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Abstract
In the actual production, it is expected to find several sensitivity geometric errors which have great influence on machining
accuracy, so as to provide references for the manufacturing, assembly, and other links of the machine tool, and fundamentally
improve the working performance. To study this problem, a novel global sensitivity analysis (GSA) method is proposed. Based
on theMBS theory, the spatial error model is established to analyze the local influence of geometric error onmachining accuracy.
An improved second-order partial correlation coefficient based on the Pearson product moment is proposed to analyze the
correlation between geometric errors. In addition, the error parameters will change greatly in the stroke of the moving parts.
However, the rapid fluctuation of geometric error value will have a dynamic impact on the machining accuracy of machine tools,
which is rarely noticed in the previous sensitivity analysis. This change is defined as the fluctuation of error. The high fitting
degree function of error-displacement is obtained by using the high order Fourier series and sine series. Then, the fluctuation of
the error in the machining stroke is analyzed by using the derivative of the function to the displacement. Through geometric error
characteristics (including the local influence, correlation, and fluctuation) are studied comprehensively, the GSA of error is
carried out. Finally, taking a machining center as an example and combining the sensitivity analysis results, the improvement
measures are proposed to verify the correctness of the method.

Keywords Horizontal machining center (HMC) . Multi-body system (MBS) . Single geometric error fitting . Fourier series .

Correlation coefficient . Global sensitivity analysis (GSA)

1 Introduction

The performance of HMC is mainly reflected in whether the
quality of the products meets the accuracy requirements of
users [1]. Machining accuracy is the main parameter and final
goal of evaluating the working performance of machine tool
[2]. Affected by many factors, such as the axial elongation [3]
or “hot rise” of the spindle caused by heat during the long-
term use of the spindle of HMC, which will directly affect the

accuracy of machine tool [4]. In addition, the installation and
wear of the tool [5], the compression and deformation of the
guide rail, the manufacturing error of the parts, and the com-
plex human factors will reduce the machining accuracy of
CNC machine tool. Among many factors, geometric error
and thermal error account for about 50–70% of the total error,
especially geometric error accounts for about 40% [6].
Machine tool geometric error has various types according to
different forms, mainly including positioning error, straight-
ness error, rolling error, Britain swing error, yaw error, and
perpendicularity and parallelism error between motion axes.
These errors interact with each other to influence the machine
tool [7]. How to find and control effectively the key geometric
errors which have great impact on machine tool is the main
problem to improve machining accuracy.

To solve this problem, a novel global sensitivity analysis
(GSA) is proposed. Sensitivity analysis (SA) can be used to
study the influence of input uncertainty on system output [8],
and also to identify the impact of system response by uncer-
tainty changes from system parameters [9]. SA includes local
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sensitivity analysis (LSA) and GSA [10]. For CNC machine
tools, LSAmainly analyzes the impact of a single error change
on machining accuracy [11]. GSA considers the complex cou-
pling effect of several geometric errors. Because the CNC
machine tool is affected by many factors, the geometric errors
have randomness, uncertainty, and mutual coupling and inter-
action [12]. Therefore, it is reasonable and effective to use
GSA to identify critical geometric errors.

Many scholars have done a lot of research on GSA.
Considering the randomness of geometric errors, Cheng
et al. proposed the Sobol method to get the critical errors of
a three-axis vertical machining center [13]. Xia used the im-
proved Sobol method to identify globally the critical errors for
a five-axis gear forming grinder [14]. Based on the Extended
Fourier amplitude sensitivity test method, Guo et al.
established the global sensitivity quantitative analysis method
of geometric error for three-axis machining center [15].
Through the screw theory, Wu established the volume error
model for three-axis machine tool, and studied the sensitivity
of geometric error with this model [16]. However, in many
sensitivity methods, it is neglected that the geometric error
value changes with the displacement of motion axes. At dif-
ferent positions, the fluctuation of geometric errors should be
considered. Therefore, a novel GSA method is proposed
based on MBS and geometric error characteristics analysis.

Error modeling technology can clearly express the nonlin-
ear mapping relationship between geometric error and ma-
chining accuracy. At present, modeling technology is becom-
ing more and more mature, and MBS and screw theory are
widely used [27]. Through the screw theory, Moon et al. car-
ried out geometric error modeling and error compensation for
CNCmachine tools [17]. By the screw theory, Yang proposed
amethod to identify and correct position-independent geomet-
ric errors for multi-axis machine tools [18]. Based on MBS
theory, Guo used homogeneous transformation matrix to es-
tablish geometric error model [19]. Similarly, Guo carried out
geometric error modeling for five-axis machine tool with
MBS theory and homogeneous transformation matrix [20].
With the development of MBS theory, it has become the
mainstream choice of geometric error modeling [13, 14, 21].

Before studying the fluctuation of geometric errors with dis-
placement, the fitting relationship between them must be
established. At present, most polynomials with position coor-
dinates as variables are chosen as fitting functions between
single geometric error and displacement [16, 22, 23].
However, it is necessary to solve the order problem of the
prediction model which has great influence on the fitting qual-
ity. Otherwise, the preset error will be introduced. Fu et al. [24]
used automatic modeling technology tomodel single geometric
error and selected the order of polynomials based on F-test.
However, with the improvement of polynomial order, more
measurement points were needed, and the fitting effect of poly-
nomial form was not ideal compared with the actual error.

Comparedwith polynomial function fitting, composite function
fitting with trigonometric function is better. According to the
integral relationship between straightness error and angle error,
Ekinci et al. used the composite function composed of sine and
cosine function as the fitting function, which has a good fitting
effect [25]. Tang et al. used the composite function composed
of sine cosine function and parabola function to fit the surface
curve of the guide rail scanned by the electron microscope, and
then, the geometric error is predicted, which also revealed the
internal relationship between the geometric error and the trigo-
nometric function [26].

In this paper, Fourier series including constant term
and sine cosine function is used to fit the relationship
between single geometric error and displacement in a cer-
tain stroke of moving axis of machine tool. In the machin-
ing stroke (i.e., the stroke of the moving parts of the
machine tool), the geometric error parameters vary greatly
at different displacement points. This paper defines it as
the fluctuation of error. The rapid fluctuation of geometric
errors will inevitably have a dynamic impact on the ma-
chining accuracy of machine tools. After obtaining the
function formula with a high fitting degree, the derivative
of function to displacement is used to analyze the fluctu-
ation of error. The derivative function is defined as the
fluctuation function of geometric error. After the coordi-
nates of each position point are substituted into the deriv-
ative function, the variation trend of the error at that point
is obtained. Finally, the overall fluctuation of geometric
error in the stroke will be obtained by averaging.

The correlation of geometric errors is objective [27, 28].
Cheng et al. introduced the Pearson correlation coefficient to
analyze the correlation between geometric errors, and classi-
fied them by SPSS [29]. Chen et al. introduced the spearman
rank correlation to study the relation between single error
parameter and tool attitude error in the whole sampling space,
and calculated and selected ten key error parameters with large
absolute correlation coefficient [30]. In this paper, an im-
proved second-order partial correlation coefficient based on
the Pearson product moment is introduced to analyze the cor-
relation between geometric errors. Partial correlation coeffi-
cient has been successfully applied to systems biology [31],
genomics [32], and acoustics [33].

The general structure of this paper. Section 2 introduces the
framework of the novel global sensitivity analysis method. In
Section 3, an overview of the sensitivity analysis method is
introduced. In Section 4, a case study is carried out to elabo-
rate the methods used. Section 5 is the conclusion.

2 The framework of analysis method

In this paper, the machine tool geometric error model is
established based on MBS theory, and the partial derivative
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of each geometric error is obtained. At the same time, consid-
ering the fluctuation and correlation of errors in the motion

stroke, the global sensitivity analysis model is constructed.
The key geometric errors affecting the machining accuracy

Fig. 1 Framework of global sensitivity analysis

Fig. 2 Structure of machine tool
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are identified by the sensitivity coefficient. The framework of
the global sensitivity analysis method involved in this paper is
shown in Fig. 1.

3 Overview of sensitivity analysis method

3.1 Establishment of geometric error model

The machine tool structure is shown in Fig. 2. The mechanism
ofmotion for the machine tool is analyzed, and the topological
structure is established to represent the relative motion be-
tween moving axes. According to the motion transfer mode
of the machine tool, the topological structure can be divided
into two chains, as shown in Fig. 3. Set the fixed bed and
column as inertia body with the mark of 0. X, Y, and Z guide
rails are labeled 1, 2, and 4 respectively. The electric spindle

and worktable are marked as 3 and 5 respectively. Table 1
shows the structural parameters of the machine tool.

This paper only studies the fluctuation of the errors with the
displacement in the stroke of the motion axis. Therefore, dur-
ing the error measurement, keep the workbench fixed and
motionless with the workpiece, that is, the B-axis is still and
there is no error. Table 2 shows the symbols and meanings of
geometric errors. Based on MBS theory, the motion charac-
teristic matrix of the CNCmachine tool is established by using
homogeneous coordinate transformation, as shown in Table 3.

Table 1 Structural parameters of the machine tool

Main parameters (mm) X-axis 1200
Y-axis 950
Z-axis 1100

Working table (mm) width×length 630×630

Fig. 3 Topological structure of machine tool
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In the table:
The superscript p is static; The subscript s is motion;
T is the error characteristic matrix in an ideal state;
ΔT represents the error characteristic matrix in the actual

state;
I4 × 4 denotes that when the error is relatively small, it can

be ignored as the unit matrix;
Set the coordinates of the tool forming point in the tool

coordinate system as:

Pt ¼ PtxPtyPtz1
� �T ð1Þ

Set the coordinates of the workpiece forming point in the
workpiece coordinate system as:

Pw ¼ PwxPwyPwz1
� �T ð2Þ

When the machine tool works in the ideal state without
error, the ideal coordinates of the workpiece forming point
in the tool coordinate system can be written as:

Ptideal ¼ Tp
01T

s
01T

p
12T

s
12T

p
23T

s
23

� �−1Tp
04T

s
04Pw ð3Þ

Table 3 The motion characteristic matrix of machine tool

Axis Body ideal static, homogeneous transformation matrix of motion Body static, homogeneous transformation matrix of kinematic error

X-axis Tp
01 ¼ I4�4 ΔTp

01 ¼ I4�4

Ts
01 ¼

1 0 0 x
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ΔTs

01 ¼
1 −εγx εβx δxx
εγx 1 −εαx δyx
−εβx εαx 1 δzx
0 0 0 1

2
664

3
775

Y-axis Tp
12 ¼ I4�4

ΔTp
12 ¼

1 −εγxy 0 0
εγxy 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

Ts
12 ¼

1 0 0 0
0 1 0 y
0 0 1 0
0 0 0 1

2
664

3
775 ΔTs

12 ¼
1 −εγy εβy δxy
εγy 1 −εαy δyy
−εβy εαy 1 δzy
0 0 0 1

2
664

3
775

Z-axis Tp
04 ¼ I4�4

ΔTp
04 ¼

1 0 εβxz 0
0 1 −εαyz 0

−εβxz εαyz 1 0
0 0 0 1

2
664

3
775

Ts
04 ¼

1 0 0 0
0 1 0 0
0 0 1 z
0 0 0 1

2
664

3
775 ΔTs

04 ¼
1 −εγz εβz δxz
εγz 1 −εαz δyz
−εβz εαz 1 δzz
0 0 0 1

2
664

3
775

B-axis Tp
45 ¼ I4�4 ΔTp

45 ¼ I4�4

Ts
45 ¼ I4�4 ΔTs

45 ¼ I4�4

Table 2 Geometric error of HMC

Axis Symbols Meanings

X-axis δxx Positioning error

δyx Y direction of straightness error

δzx Z direction of straightness error

εαx Rolling error

εβx Britain swing error

εγx Yaw error

Y-axis δxy X direction of straightness error

δyy Positioning error

δzy Z direction of straightness error

εαy Rolling error

εβy Britain swing error

εγy Yaw error

Z-axis δxz X direction of straightness error

δyz Y direction of straightness error

δzz Positioning error

εαz Rolling error

εβz Britain swing error

εγz Yaw error

Orientation errors εγxy X, Y-axes perpendicularity error

εβxz X, Z-axes perpendicularity error

εαyz Z, Y-axes perpendicularity error
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In the case of actual machining, the actual coordinates of
the workpiece forming point in the tool coordinate system are:

Ptactual ¼ ΔT 03½ �−1ΔT 04Pw ð4Þ

Here,
ΔT 03 ¼ Tp

01ΔT p
01T

s
01ΔT s

01T
p
12ΔTp

12T
s
12ΔT s

12T
p
23ΔT p

23T
s
23ΔT s

23;
ΔT04 ¼ Tp

04ΔTp
04T

s
04ΔTs

04 .

The comprehensive error matrix can be written by symbol
E(G) as follows:

E Gð Þ ¼ Ptideal−Ptactual ¼
Ex Gð Þ
Ey Gð Þ
Ey Gð Þ
0

2
664

3
775 ð5Þ

The machining process of this paper is to analyze the ma-
chining accuracy when simulating the machining of fixed size
workpiece under the fixed workpiece and cutter installation
position. Therefore, Pw and x, y, z in Table 3 are
predetermined values. Ex(G), Ey(G), Ez(G) represent the ma-
chining accuracy function with geometric error as variable in
three directions.

G = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13, g14,
g15, g16, g17, g18] represents a vector composed of 18 errors,
making δxx, δyx, δzx, εαx, εβx, εγx, δxy, δyy, δzy, εαy, εβy, εγy,
δxz, δyz, δzz, εαz, εβz, εγz = g1, g2, g3, g4, g5, g6, g7, g8, g9, g10,
g11, g12, g13, g14, g15, g16, g17, g18.

3.2 Local influence analysis of geometric error

To analyze the local influence of single geometric error on
machining accuracy of the machine tool, according to the
formula (5), the partial derivative of the error is calculated
by using the machining accuracy function according to for-
mula (5). Taking the error δxx(=g1) as an example, after the
partial derivative of g1 is calculated, the average value of the
error measurement data is brought in, and the local influence
on the machining accuracy in three directions when it changes
slightly is analyzed. The matrix form represented by the sym-

bol f 1ð Þ
g1

is:

f 1ð Þ
g1

¼

∂Ex

∂g1
0 0

0
∂Ey

∂g1
0

0 0
∂Ez

∂g1

2
6666664

3
7777775

ð6Þ

Similarly, the local influence of the remaining 17 errors of

f 1ð Þ
g2
; f 1ð Þ

g3
;⋯ f 1ð Þ

g18
on machining accuracy in three directions

can be obtained.

3.3 Fluctuation analysis of geometric error

In this paper, a fitting function based on the Fourier series is
proposed to find the internal relationship between geometric
error and motion displacement. The fitting function of error gi
is represented by symbol Fgi uð Þ. u is the position of measure-
ment point (i.e., movement axis displacement).

Fgi uð Þ ¼ a0 þ a1cos wuð Þ þ b1sin wuð Þ þ a2cos 2wuð Þ
þ b2sin 2wuð Þ þ a3cos 3wuð Þ þ b3sin 3wuð Þ
þ⋯þ alcos lwuð Þ þ blsin lwuð Þ l ¼ 1; 2;⋯ð Þ ð7Þ

Where a0 is the constant term, a1, b1, a2, b2,⋯al, bl; w are
the coefficients of the fitting function, and l is the order of the
Fourier series.

In addition, the sine series will be used for fitting. The form
of the sine series represented by the symbol Sgi uð Þ is

Sgi uð Þ ¼ p1sin c1uþ d1ð Þ þ p2sin c2uþ d2ð Þ þ⋯

þ pmsin cmuþ dmð Þ m ¼ 1; 2;⋯ð Þ ð8Þ

Where p1, c1, d1⋯pm, cm, dm are coefficients of the fitting
function and m is the order of the sine function.

According to the fitting functions above, this paper uses the
fitting function to derive the u. Taking g1 as an example,
formula 9 can be written as follows:

f 2ð Þ
g1

¼ 1

n
∑
n

t¼1

dFg1 uð Þ
d uð Þ

����
u¼ut

" #
ð9Þ

Where n(=11) is the number of measurement points,
ut(=50, 130,⋯850) is the position of measurement

points, and
dFg1 uð Þ
d uð Þ is the fluctuation function of geomet-

ric error. The position of the measurement point is
brought into the function in turn and then the mean
value is calculated. The overall fluctuation of geometric
error in the machining stroke can be obtained. Taking
the same steps, we can get the fluctuation of the re-

maining 17 geometric errors, such as f 2ð Þ
g2
; f 2ð Þ

g3
;⋯; f 2ð Þ

g18
.

3.4 Partial correlation analysis of geometric errors

Pearson product moment correlation is usually used to
study the correlation between continuous random vari-
ables. In this paper, an improved second-order partial
correlation coefficient based on the Pearson product mo-
ment is introduced to analyze the correlation between
geometric errors. The calculation of the correlation co-
efficient is shown in Eq. 10–12.
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R0
gi;g j

¼ corrcoef gi; g j

� �
i; j ¼ 1; 2;⋯18ð Þ

ð10Þ

R1
gi−g j;gk

¼
R0
gi;g j

−R0
gi;gk

� R0
g j;gkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− R0
gi;gk

� �2
� 	

1− R0
g j;gk

� �2
� 	s

i; j; k ¼ 1; 2;⋯18ð Þ

ð11Þ

R2
gi−g j;gk−gh ¼

R1
gi−g j;gk

−R1
gi−gk ;gh � R1

g j−gk ;ghffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− R1

gi−gk ;gh

� �2
� 	

1− R1
g j−gk ;gh

� �2
� 	s

i; j; k; h ¼ 1; 2;⋯18ð Þ

ð12Þ

R0
gi;g j

, R1
gi−g j;gk

, and R2
gi−g j;gk−gh denote zero-, first-, and

second-order partial correlation coefficients, respectively.
The result of R0

g1;g2
is the same as that of R0

g2;g1
, i.e., the

result of zero-order correlation can be written as a sym-
metric matrix with the main diagonal of one. However,
in the calculation of the first- and second-order partial
correlation, when the errors are the same, the result will
be infinite. To ensure that the calculated results can still
be written as a matrix form of 18 × 18, so as to clearly
show the correlation between the errors, the following
provisions are made.

1) When two errors are the same (i.e., i = k), the calculation
result of the first- or second-order partial correlation co-
efficient is infinite. In this case, refer to the 0-order partial
correlation results, and set them to 1. In each case, there
are two times of infinity, so it does not affect the calcula-
tion results.

2) After calculating the first-order partial correlation,
2448 sets of data will be obtained. In order to sim-
plify the calculation, the matrix form of 18 × 18 is
still written according to the 0-order calculation re-
sults after the average value is calculated for each
case. Then, according to the first-order partial cor-
relation formula, the second-order partial correlation
coefficient is calculated.

After the second-order partial correlation coefficients of
geometric errors in each case are obtained, the mean value
is calculated for each case, and the result was still written
as the matrix form of 18 × 18. The mean value of each line
is calculated again, and the result is taken as the overall
correlation between the geometric error and the rest errors.
Second-order partial correlation coefficient of single error
expressed by R2

gi
.

3.5 Establishment of global sensitivity analysis model

Through the above analysis, the global sensitivity model
of geometric error is established in the form of sequential
multiplication. The symbols fX(gi), fY(gi), fZ(gi) respective-
ly represent the global sensitivity coefficients of errors to
the three machining directions of X, Y, and Z. Equation
13 shows the global sensitivity of the i-th error.

f gið Þ ¼ R2
gi
� f 1ð Þ

gi
� f 2ð Þ

gi
¼

f X gið Þ 0 0
0 f Y gið Þ 0
0 0 f Z gið Þ

2
4

3
5

R2
gi
¼

∂Ex

∂gi
0 0

0
∂Ey

∂gi
0

0 0
∂Ez

∂gi

2
6666664

3
7777775
1

n
∑
n

t¼1

dFg1 uð Þ
d uð Þ

����
u¼ut

" #

ð13Þ

The global sensitivity coefficient of any error gi to
the whole machining space is expressed as fGlobal(gi):

f Global gið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f X gið Þ½ �2 þ f Y gið Þ½ �2 þ f Z gið Þ½ �2

q
ð14Þ

4 Case study

4.1 Geometric error measurement and digital
characteristics

Under the condition that the testing instrument and the
moving axis of the machine tool do not interfere, the

Fig. 4 Error data collection site
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Table 6 Geometric error data of
Z-axis (mm) ut δxz δyz δzz εαz εβz εγz

50 0.00e+00 0.00e+00 −5.00e-05 −6.25e-06 −3.63e-06 −2.50e-07
130 3.35e-03 1.15e-03 −1.13e-03 −2.75e-05 5.00e-07 1.00e-06

210 5.28e-03 7.50e-05 −6.50e-04 −3.00e-05 2.63e-06 1.88e-06

290 2.80e-03 −1.00e-03 7.50e-04 −1.25e-05 2.63e-06 3.13e-06

370 2.20e-03 −1.23e-03 7.75e-04 −1.88e-05 3.13e-06 3.13e-06

450 4.83e-03 5.00e-04 −1.25e-04 −4.75e-05 6.25e-06 2.75e-06

530 6.33e-03 2.00e-03 −5.50e-04 −6.25e-05 8.38e-06 4.13e-06

610 5.48e-03 1.05e-03 2.83e-03 −3.88e-05 8.25e-06 4.75e-06

690 3.78e-03 −2.50e-04 4.58e-03 −1.75e-05 7.00e-06 5.88e-06

770 2.25e-03 −1.38e-03 7.20e-03 −2.50e-06 7.75e-06 6.38e-06

850 1.30e-03 −8.75e-04 7.13e-03 1.25e-06 9.25e-06 7.75e-06

Mean value 3.42e-03 4.55e-06 1.89e-03 −2.39e-05 4.74e-06 3.68e-06

Table 5 Geometric error data of
Y-axis (mm) ut δxy δyy δzy εαy εβy εγy

50 0.00e+00 −1.25e-03 0.00e+00 −2.13e-06 1.63e-06 1.25e-06

130 −4.50e-04 −6.25e-04 −3.30e-05 −8.75e-07 2.25e-06 2.13e-06

210 6.75e-04 3.00e-04 1.23e-03 −1.88e-06 1.13e-06 2.38e-06

290 2.35e-03 −4.00e-04 6.67e-04 −3.75e-06 −2.13e-06 2.25e-06

370 3.03e-03 2.75e-04 1.23e-03 −3.38e-06 −3.63e-06 1.00e-06

450 1.58e-03 1.13e-03 9.67e-04 −2.63e-06 −2.13e-06 −7.50e-07
530 5.50e-04 3.20e-03 −1.33e-04 −1.38e-06 −2.50e-07 −6.25e-07
610 4.50e-04 5.28e-03 7.00e-04 2.25e-06 −5.00e-07 −1.50e-06
690 −4.50e-04 7.32e-03 3.00e-04 6.50e-06 1.25e-07 −2.63e-06
770 −1.20e-03 8.67e-03 2.33e-04 1.20e-05 6.25e-07 −2.88e-06
850 0.00e+00 9.52e-03 0.00e+00 1.85e-05 −7.50e-07 −2.25e-06
Mean value 5.93e-04 3.04e-03 4.70e-04 2.11e-06 −3.30e-07 −1.48e-07

Table 4 Geometric error data of
X-axis (mm) ut δxx δyx δzx εαx εβx εγx

50 −8.80e-05 0.00e+00 0.00e+00 1.00e-06 −2.50e-07 −2.00e-06
130 5.25e-04 −1.90e-03 1.85e-03 1.88e-06 −3.25e-06 −2.50e-06
210 1.51e-03 −1.38e-03 3.90e-03 2.88e-06 −6.75e-06 2.88e-06

290 2.68e-03 −8.50e-04 5.43e-03 3.03e-06 −1.11e-05 −2.50e-06
370 3.96e-03 −1.70e-03 7.55e-03 2.50e-06 −1.43e-05 −2.50e-06
450 5.28e-03 −3.60e-03 7.10e-03 1.58e-06 −1.67e-05 −3.75e-06
530 6.93e-03 −4.05e-03 5.70e-03 1.73e-06 −1.91e-05 −5.25e-06
610 8.79e-03 −3.73e-03 4.18e-03 2.40e-06 −1.98e-05 −6.63e-06
690 1.02e-02 −3.00e-03 2.18e-03 3.23e-06 −2.14e-05 −9.25e-06
770 1.16e-02 −2.13e-03 1.95e-03 2.65e-06 −2.33e-05 −1.13e-05
850 1.30e-02 −9.50e-04 0.00e+

00
2.57e-06 −2.61e-05 −1.31e-05

Mean value 5.84e-03 −2.12e-03 3.62e-03 2.35e-06 −1.47e-05 −5.08e-06
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same 800 mm stroke is selected on each axis. Take
50 mm as the starting point and set a measuring point
at an interval of 80 mm. The moving axis runs twice in
both positive and negative directions respectively. Using
6D laser interferometer, each point is measured four
times, and the geometric error data at different positions
are recorded, as shown in Fig. 4. Statistics and calcula-
tion of measured data are shown in Table 4, 5, 6, 7.

4.2 Global sensitivity calculation of geometric errors

According to Section 3.3, some fitting results are shown
in Table 8. Figure 5, 6, 7 shows the fitting function of
some geometric errors and displacements. All fitting
functions of position dependent geometric errors and
displacements are shown in Appendix 1 Table 12.
Appendix 2 is the second-order partial correlation coef-
ficient of all geometric errors. The direct interaction and
potential correlation between errors can be obtained by
calculation and analysis.

Among them, R-square represents the quality of a
fitting effect. The normal value range is [0,1], the closer
it is to 1, it indicates that the variables of the equation
have a stronger ability to interpret the function. This
model also fits the data well. It can be seen from
Appendix 1 Table 12 that most of the R-squares are
above 0.98, some are very close to 1. Compared with
the low-order Fourier series fitting error-displacement
curve based on the least square method of the same
guideway in literature [34], the fitting degree of this
paper is higher than its 1.7%–8.2%, which can show

the relationship between geometric error and displace-
ment more clearly. Table 9 shows the fitting comparison
results. High fitting degree is helpful to analyze the
fluctuation of geometric error.

After all the data are brought into the model, Table 10 lists
the calculation results of the global sensitivity coefficients of
errors. For visual display, the results are shown in histogram
8–9 (Figs. 8 and 9).

From the above figures, the following conclusions can be
drawn:

(1) For the X direction, the global sensitivity coefficients of
εγx, δxx, εβx are larger. For the Y direction, the global
sensitivity coefficients of δyy, εαy, δzz are larger. For the
Z direction, the global sensitivity coefficients of εβx, εβz,
εαy are larger. The analysis results show that when the
moving parts move along each axis, these three geomet-
ric errors and other errors have a great influence on the
machining accuracy of each axis through the interaction
between them.

(2) For the whole machining space of machine tools, the
global sensitivity coefficients of εγx, εβx, δyy, δxx, εβz,
εαy are relatively large, accounting for 74.6% of the
total.

4.3 Application and improvement

From the overall analysis results, the geometric error of X-axis
has the greatest impact on the machining accuracy. Therefore,
this paper proposes to replace the X-axis with two more accu-
rate guide rails, as shown in Fig. 10. After the improvement,
the error is remeasured, and the measurement data is counted
and brought into the machine space geometric error model in
formula 5. Table 11 shows the accuracy of the machine tool
before and after improvement.

Table 8 Fitting functions of partial geometric errors and displacement

Errors Fitting functions R-
square

X-axis

δxx Fg1 uð Þ ¼ 0:01234−0:007764cos 0:003396uð Þ−0:01024sin 0:003396uð Þ
−0:004848cos 0:006792uð Þ þ 0:001549sin 0:006792uð Þþ
0:0003975cos 0:010188uð Þ þ 0:001381sin 0:010188uð Þ

0.9999

δyx Fg2 uð Þ ¼ 0:002306þ 0:004767cos 0:004554uð Þ−0:00667sin 0:004554uð Þ
−0:002248cos 0:009108uð Þ−0:003461sin 0:009108uð Þ
−0:001832cos 0:013662uð Þ−0:0007687sin 0:013662uð Þ

0.9946

εβx Fg5 uð Þ ¼ −1:612e−05þ 1:281e−05cos 0:003927uð Þ þ 4:599e−06sin 0:003927uð Þ
þ4:303e−06cos 0:007854uð Þ−2:659e−06sin 0:007854uð Þ
−4:058e−07cos 0:011781uð Þ−4:24e−07sin 0:011781uð Þ

0.9995

⋯ ⋯ ⋯

Table 7 Orientation
errors data (mm) εγxy εβxz εαyz

9.800e-06 7.000e-06 1.060e-05
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Fig. 7 εβx − u fitting curve and
residual error

Fig. 6 δyx − u fitting curve and
residual error

Fig. 5 δxx − u fitting curve and
residual error

Table 9 Comparison results of R-
square δxx δyx δzx εαx εβx εγx

Literature [34] 0.9241 0.9602 0.9245 0.9202 0.9824 0.9613

This paper 0.9999 0.9946 0.9988 0.9926 0.9995 0.9805

Degree of optimization 8.2% 3.5% 8% 7.9% 1.7% 2%
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The experimental results show that this method can effec-
tively identify the geometric errors which have a great influ-
ence on the machining accuracy of HMC. The manufacturing
and assembly of machine tools should be strictly controlled to
fundamentally improve the processing quality of products. At
the same time, the validity of the proposed method is proved.

5 Conclusion

The method proposed in this paper has the following features:

(1) This paper analyzes the overall effect of geometric error
on machining accuracy in a certain stroke. By

Table 10 The results of global sensitivity coefficients

Number Errors fX(gi) fY(gi) fZ(gi) fGlobal(gi)

1 δxx 3.60215e-06 −1.64719e-11 −5.41993e-11 3.60215e-06

2 δyx −2.27871e-12 −4.98331e-07 2.22501e-12 4.98331e-07

3 δzx −2.62861e-12 −7.80027e−13 -1.747e-07 1.74700e-07

4 εαx 7.46418e-12 −2.81626e-07 5.81668e-07 6.46259e-07

5 εβx 2.83189e-06 3.55494e-13 2.97983e-06 4.11084e-06

6 εγx 3.71734e-06 1.89391e-06 −6.43886e-11 4.17199e-06

7 δxy 3.00344e-07 4.43688e-14 −9.89771e-14 3.00344e-07

8 δyy −5.75040e-13 3.89256e-06 −8.22747e-12 3.89256e-06

9 δzy −9.30122e-14 −5.96562e-13 −2.82244e-07 2.82244e-07

10 εαy 8.79449e-13 −2.30601e-06 1.63494e-06 2.82679e-06

11 εβy −3.39646e-07 −8.05578e-13 −3.57395e-07 4.93042e-07

12 εγy 1.42438e-07 2.11402e-07 −4.93768e-13 2.54911e-07

13 δxz 2.99956e-12 −8.34723e-13 1.36057e-07 1.36057e-07

14 δyz −2.32242e-07 1.062e-12 5.1201e-12 2.32242e-07

15 δzz −8.93720e−12 −1.95441e-06 -1.19904e-11 1.95441e-06

16 εαz 1.64095e-06 −3.23157e-07 −3.81595e-11 1.67246e-06

17 εβz −5.76688e-11 7.51127e-07 −2.77159e-06 2.87157e-06

18 εγz −5.35722e-07 6.1422e-14 3.89309e-07 6.62238e-07

Fig. 8 Global sensitivity
coefficients of geometric errors in
X, Y, and Z machining directions
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introducing different displacement points into the fluctu-
ation function, the fluctuation of geometric error at this
point can be obtained, and then, the global sensitivity
coefficient at this point can be calculated. This method
reveals the influence of geometric error on the machining
accuracy of machine tool due to the change of movement

position. At the same time, it shows that the sensitivity
coefficient changes with the change of displacement.

(2) In this paper, the Fourier series is used to fit a single
geometric error. The results show that the fitting degree
is high and the residual error is small. In fact, if the
trigonometric function terms in the Fourier series and

Table 11 Accuracy of machine
tool before and after improvement Machining accuracy Before improvement (mm) After improvement (mm)

Ex(G) −0.0041 −0.0035
Ey(G) −0.0027 −0.0020
Ez(G) 0.0083 0.0059

Fig. 9 Global sensitivity of
geometric errors in the whole
machining space

Fig. 10 Replacing high precision
guide rail
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sine series expand according to Taylor series and ignore
the higher-order terms, they are polynomial functions.
Therefore, trigonometric functions are more fitting accu-
rate than polynomials. In addition, the dynamic effects of
the fluctuation and correlation of geometric errors on
machining accuracy are considered in the global sensi-
tivity analysis model proposed in this paper. The analysis
results are closer to the actual production process.

(3) In this paper, only the geometric errors related to the
moving axis are studied, but the errors related to the
rotating axis (B-axis) have not found good fitting func-
tions. And the research is carried out under the quasi-
static condition of machine tool. The dynamic fluctua-
tion of error and thermal error caused by different axial
acceleration and dynamic load of machine tool should be
further considered.
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A

Table 12 All fitting functions of position dependent geometric errors and displacements

Errors Fitting functions R-square

X-axis

δxx Fg1 uð Þ ¼ 0:01234−0:007764cos 0:003396uð Þ−0:01024sin 0:003396uð Þ
−0:004848cos 0:006792uð Þ þ 0:001549sin 0:006792uð Þþ
0:0003975cos 0:010188uð Þ þ 0:001381sin 0:010188uð Þ

0.9999

δyx Fg2 uð Þ ¼ 0:002306þ 0:004767cos 0:004554uð Þ−0:00667sin 0:004554uð Þ
−0:002248cos 0:009108uð Þ−0:003461sin 0:009108uð Þ
−0:001832cos 0:013662uð Þ−0:0007687sin 0:013662uð Þ

0.9946

δzx Fg3 uð Þ ¼ 0:003861−0:003332cos 0:007596uð Þ−0:0001796sin 0:007596uð Þ
þ0:0001561cos 0:015192uð Þ−0:0003273sin 0:015192uð Þ
−0:0001535cos 0:022788uð Þ−0:0002358sin 0:022788uð Þ
þ0:0001323cos 0:030384uð Þ−0:0004317sin 0:030384uð Þ

0.9988

εαx Fg4 uð Þ ¼ 1:42e−05þ 1:76e−06cos 0:003927uð Þ−2:071e−05sin 03003927uð Þ
þ0:0001561cos 0:015192uð Þ−0:0003273sin 0:015192uð Þ
−0:0001535cos 0:022788uð Þ−0:0002358sin 0:022788uð Þ
þ0:0001323cos 0:030384uð Þ−0:0004317sin 0:030384uð Þ

0.9926

εβx Fg5 uð Þ ¼ −1:612e−05þ 1:281e−05cos 0:003927uð Þ þ 4:599e−06sin 0:003927uð Þ
þ4:303e−06cos 0:007854uð Þ−2:659e−06sin 0:007854uð Þ
−4:058e−07cos 0:011781uð Þ−4:24e−07sin 0:011781uð Þ

0.9995

εγx Fg6 uð Þ ¼ 0:07392−0:07305cos 0:001963uð Þ−0:09616sin 0:001963uð Þ
−0:0173cos 0:003926uð Þ þ 0:06189sin 0:003926uð Þ
þ0:01898cos 0:005889uð Þ−0:007432sin 0:005889uð Þ
−0:00251cos 0:007852uð Þ−0:001562sin 0:007852uð Þ

0.9805

Y-axis

δxy Fg7 uð Þ ¼ 0:001162þ 0:0004632cos 0:005uð Þ−0:0002024sin 0:005uð Þ
−0:001348cos 0:01uð Þ−0:00136sin 0:01uð Þ

−0:0004027cos 0:014997uð Þ þ 1:545e−06sin 0:014997uð Þ
þ0:0005354cos 0:019996uð Þ þ 0:0003185sin 0:019996uð Þ

0.9971

δyy Sg8 uð Þ ¼ 0:006983sin 0:003452u−0:8668ð Þ þ 0:003156sin 0:007368uþ 1:315ð Þ 0.9961
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