challenge for deep-learning-based
AVI applications.

A probable solution is to directly use lightweight networks
such as SqueezeNet [91], MobileNet [92], and ShuffleNet
[95] as the main networks of defect detection, because they
are tailored for mobile applications, or they are aimed at
achieving a balance between lowest computation cost and
highest accuracy. The details of these networks have been
described in the previous section. An alternative solution is
to utilize effective convolutional algorithms, such as
depthwise separable convolution [93] applied in MobileNet
and the fire module introduced by SqueezeNet. When consid-
ering saving the computational cost of convolution, depthwise
separable convolution should always be the first choice, be-
cause a 3*3 depthwise separable convolution can save 8 to 9
times the amount of calculation at only a small reduction in
accuracy. It is realized by decomposing standard convolution
into depthwise convolution (each input channel is convoluted

Fig. 3 Samples of PCB defects in [125] (left) and [127] (middle) and the solar cell defects in [112] (right)

Fig. 4 Samples of defects in Neu dataset [140]
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by applying a filter) and pointwise convolution (1*1 convolu-
tion to combine the outputs of depthwise convolution). The
fire module has a squeeze convolution layer (which has only
1*1 filters), feeding into an expand layer that has a mix of 1*1
and 3*3 convolution filters. It sets the number of filters in the
squeezer layer (all 1*1 convolutions) to be less than the filters
in the expander layer (1*1 and 3*3 convolutions), so the
squeeze layer helps to limit the number of input channels to
the 3*3 filters, thereby reducing the calculation amount [91].
These convolution algorithms can greatly help achieve a high
detection speed while maintaining a high detection accuracy.
For instance, we have proposed a lightweight deep
convolutional neural network based on the depthwise separa-
ble convolution and a squeeze-and-expand mechanism to de-
tect the surface defects of the copper clad laminate (CCL)
images obtained from the industrial CCL production line,
and high computation speed has been achieved while main-
taining good detection accuracy [156]. In general, by devel-
oping more lightweight networks or more efficient convolu-
tion algorithms, we can strike a balance between lowest com-
putation cost and highest accuracy and finally realize rapid
and accurate defect detection in industrial online applications.

Another challenge faced by AVI applications based on
deep learning is that deep neural networks usually require a
large amount of labeled data as training samples, but the prep-
aration of labeled data incurs significant labor and time costs.
Moreover, it is occasionally highly challenging or unfeasible
to label or collect sufficient training data. At the same time,
industrial high-speed production lines often produce defects
that have never appeared before. The new defects are not
included in the training samples, and this might also impede
the application of deep learning in industrial AVI. Therefore,
when a large amount of labeled data cannot be provided, how
to use deep learning for defect detection is still a challenge.

Data augmentation technology can alleviate the problem of
insufficient training samples to some extent. It preprocesses
the original images by performing image transformation (such
as flipping, random cropping, re-scaling, and color shifting) to
expand the original dataset. The transformed image samples
will be added to the original dataset to form an expanded
dataset, which is fed to the network for training. Data augmen-
tation can also be performed automatically during training
[147]. But it cannot completely address the problem of insuf-
ficient data. Unsupervised learning can address the deficiency
of training data, but it is less reliable than the supervised learn-
ing method and thereby unfeasible for online industrial AVI
applications. An alternative solution could be to use semi-
supervised learning paradigm. Semi-supervised learning can
achieve similar precision as supervised learning albeit using
fewer labeling samples. It uses both labeled and unlabeled
data for training, which contrasts supervised learning (data
all labeled) or unsupervised leaning (data all unlabeled)
[157]. It can maximize the use of unlabeled data that are

relatively easy to obtain. Traditional semi-supervised learning
includes generative modeling and graph-based methods, etc.
The details of these methods and more comprehensive over-
views are provided in [157–159]. The newly proposed GAN
can be attributed to the category of generative modeling and is
one of the research hotspots in semi-supervised deep learning
[160, 161]. However, it may suffer from unstable training and
are too complicated to use in online AVI application. Many
recent approaches for semi-supervised learning add a loss
term which is computed on unlabeled data and encourages
the model to generalize better to unseen data by using the
following methods: entropy minimization, which encourages
the model to output confident predictions on unlabeled data,
and regularization, which encourages the model to produce
the same output distribution when its inputs are perturbed
and avoid overfitting the training data [162]. For instance,
Berthelot et al. [162] from Google Research proposed a holis-
tic semi-supervised learning algorithm named MixMatch,
which introduces a unified loss term for unlabeled data that
seamlessly reduces entropy. MixMatch has obtained state-of-
the-art results across many datasets. Zheng et al. [163] have
proposed a sophisticated algorithm based on MixMatch for
automated surface inspection and revealed that it is effective
for two public defect datasets (DAGM and NEU) and one
industrial dataset (CCL).

In general, the challenge of achieving accurate and fast
detection and the lack of sufficient training samples hinder
the application of deep learning in industrial AVI. Probable
solutions might be to utilize lightweight neural networks, ef-
ficient convolution algorithms, automatic data augmentation,
semi-supervised deep learning paradigm, and other deep
learning technologies that are still under development.
Although extensive research has been conducted on deep
learning-based defect detection, there is still consideration
room for improvement in accuracy and computation speed.
The state-of-the-art in deep learning should still be compre-
hensively studied to make online AVI applications more
applicable.

7 Conclusion

Traditional defect detection algorithms generally conduct de-
tection in two stages: feature extraction and defect identifica-
tion. They have to design a set of human features, which are
heavily dependent on extensive domain knowledge.
Furthermore, these methods tend to work effectively only un-
der specified conditions and are sensitive to input variations.
Once the application condition varies, the algorithm needs to
be adjusted substantially.

The recent advancement in deep learning provides generic
tools that conduct detection in one stage. It learns features and
identifies defects simultaneously. It is capable of learning
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high-level features from training data automatically without
requiring additional feature extractor or domain expert knowl-
edge. A deep network-based detection approach is applicable
to different objects and defect types as long as it is trained
based on corresponding data. Moreover, it is insensitive to
the variations in the input or application conditions when the
training data has not varied substantially. In general, com-
pared to the traditional defect detection methods, deep
learning-based detection approaches are more automatic,
more generic, and more robust because they do not have to
design feature manually, are applicable to different types of
objects and defect types, and insensitive to variations.

Notwithstanding these advantages, deep learning-based de-
fect identification has been rarely used in practical industrial
applications. It remains an unsolved problem given insuffi-
cient image samples. There are three paradigms for deep-
learning defect detection: supervised learning, unsupervised
learning, and semi-supervised learning. Supervised learning
is the most widely used and capable of achieving high detec-
tion accuracy. However, it has disadvantage of being strongly
dependent on a large amount of labeled training data. The
preparation of labeled training data incurs significant labor
and time costs. Moreover, it is occasionally highly challeng-
ing or unfeasible to label or collect sufficient training data.
Unsupervised learning can address the deficiency of training
data. However, it is less reliable than the supervised learning
method and, therefore, unfeasible for online industrial AVI
applications. Semi-supervised learningmay provide a solution
that can achieve similar precision as supervised learning albeit
using fewer labeling samples. It uses both labeled and unla-
beled data for training and maximizes the use of unlabeled
data that are relatively easy to obtain. Many recent approaches
for semi-supervised learning add a loss term which is comput-
ed on unlabeled data and encourages the model to generalize
better to unlabeled data by using the following methods: en-
tropy minimization, which encourages the model to output
confident predictions on unlabeled data, and regularization,
which encourages the model to produce the same output dis-
tribution when its inputs are perturbed and avoid overfitting
the training data.

In addition, the absence of large amount of training sam-
ples for supervised learning-based defect detection can be al-
leviated through data augmentation technology. There are two
approaches to conducting data augmentation. One is to pre-
process the original images to expand the original dataset.
This is implemented by performing image transformation
such as flipping, random cropping, re-scaling, and color
shifting. The transformed image samples are added to the
original dataset to form an expanded dataset, which is fed to
the network for training. An alternative method is to generate
images automatically through data augmentation during train-
ing. This method can be utilized also in semi-supervised learn-
ing framework.

Another challenge faced by deep learning-based defect de-
tection is to meet the millisecond-level real-time detection
requirements in industrial applications while maintaining high
accuracy. By developing lightweight neural networks or effi-
cient convolution algorithms, we can strike a balance between
lowest computation cost and highest accuracy and finally re-
alize rapid and accurate deep learning-based defect detection
in industrial online applications.

As semi-supervised learning and data augmentation can be
used to alleviate or address the absence of large amount of
training samples, and lightweight neural network and efficient
convolution algorithms can be employed to improve the com-
putation speed, we consider that deep learning exhibits the
potential to gradually replace the traditional defect detection
algorithms. The future development direction of deep
learning-based defect detection approaches may be the utili-
zation of automated data augmentation during training, the
development of semi-supervised learning approaches to alle-
viate the problem of insufficient training data, and the inno-
vation of efficient convolution algorithms and lightweight
neural networks to meet real-time computation requirement.
And we believe that with the continuous development of deep
learning, surface defect inspection using deep learning has a
promising future.
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