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Abstract
Position-dependent geometric errors (PDGEs) of rotary axis affect the accuracy of the multi-axis machine tool. However, many
PDGE identification methods were not general enough and not applicable when the structure of the machine tool was limited or
changed. In this paper, a general PDGE identification method with single-axis driven was proposed. Firstly, the comprehensive
length change model of the double-ball bar (DBB) was established. The simplification was conducted through the constraint
condition to obtain the identification matrix. Then, the effect of the installation errors of the DBB was analyzed and eliminated.
Simulations were carried out to validate the correctness of the proposed method when considering the installation errors. Next 10
measurement patterns were determined according to the structure limitation of the small-size 5-axis machine tool. Totally 364
combinations with full rank identification matrix are available. Finally, the prediction experiments and analysis for standard
deviation were conducted to further validate the effectiveness of the proposed method. It turned out that the small condition
number of the identification matrix can more likely achieve high accuracy. And an improved combination using 5 patterns was
proposed with the same accuracy achieved compared to that using a total of 10 patterns.

Keywords Position-dependent geometric errors (PDGEs) . Double-ball bar . Installation error . Identificationmatrix

Nomenclature
PDGEs Position-dependent geometric errors
PIGEs Position-independent geometric errors
DBB Double-ball bar
MADM Multi-axis driven method
SADM Single-axis driven method
P0(xw, yw, zw) Initial position of the workpiece

ball center

Pi(xi, yi, zi) Theoretical position of the
workpiece ball center

P(x, y, z) Actual position of the workpiece
ball center

Q(xt, yt, zt) Position of the tool ball center
Ti Theoretical motion transformation matrix
T Actual motion transformation matrix
Δx, Δy, Δz Deviation components of the

workpiece ball center
EXC, EYC, EZC Translational PDGEs of C-axis

along X-, Y-, and Z-axes
EAC, EBC, ECC Angular PDGEs of C-axis around

X-, Y-, and Z-axes
EXOC, EYOC Translational PIGEs of C-axis

along X- and Y-axes
EAOC, EBOC Angular PIGEs of C-axis around

X- and Y-axes
r Standard radius of double-ball bar
Δr Length change of the DBB

considering the PDGEs
ΔR Length change of the DBB

considering the PDGEs, PIGEs,
and installation error
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E PDGEs in matrix form
K Identification matrix
Δr Length change in matrix form
δxt, δyt, δzt Installation errors on the side of tool ball
δxw, δyw, δzw Installation errors on the side

of workpiece ball
E(pre) Pre-set PDGEs in the simulation
E(set) PDGEs set in the simulation
E(cal) PDGEs calculated
E(ref) PDGEs referred
σ Standard deviations of identified PDGEs
m Measurement times
n Total number of measured points

1 Introduction

1.1 Background

The rotary axis is an important part of the 5-axis machine
tools, and the accuracy of the rotary axis affects the machining
quality to a great extent. The geometric errors are considered
as one of the most important evaluation indicators of accuracy
[1, 2]. Compared with the linear axis, the geometric errors of
rotary axis are much more difficult to detect [3, 4]. According
to the ISO standards [5, 6] and previous research [7, 8], the
geometric errors of rotary axis are divided into the position-
dependent geometric errors (PDGEs) and position-
independent geometric errors (PIGEs). The PIGEs were main-
ly caused by the imperfect assembling process while the
PDGEs were mainly caused by defects in the manufacturing
process [9, 10].

The double-ball bar (DBB) was first designed and devel-
oped to test the linkage performance of machine tools, which
has already been used widely [11, 12]. In recent years, the
DBB was also used to identify the geometric errors of rotary
axis. Tsutsumi and Saito [13] proposed an identification meth-
od for the geometric errors with three measurements in the
radius, tangential, and axial directions carried out. This meth-
od had been used and improved by many other researchers.
Based on that, Xiang et al. identified 10 PDGEs [10] and 8
PIGEs [14] for the 5-axis machine tools. Fu et al. [15] pro-
posed 6-circle methods with 6 installations of the DBB in the
tests. Zhong et al. [16] evaluated and quantitated the compre-
hensive accuracy of the 5-axis machine tools with 9 times
measurement using the DBB. In addition, the ISO standard
provides a recommended method to obtain the geometric er-
rors [5]. However, the linear axes must be linked to moving in
the measurement. In this way, the geometric errors of the
linear axes needed to be measured and compensated in ad-
vance. For simplification, these methods with multi-axis
moved were named as multi-axis-driven method (MADM).

Using the MADM, geometric errors of the rotary axis in 6
degrees of freedom are identified.

Compared to MADM, the measurement patterns of the
single-axis-driven method (SADM) is much simpler.
Only the rotary axis to be tested moved in the whole
process. The extra effect of the geometric errors of the
linear axis can be avoided. Lee and Yang used SADM to
identify the PDGEs [17] and PIGEs [18], respectively.
Ding et al. [19] studied and identified the PDGEs of
the rotary axis with 6 measurement patterns used based
on SADM. Zargarbashi et al. [20, 21] proposed an iden-
tification method for a swing axis. The outstanding char-
acteristic is that only 1 time installation of the DBB is
needed. Different from the MADM, it is a problem for
SADM to obtain the angular positioning error of rotary
axis. However, with the maturity of commercial products
like XR20, the angular positioning error of the rotary
axis is available (https://www.renishaw.com/en/xr20-w-
rotary-axis-calibrator%2D%2D15763) [22]. The MADM
is no longer attractive as before. The SADM is an
optional choice when identifying the error of a single
rotary axis.

1.2 Existing problems

Overall, the identification and compensation of PIGEs are
much more mature than those of PDGEs, and some CNC
systems even provide simple calibration and compensation
functions for PIGEs (http://www.huazhongcnc.com/portal/
list/index/cid/20.html). To further improve the accuracy of
rotary axis, the identification of PDGEs is necessary. Using
the DBB to obtain the PDGEs of the rotary axis is feasible and
many researches had proved that. And the main route of the
existing method is measurement pattern-identification model.
The measurement patterns were firstly designed, and then, the
identification model will be established based on the
measurement patterns. With different lengths and
installations of the DBB, different identification methods
were proposed. These methods were practical for the PDGE
identification for a special rotary axis of the machine tools.
However, when the structure of the rotary axis changed, some
of the methods may not be able to be adopted. For example,
the identification method in Ref. [20, 21] cannot be used for
the turntable. In addition, for some small-size 5-axis machine
tools, the travel of X-axis or Y-axis is less than 200 mm as
shown in Fig. 1a, the methods in Ref. [10, 19] would not be
suitable. For the rotary axis of gear machine tools, the work-
piece ball cannot be directly installed on the center axis line as
shown in Fig. 1b, then the methods in Ref. [15, 17] would not
be suitable. Besides, the installation of the DBB would be
difficult due to the structure limitation. These rotary axes with
the structure limitation greatly decrease the applicability of
these identification methods. Some scholars have proposed
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some general kinematic and compensation models of machine
tools with different structures [23, 24], but there are few stud-
ies focused on the general models for error identification.
Different models were used for those machine tools with dif-
ferent structures.

On the other hand, some problems were habitually ignored
in the measurement and identification process like the influ-
ence of the installation errors of the DBB. When identifying
the PDGEs, the installation errors would be an important fac-
tor that affects the results; thus, some scholars proposed dif-
ferent methods to deal with the installation errors. Lee and
Yang [18] and Chen et al. [25] developed a homemade device
to adjust the installation errors. And these devices mainly fo-
cus on the installation error of the ball connected with the tool
cup. As for the installation error on the center mount side, Lee
and Yang [26] used a dial indicator to measure the installation
error for the workpiece ball. The problem is that much atten-
tion and micro-adjustment were needed to guarantee no instal-
lation error, and very skillful operations would be needed.

Among these researches about the installation errors, an
agreement is reached that the installation error does directly
affect the measurement results [2, 20]. Reducing installation
times became a trend for identification methods. However, the
effects of the installation error to the two kinds of errors,
PDGEs and PIGEs, are not exactly the same, which were
necessary to analyze the difference.

In the paper, a general PDGE identification method was
proposed with only one axis driven, which can evolve into
different kinds of methods, according to the detailed structure
of the machine tool and specific measurement environment. In
addition, the effect of the installation errors on the PDGEswas
analyzed and eliminated. This paper is arranged as follows: in
Section 2, the comprehensive length change model of the
DBB is established, and the constraint condition of the DBB
is used to simplify the model and obtain the identification
matrix. In Section 3, the installation errors and the effect on
the identified results were analyzed. Series simulations were
carried out to validate the methods when considering the in-
stallation errors. In Section 4, experiments were conducted to
identify the PDGEs and further verify the proposedmethod. In
Section 5, some conclusions are obtained finally.

2 General identification model for rotary axis

2.1 Definition of position-dependent geometric errors

According to the degree of freedom of the rigid body in space,
6 geometric errors including 3 translational errors and 3 angu-
lar errors [27, 28] are enough for describing the difference
between the theoretical and actual movement of the rotary
axis. To further reflect the characteristics of geometric errors,
the standard defined two kinds of geometric errors of rotary
axis, error motions of axis rotation and location error of axis
average line [5, 6]. These two kinds of errors can be also
equivalent to PDGEs and the PIGEs according to whether
they are related to the position of the axis of motion [29].
The definitions of the PIGEs in the previous researches are
almost the same representing the deviation between the axis
average line and the theoretical axis line [6]. However, some
different understandings exist about the PDGEs. In Ref. [29],
the PIGEs were considered as constant terms of the PDGEs,
and the PIGEs were even no longer paid attention to and
distinguish sometimes [27]. While in Ref. [30, 31], the
PDGEs and PIGEs were independent. A simple diagram can
show the differences between these definitions as shown in
Fig. 2. The two definitions can both work for error identifica-
tion. In this work, it is a precondition that the PIGEs and
PDGEs are independent.

Taking a turntable as the example in Fig. 3, 6 PDGEs of the
rotary axis are defined relative to the fixed coordinate P-XYZ. 3

Fig. 1 a, b Rotary axis of special
machine tools with structure
limitation

PIGEs

PDGEs

PDGEs

PIGEs

Ref. [32][33] et alRef. [29][31] et al
Fig. 2 Difference between the definitions of PDGEs
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translational errors along X-, Y-, and Z-axis are denoted as EXC,
EYC, and EZC, while the 3 angular errors around X-, Y-, and Z-
axis are denoted as EAC, EBC, and ECC as shown in Fig. 3.

The PIGEs of the rotary axis are defined relative to another
fixed coordinate O-XYZ, and the Z-axis line is the theoretical
axis line of rotary axis as shown in Fig. 4. As the ISO defined,
the axis average line is determined by calculating the center of
least-square circle of radial error motion. It is assumed that P
and PH represent two centers of the least-square circles in XY
plane at height ofO and OH. In this way, the straight line PPH
would be the axis average line. It is well recognized that the
location errors of axis average line are directly considered and
calculated as the eccentricities of the DBB trajectories [33, 34]
in each plane. Thus, the 4 PIGEs including 2 translational
errors, EXOC and EYOC, and 2 angular errors EAOC and EBOC

are easily obtained.
Due to the independence of the PIGEs and PDGEs, the

comprehensive geometric errors, the DBB trajectories, and
the length change of the DBB can also be divided into two
parts, caused by the PIGEs and PDGEs [30]. After determin-
ing the PIGEs, the rest parts of the DBB trajectories and the
length change of DBB are entirely caused by the PDGEs.

2.2 Length changing model with single-axis driven

In the measurement of DBB, the workpiece ball center is
denoted as P0(xw,yw,zw) while the tool ball center is denoted
asQ(xt,yt,zt). The theoretical and actual motion transformation
matrix of the rotary axis Ti and T are expressed as Eq. (1) and
Eq. (2).

Ti ¼
cos cð Þ −sin cð Þ 0 0
sin cð Þ cos cð Þ 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ð1Þ

T ¼
1 −ECC EBC EXC

ECC 1 −EAC EYC

−EBC EAC 1 EZC

0 0 0 1

2
664

3
775

cos cð Þ −sin cð Þ 0 0
sin cð Þ cos cð Þ 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ð2Þ

Then, the theoretical and actual centers of the workpiece
ball in the moving process are denoted as Pi(xi,yi,zi) and
P(x,y,z), respectively, which are calculated as Eq. (3).

Pi ¼ Ti⋅ P0 1½ �T
P ¼ T ⋅ P0 1½ �T

�
ð3Þ

The deviation ΔP is expressed as Eq. (4) and Eq. (5),
where Δx, Δy, and Δz represent the deviation components
in X-, Y-, and Z-direction.

ΔP ¼ Δx Δy Δz 1½ � ¼ P−Pi ð4Þ
Δx
Δy
Δz

2
4

3
5 ¼

EXC þ z0EBC−y0cos cð ÞECC−x0sin cð ÞECC

EYC þ z0EAC−x0cos cð ÞECC−y0sin cð ÞECC

EZC−x0 cos cð ÞEBC−sin cð ÞEAC½ � þ y0 cos cð ÞEAC þ sin cð ÞEBC½ �

2
4

3
5

ð5Þ

Then, the length change of the DBB Δr is obtained
as Eq. (6).

Δr ¼ PQj j− PiQj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xtð Þ2 þ y−ytð Þ2 þ z−ztð Þ2

q
−r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi þΔx−xtð Þ2 þ yi þΔy−ytð Þ2 þ zi þΔz−ztð Þ2

q
−r

ð6Þ

C

EXC

EYC
EZCECC

EAC
EBC

X

Y
Z

Fig. 3 Definition of PDGEs [6, 32]

X

Y

Z

Y

X

r

Actual circular

trajectory

Least square circle

Axis average line

OH

O
EYOC

EXOC

EAOC
EBOC

P(xO, yO)

PH(xH, yH)

O(OH)

Fig. 4 Axis average line and PIGEs [34, 35]
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Ignoring the high order of the errors, Eq. (7) can be consid-
ered as a simplified expression of the length change of the DBB.

Δr ¼ 1

r
xi−xtð ÞΔxþ yi−ytð ÞΔyþ zi−ztð ÞΔz½ � ð7Þ

Substitute Eq. (3) and Eq. (5) into Eq. (7), and the relation-
ship between the length change Δr and the PDGEs are ob-
tained in Eq. (8).

rΔr ¼ xwcos cð Þ−ywsin cð Þ−xt½ �EXC þ xwsin cð Þ þ ywcos cð Þ−yt½ �EYC þ zw−zt½ �EZC

þ ytzw−ywztcos cð Þ−xwztsin cð Þ½ �EAC þ xwztcos cð Þ−ywztsin cð Þ−xtzw½ �EBC

þ xtywcos cð Þ−xwytcos cð Þ þ xwxtsin cð Þ þ ywytsin cð Þ½ �ECC

ð8Þ

2.3 Constraint condition

In every test trajectory, the theoretical length of the DBB
should be always equal to the standard radius r, which is
considered as the constraint condition expressed as Eq. (9)
as the expanded form.

r2 ¼
�
xi þ

�
yi þ

�
zi ¼ x2w−2zwzt þ y2w þ x2t þ y2t þ z2w þ z2t

−2xwxtcos cð Þ−2ywytcos cð Þ−2xwytsin cð Þ þ 2xtywsin cð Þ
ð9Þ

In the circular test for rotary axis, Eq. (9) should always
hold when c changes from 0 to 360 degree. (xw, yw, zw) and (xt,
yt, zt) are the initial positions of the workpiece ball and the tool
ball, which are constant values as well as the standard radius r
of the DBB. In this way, the following part of the equation
should be constant.

−2xwxtcos cð Þ−2ywytcos cð Þ−2xwytsin cð Þ þ 2xtywsin cð Þ
¼ cons ð10Þ

Change Eq. (10) into Eq. (11).

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xwxt þ ywytð Þ2 þ xwyt−xtywð Þ2

q
sin cþ arctan

xwxt þ ywyt
xwyt−xtyw

� �
¼ cons

ð11Þ

To make Eq. (11) hold, the requirement should be met as
shown in Eq. (12).

xwxt þ ywytð Þ2 þ xwyt−xtywð Þ2 ¼ 0 ð12Þ

And then we can conclude Eq. (13).

xwxt þ ywyt ¼ 0
xwyt−xtyw ¼ 0

�
ð13Þ

Back to Eq. (8), kCC denotes the coefficient of the angular
positioning error ECC. And the coefficient kCC can be simpli-
fied to 0 as shown in Eq. (14).

kCC ¼ xtywcos cð Þ−xwytcos cð Þ þ xwxtsin cð Þ þ ywytsin cð Þ
¼ xtyw−xwytð Þcos cð Þ þ xwxt þ ywytð Þsin cð Þ ¼ 0

ð14Þ

In this way, there is no relation between the length change
of the DBB and the angular positioning error ECC, which
means that the angular positioning error ECC can never be
solved with the SADM.

2.4 Identification matrix

With the standard configuration of the DBB, several radii are
optional in the measurement including 100 mm and 150 mm
[36]. Therefore, more measurement patterns are available. For
different test radius and positions of the workpiece ball and the
tool ball, Eq. (8) can be written as a matrix form as shown in
Eq. (15). E, K, and Δr represent the PDGEs matrix, identifi-
cation matrix, and the length changes matrix of the DBB,
respectively. The subscripts represent the sizes of these ma-
trixes. In detail, m represents the measurement times, and n
represents the total number of measured points in the travel of
rotary axis.

E5�n ¼ KT
m�5Km�5

� �−1
KT

m�5Δrm�n ð15Þ

All variables are calculated in matrix form in Eq. (15). The
error matrix E can be expressed as the combination of 5
PDGEs vectors including EXC, EYC, EZC, EAC, and EBC. The
length change matrixΔr is expressed as the combination ofm
times length change vectors of the DBB including Δr1, Δr2,
Δr3, ……, Δrm. The identification matrix K is expressed as
the combination of 5 vectors. These variables were expressed
as shown in Eq. (16). In addition, xw, yw, zw, xt, yt, and zt are
the coordinate vectors of the workpiece ball and tool ball in
the m times measurements. r is the vectors of test radius.
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E5�n ¼

EXC 1�nð Þ
EYC 1�nð Þ
EZC 1�nð Þ
EAC 1�nð Þ
EBC 1�nð Þ

2
66664

3
77775; Δrm�n ¼

Δr1 1�nð Þ
Δr2 1�nð Þ
Δr3 1�nð Þ

⋮
Δrm 1�nð Þ

2
66664

3
77775; K ¼

KXC 1�mð Þ
KYC 1�mð Þ
KZC 1�mð Þ
KAC 1�mð Þ
KBC 1�mð Þ

2
66664

3
77775

T

¼ 1

r

xwcos cð Þ−ywsin cð Þ−xt
xwsin cð Þ þ ywcos cð Þ−yt

zw−zt
ytzw−ywztcos cð Þ−xwztsin cð Þ
xwztcos cð Þ−ywztsin cð Þ−xtzw

2
66664

3
77775

T

ð16Þ

It is necessary to point out that the number of measure-
ments m can be greater than 5. In addition, the matrix must
be full of ranks. That is because that even though we can
install the DBB and use different test radius as many times
as possible, parts of the tests could be actually useless in some
specific patterns. Some common measurement patterns are
listed in Table 1. Ki represents the coefficients vector of the
PDGEs in the ith measurement pattern.

In the above measurement patterns, the workpiece ball and
the tool ball are installed in some special locations.
Nevertheless, many other patterns are available. Here, we just
take these 15 patterns as an example. Ideally, all the 5 PDGEs
can be identified with 5 measurement patterns. Since some
measurement patterns make the same contributions to the
PDGE identification, some of the combinations could be use-
less. It is a simple principle to judge while the combination is
feasible by calculating the rank of the identification matrix.
The number of the whole combinations in these 15 patterns
can be easily obtained as 3003 (C 5 15 = 15!/(5! × 10!)) when
using 5 measurement patterns. The rank of each combination
can be calculated. In detail, 619 combinations in these patterns
cannot be applied to PDGE identification of rotary axis since
the rank is smaller than 5 (as shown in Fig. 5).

By combining different measurement patterns, different
identification methods are obtained. Some typical methods
in previous researches are listed in Table 2. These methods
can be composed of the measurement patterns in Table 1. The
symbol (−) represents the symmetrical pattern.

3 Analysis and removal of the installation
error and PIGEs

In any situation using the DBB, the installation errors will be
the major factor that leads to the length change, even more
than the geometric errors sometimes. In the previous re-
searches on PIGE identification, many methods were pro-
posed like adjusting the tool ball with a dial indicator and
developing special devices [18, 25]. In general, the installation
errors were reduced or eliminated through hardware in most
cases. The main reason is that the installation errors had a
similar effect on the length change as the translational errors
of the PIGEs. They both kept constant during the circular test.
Therefore, it is almost impossible to avoid the installation
errors through a soft method for the PIGE identification.
However, the situation is different when it came to the

Table 1 Some common
measurement patterns Pattern r xw yw zw xt yt zt Ki (Sc = sin(c),Cc = cos(c))

1 r 0 0 0 r 0 0 [− 1 0 0 0 0]

2 r 0 0 0 0 r 0 [0 − 1 0 0 0]

3 r 0 0 0 0 0 r [0 0 − 1 0 0]

4 r 0 0 r r 0 r [− 1 0 1 0 − r]
5 r 0 0 r 0 r r [0 − 1 1 r 0]

6 r 0 0 0.6r 0.8r 0 0 [− 0.8 0 0.6 0 − 0.48r]
7 r 0 0 0.6r 0 0.8r 0 [0 − 0.8 0.6 0.48r 0]

8 1.5r 0 0 1.2r 0.9r 0 0 [− 0.6 0 0.8 0 − 0.72r]
9 1.5r 0 0 1.2r 0 0.9r 0 [0 − 0.6 0.8 0.72r 0]

10 r r 0 0 0 0 0 [Cc Sc 0 0 0]

11 r 0 r 0 0 0 0 [− Sc Cs 0 0 0]

12 r r 0 r 0 0 r [Cc Sc 0 − rSc rCc]
13 r 0 r r 0 0 r [− Sc Cc 0 − rCc − rSc]
14 r 0.8r 0 0 0 0 0.6r [0.8Cc 0.8Sc − 0.6 − 0.48rSc 0.48rCc]
15 r 0 0.8r 0 0 0 0.6r [− 0.8Sc 0.8Cc − 0.6 − 0.48rCc 0.48rSc]
…… …… ……
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PDGE identification. And that provides the possibility of
using a soft method to eliminate installation errors. Actually,
simulations in Ref. [20] had demonstrated that the installation
errors cause eccentricities and radius changes of the circular
trajectories. Based on that, the analytical relationship between
the length change and the PIGEs, PDGEs, and installation
errors is further deduced in this section.

3.1 Effect of the installation error and PIGEs

Due to the imperfect installation, the installation errors will
exist on both sides of the DBB. In this work, (δxt, δyt, δzt) and

(δxw, δyw, δzw) denote the installation errors of tool ball and
workpiece ball, respectively. For the test for a turntable, the
tool cup and the center mount are connected with the setting
ball through magnetism in the alignment process in a vertical
plane. Therefore, the installation errors in Z-direction can
be directly ignored. And then centers of workpiece ball and
tool ball are re-expressed as P0(xw + δxw, yw + δyw, zw) and
Q0(xt + δxt, yt + δyt, zt). Meanwhile, considering the PIGEs,
then Eq. (2) is repressed as Eq. (17). Correspondingly, the
deviation components in X-, Y-, and Z-direction can be
modified as Eq. (18).

T ¼
1 −ECC EBC þ EBOC EXC þ EXOC

ECC 1 −EAC−EAOC EYC þ EYOC

−EBC−EBOC EAC þ EAOC 1 0
0 0 0 1

2
664

3
775

cos cð Þ −sin cð Þ 0 0
sin cð Þ cos cð Þ 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ð17Þ

Δx
Δy
Δz

2
4

3
5 ¼

EXC þ zwEBC−ywcos cð ÞECC−xwsin cð ÞECC

EYC−zwEAC þ xwcos cð ÞECC−ywsin cð ÞECC

EZC þ xw sin cð ÞEAC−cos cð ÞEBC½ � þ yw cos cð ÞEAC þ sin cð ÞEBC½ �

2
4

3
5

þ
EXOC þ EBOCzw
EYOC−EAOCzW

xw sin cð ÞEAC−cos cð ÞEBOC½ � þ yw cos cð ÞEAOC þ sin cð ÞEBoC½ �

2
4

3
5

ð18Þ

Then, the length change of the DBB ΔR considering the
installation error of tool ball is obtained as Eq. (19).

rank(K)=3, Num=15

K1 K2 K3 K10 K11

K1 K2 K10 K11 K14

K3 K6 K7 K14 K15

……

rank(K)=4, Num=604

K1 K2 K5 K7 K11

K1 K3 K5 K8 K12

K3 K4 K7 K9 K12

K3 K11 K13 K14 K15

……

rank(K)=5, Num=2384

K1 K2 K3 K4 K5

K1 K2 K3 K5 K12

K1 K5 K8 K9 K13

K3 K6 K7 K10 K13

K4 K6 K7 K11 K15

K7 K9 K10 K11 K14

……

Fig. 5 Combinations of the
measurement patterns

Table 2 Typical identification in
reference Patterns Reference Description

1, 2, 3, 4, 5 Lee [17, 37] Similar

Fu [15] First 5 patterns in Ref. [15]

3, 4, 5, 4(−), 5(−) Zargarbashi [20, 21] Similar

1, 2, 3, 14, 15 Xiang [10] Similar

14, 15, 15(−) Ding [19] Carried out twice with two radius
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ΔR ¼ PQj j− PiQj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi þ Δx−xt−δxtð Þ2 þ yi þ Δy−yt−δyt

	 
2 þ zi þ Δz−ztð Þ2
q

−r

¼ 1

r
xi−xtð Þ Δx−δxtð Þ þ yi−ytð Þ Δy−δyt

	 
þ zi−ztð ÞΔz� � ð19Þ

Substitute Eq. (18) into Eq. (19), and the relationship
between the length change ΔR and the PDGEs is ob-
tained in Eq. (20).

rΔR ¼ xwcos cð Þ−ywsin cð Þ−xt½ � EXC þ EXOC−δxtð Þ
þ xwsin cð Þ þ ywcos cð Þ−yt½ � EYC þ EYOC−δyt

	 

þ zw−zt½ �EZC

þ ytzw−ywztcos cð Þ−xwztsin cð Þ½ � EAC þ EAOCð Þ
þ xwztcos cð Þ−ywztsin cð Þ−xtzw½ � EBC þ EBOCð Þ
þ xtywcos cð Þ−xwytcos cð Þ þ xwxtsin cð Þ þ ywytsin cð Þ½ �ECC

þ xw−xtcos cð Þ−ytsin cð Þ½ �δxw þ yw þ xtsin cð Þ−ytcos cð Þ½ �δyw

ð20Þ

Combining the expression of the length change of DBBΔr
caused by the PDGEs, the Eq. (20) was simplified as Eq. (21).

rΔR ¼ rΔr þ δ0 þ δccos cð Þ þ δssin cð Þ
δ0 ¼ δxwxw þ δywyw þ δxtxt þ δytyt−EXOCxt−EYOCyt þ EAOCytzw−EBOCxtzw
δc ¼ −δxwxt−δywyt−δxtxw−δytyw þ EXOCxw þ EYOCyw−EAOCywzt þ EBOCxwzt
δs ¼ −δxwyt þ δywxt þ δxtyw−δytxw−EXOCyw þ EXOCxw−EAOCxwzt−EBOCywzt

8>><
>>: ð21Þ

For a full circle, the following relationship exists as Eq. (22).

∫2π0 sinθcosθdθ ¼ ∫2π0 sinθdθ ¼ ∫2π0 cosθdθ

∫2π0 sin2θdθ ¼ ∫2π0 cos2θdθ ¼ π

(
ð22Þ

In Section 2.1, we defined the axis average line and the
PIGEs. It was recognized that the PIGEs lead to the eccentric-
ities of the DBB trajectories [33, 34]. When removing the
least-square circle caused by the PIGEs, the PDGEs were

the rest part of the geometric errors, also described as the
oscillation in Ref. [30]. Therefore, it can be considered that
the PDGEs do not contribute to the eccentricities and the ra-
dius change of the least-square circle as expressed in Eq. (23).

∫2π0 Δrdc ¼ ∫2π0 Δrcos cð Þdc ¼ ∫2π0 Δrsin cð Þdc ¼ 0 ð23Þ

Therefore, Eq. (24) is obtained.

1

π
∫2π0 ΔRcoscdc ¼ 1

π
∫2π0 Δr þ 1

r
δ0 þ 1

r
δccos cð Þ þ 1

r
δssin cð Þ

� �
coscdc ¼ 1

r
δc

1

π
∫2π0 ΔRsincdc ¼ 1

π
∫2π0 Δr þ 1

r
δ0 þ 1

r
δccos cð Þ þ 1

r
δssin cð Þ

� �
sincdc ¼ 1

r
δs

1

2π
∫2π0 ΔRdc ¼ 1

2π
∫2π0 Δr þ 1

r
δ0 þ 1

r
δccos cð Þ þ 1

r
δssin cð Þ

� �
dc ¼ 1

r
δ0

8>>>>>><
>>>>>>:

ð24Þ

Then, the length change caused by the PDGEs is obtained
as Eq. (25).

Δr ¼ ΔR−
cosc
π

∫2π0 ΔRcoscdc−
sinc
π

∫2π0 ΔRsincdc−
1

2π
∫2π0 ΔRdc ð25Þ

It is a superior characteristic that the effects of the installa-
tion errors and PIGEs on the PDGE identification can be re-
moved through Eq. (25). This will greatly reduce the difficulty
of identification process, especially for those machine tools
whose structures are different from the standard machine
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center, like the gear grinding machine. There are no tool
holders in these machine tools, which are used for installing
the tool cup of the DBB. And Eq. (25) allows that the magnet
base can be used for the installation of the tool cup with ig-
noring the theoretical center axis of the rotary axis.

3.2 Simulation

To verify the proposedmethodwhen considering the installation
errors, a series of simulations were carried out. The PDGEs,
PIGEs, and the installation errors were previously set to some
values, and then, the length change of the DBB was obtained

through Eq. (25). In detail, we used three types of forms to
describe the PDGEs, random form, polynomial form, and
Fourier series form. According to the definition of the PDGEs
and PIGEs, the modification was needed for the PDGEs to
guarantee that the PDGEs would not lead to the change of the
eccentricities and the radius of the least-square circle. For con-
venience, we can directly use the following Eq. (26) to ensure
that. E(pre) represents the pre-set PDGEs with the random form,
the form, and Fourier series form, while E(set) represents the
PDGEs processed by Eq. (26), and E(cal) represents the PDGEs
calculated with the proposed method.

E setð Þ ¼ E preð Þ− cosc
π

∫2π0 E preð Þcoscdc− sinc
π

∫2π0 E preð Þsincdc− 1

2π
∫2π0 E preð Þdc ð26Þ

The measurement patterns 1–5 were used in the simulation.
The 4 PIGEs, EXOC, EYOC, EAOC, and EBOC, were set 15 μm,
12 μm, 80 μrad, and − 90 μrad. To be more general, we
assume that the installation errors are different in every mea-
surement pattern as shown in Table 3, even though the instal-
lation times can be less than 5 in actual operation [10, 17] [20].
Moreover, the amplitudes of the random noises were set as 5%

of the amplitudes of the length change Δr and ΔR. The flow
chart and results of the simulation were presented in Figs. 6, 7,
8, and 9. The S1,C1, S2,C2, S3, and C3 represent sin(c), cos(c),
sin(2c), cos(2c), sin(3c), and cos(3c), respectively, where c
denotes the position of the rotary axis.

Even though different forms of the PDGEs were set in the
simulation, the proposed method can always achieve high

Table 3 Installation errors set in
simulation (μm) Pattern Installation errors PIGEs PDGEs Noise

δxw δxw δxt δyt EXOC EYOC EAOC EBOC

1 15 25 34 16 15 12 80 − 90 Random

Polynomial

Fourier series

5%
2 18 32 15 − 10
3 12 16 − 7 19

4 32 − 28 14 10

5 22 − 31 14 16

Pre-setting PDGEs E(pre)
(Random, Polynomial, Fourier series)

Setting installation errors

(Five groups in Table 3 )

Preprocessing PDGEs E(set)
( using Eq. (26)) 

Calculating comprehensive errors Δx, Δy, Δz
(using Eq. (18))

Calculating length change of DBB ΔR
(using Eq. (19))

Adding noise 1 (5% of ΔR)

(with random numbers)

Calculating PDGEs E(cal) 
(using Eq. (15))

Removing effect of PIGEs and installation 

errors Δr
(using Eq. (25))

Setting PIGEs

(EXOC, EYOC, EAOC, EBOC in Table 3) 

Adding noise 2 (5% of Δr)
(with random numbers)

δxw, δyw δxt, δyt

Fig. 6 Flow chart of simulation
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Fig. 7 Simulation results of PDGEs with random values, a EXC, b EYC, c EZC, d EAC, and e EBC
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Fig. 8 Simulation results of PDGEs with polynomial values, a EXC, b EYC, c EZC, d EAC, and e EBC

1180 Int J Adv Manuf Technol (2021) 112:1171–1191



accuracy. However, when comparing the identified PDGEs
with the pre-set PDGEs, the deviation was very distinct. In
addition, these deviations were different in the three simula-
tions. In the first simulation, PDGEs were random values and
the trend of all the identified PDGEs coincided with the pre-
set PDGEs. When the mean value of the pre-set PDGEs was
close to 0, the identified PDGEs can even coincide with pre-
set PDGEs very well. In the second and third simulations, the
PDGEs with polynomial form and Fourier series form and the
trend of the identified PDGEs were obviously different from
the pre-set PDGEs as well as the absolute values. For the
reason of these differences in the three simulations, it is that
some of the ingredients were removed from the pre-set PDGE
due to the definition of the PDGEs. There was no component
with a period of 2π in the PDGEs with random form, and it
equaled to that the pre-set PDGEs did not lead to the eccen-
tricities of the DBB trajectories. Therefore, the process as Eq.
(26) did have no effect on the trend of the PDGE curve but
only the absolute value. As a result, the set PDGE curve was
only translated relative to pre-set PDGE curve. When the
mean value of the pre-set PDGEs was close to 0, the pre-set
PDGEs would be exactly equivalent to the PDGEs, which
were evenly distributed on both sides of 0 on the whole.

To sum up, the series simulations indicated that the pro-
posed methods could identify the PDGEs with high accuracy
when considering the installation errors. It greatly decreased
the requirement of the installation of the DBB.

4 Case study

4.1 Measurement patterns and identification of
PDGEs

According to the general model, there are many combinations
of measurement patterns which can be used for the PDGE
identification. In this work, we take the turntable of a small-
size 5-axis machine tool as the research object to perform the
error identification. The installation of DBB is limited because
the diameter of the turntable is small. The workpiece ball
cannot be installed at a distance of standard length of the
DBB from the center axis line. Even if the magnet base is used
to extend the area of the turntable, there would be an interfer-
ence problem as shown in Fig. 10. On the other hand, it is
necessary to minimize the number of installations as many as
possible to save time. For convenience, we chose to install the
workpiece ball on the center axis for the PDGE identification.

For the turntable, the 5 PDGEs can be identified with 5
times measurements through twice installations. However, to
compare the results of different combinations, another 5 tests
were further carried out as the supplements. The detailed pat-
terns were listed in Table 4. The schematic diagrams of these
measurement patterns were presented in Fig. 11.

It is necessary to point out that origin coordinate in Table 4
is not the actual absolute origin of C-axis coordinate system
but a relative one. In fact, to obtain the absolute coordinate
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Fig. 9 Simulation results of PDGEs with Fourier values, a EXC, b EYC, c EZC, d EAC, and e EBC
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system of C-axis is not easy. Even though the CNC system
provides the simple and relatively automated calibration and
compensation function for the PIGEs as shown in Fig. 12, it is
tough work to accurately install the DBB in special positions.
This work focuses on the identification of PDGEs. In
Section 3, it has been proved that effect of the PIGEs and
the installation errors can be reduced to a very small extent.
In addition, for the identification and evaluation of PDGEs, it
does not make much difference as long as all the work is
carried out in this relative coordinate system throughout.
Therefore, we used a relative C-axis coordinate system for
the identification and evaluation of PDGEs instead.
However, when it comes to the compensation for all the geo-
metric errors including the PIGEs and PDGEs, the absolute
coordinate system is necessarily needed.

Before the test, the warming up process was conducted for
the machine tool. The DBB was installed carefully with the
proposed method. In order to adapt different types of machine
tools especially for those without tool holders, we used the
center mount to install the tool ball instead of the tool holder
and tool cup and used a magnet base and a tool cup to install
the workpiece ball. Although it has been proved that

subsequent processing as Eq. (23) can eliminate the effect of
the installation errors, too large installation errors will lead to
the length change out of the measurement range of the DBB.
In this experiment, we developed a simple software, which
can display the length change of the dial indicator and calcu-
late the eccentricity of the whole circular trajectory. It can help
adjust the position of the workpiece ball as shown in
Fig. 13a, b. Then, move the center mount above the workpiece
ball and connect the setting ball and the center mount with
magnetism. Finally, the center mount is fixed (as shown in
Fig. 13c). It should be emphasized that this step is not enough
to remove the installation errors, but to reduce the installation
errors to make the length change of DBB within its measure-
ment range, from − 1 to 1 mm (Renishaw QC20-W).

The 10 measurements were carried out with 3 times instal-
lations. In the first installation, measurement patterns 1, 2, and
3 were performed as shown in Fig. 14a–c. The length changes
were denoted as Δr1, Δr2, and Δr3.

In the second installation, measurement patterns 4, 5, 6, and
7 were performed as shown in Fig. 15a–d. The length changes
were denoted as Δr4, Δr5, Δr6, and Δr7.

In the third installation, measurement patterns 8, 9, and 10
were performed as shown in Fig. 16a–c. The length changes
were denoted as Δr8, Δr9, and Δr10.

Using these 10 measurement patterns, in total 364 (364 =
80 + 130 + 100 + 43 + 11) combinations are available for the
PDGE identification with the rank of the identification matrix
equals to 5 as shown in Table 5. As the number of the patterns
used increases, the proportion of matrix with full rank gets
bigger. It is widely recognized that the more measured data
used, the more accuracy will be achieved. In the work, the
PDGEs were directly identified with a total of 10 measure-
ment patterns used. The identified PDGEs including EXC, EYC,
EZC, EAC, and EBC were shown in Fig. 17. As previously
defined, the identified PDGEs are uniformly distributed
around 0 overall.

Table 4 Total of 10 measurement patterns with 3 times installation

Installation Pattern xw yw zw xt yt zt Unit

#1 1 0 0 0 100.000 0 0 mm

2 0 0 0 0 100.000 0 mm

3 0 0 0 0 0 100.000 mm

#2 4 0 0 32.200 100.000 0 32.200 mm

5 0 0 32.200 0 100.000 32.000 mm

6 0 0 32.200 94.674 0 0 mm

7 0 0 32.200 0 94.674 0 mm

#3 8 0 0 53.589 100.000 0 53.589 mm

9 0 0 53.589 0 100.000 53.589 mm

10 0 0 53.589 0 0 153.589 mm

Fig. 10 Structure limitation of the rotary axis
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4.2 Prediction experiments

As we mentioned early, there would be a solution if the rank
of the identification matrix were 5, instead of considering how
many the measurement patterns were used. It would also work
theoretically if we used parts of the patterns as long as the rank
of the identification matrix is 5. However, the accuracies of
these identified results were different. The full rank of the
matrix can only guarantee the existence of solutions, but it

cannot guarantee the accuracy or correctness of solutions
since the matrix could be ill-conditioned. To verify the cor-
rectness of the identified results, it is available to predict the
length change of DBB.

Generally, the 10 measurement patterns can be divided in
three types according to the installations or the heights of the
workpiece ball. Therefore, 3 prediction experiments were per-
formed, using the PDGEs from two installations to predict the
length change from the third installation. For example, the

Fig. 12 Calibration and
compensation function for PIGEs
in CNC system (http://www.
huazhongcnc.com/portal/list/
index/cid/20.html)

Fig. 13 Installation of the workpiece ball and the tool ball

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Pattern 7Pattern 6 Pattern 8 Pattern 9 Pattern 10

Fig. 11 10 measurement patterns for the rotary axis
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PDGEs from installations #1 and #2 were used to predict the
length change of the DBB from installation #3. In addition, the
translational error EZC is very small according to the previous
identified results, so the length changes in patterns 3 and 10
were not used for comparison. In detail, the three prediction
experiments were set as shown in Table 6. As a result, three
prediction results were shown in Figs. 18, 19 and 20.

In general, the length change trend can be predicted in each
prediction experiment, while the prediction accuracy is quite

different. Among the three groups of the prediction experi-
ments, it is obvious that the second group can achieve a better
accuracy to predict the length change, Δr4, Δr5, Δr6, and
Δr7, when compared with the others. The maximum residual
error is almost less than 1 μm. While in the other prediction
experiments, the maximum residual error can achieve 2 μm in
Figs. 18a and 20a. It is large enough considering that the
maximum length change is less than 4 μm, even though these
large residuals do not occur many times in the whole test. For

Fig. 14 Measurement patterns 1, 2, and 3 in the first installation

Fig. 15 Measurement patterns 4,
5, 6, and 7 in the second
installation

Fig. 16 Measurement patterns 8, 9, and 10 in the third installation
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the reason, it is that the second prediction experiment has
some advantages compared to the other two. Intuitively, the
second prediction experiment is using data from two sides to
predict the data in the middle, while the first and third predic-
tion experiment are using data from one side to predict data on
the other side. Figure 21 briefly shows the difference between
these three prediction experiments.

In addition, it was noticed that these large residuals are
more likely to appear at the inflection of the length change
curve such as 90 degrees, 180 degrees, and 270 degrees. The
main reason is the identification matrix is ill-conditioned even
though the rank is full. The ill-conditioned matrix is sensitive
in the calculation process, which would lead to a big change of
output even with a little change of the input. At these inflec-
tion positions, the theoretical coordinates of the workpiece

ball changed obviously, from positive to negative or from
negative to positive, which would lead to the fluctuations of
the identified results.

4.3 Improvement based on condition number

With these 10 measurement patterns, there were 364 com-
binations, which can be used for the identification process.
Different combinations will lead to different identification
results. In particular, the ill-conditioned matrix may direct-
ly lead to large deviations of the identified PDGEs. For
simplification, we mainly focused on the combination con-
taining 5 patterns.

As shown in Table 5, 80 combinations are available using 5
measurement patterns. The identification matrix of these com-
binations all satisfied the full rank condition. Use each com-
bination to identify the PDGEs, and 80 groups of the PDGEs
can be obtained. Taking one PDGEs, EXC as an example, the
distribution interval was shown in Fig. 22. In addition, the
identified PDGEs with a total of 10 measurement patterns
were considered as the standard reference value shown in
Fig. 22.

The distribution diagram was intuitive to show the possible
values of the identified PDGEs using these 80 combinations.
The distribution interval reflects the trend of the standard val-
ue overall. However, the width of the distribution intervals
was very large. That means a large residual error would appear

Table 5 Numbers of combinations with different ranks of the 10
measurement patterns

Patterns used Rank = 3 Rank = 4 Rank = 5 Total combinations

5 22 150 80 252

6 3 77 130 210

7 0 20 100 120

8 0 2 43 45

9 0 0 10 10

10 0 0 1 1
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Fig. 17 Identified PDGEs using a
total of 10 measurement patterns
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if the improper combination with ill-conditioned matrix was
used for the PDGE identification.

To evaluate the degree of the ill-conditioned matrix, the
condition number was used. Normally, the bigger the condi-
tion number is, the more ill-conditioned the matrix is.

However, there is no clear boundary between the ill-
conditioned matrix and the well-conditioned matrix.
Besides, the ill-conditioned matrix is relative. There is no
guarantee that higher accuracy can be always achieved when
the identification matrix is used with a smaller condition

Table 6 Prediction experiments
setting Prediction Identification patterns Prediction patterns Results

1 (#1, #2→#3) 1, 2, 3, 4, 5, 6, 7 8, 9 Fig. 18a, b

2 (#1, #3→#2) 1, 2, 3, 8, 9, 10 4, 5, 6, 7 Fig. 19a–d

3 (#2, #3→#1) 4, 5, 6, 7, 8, 9, 10 1, 2 Fig. 20a, b
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Fig. 18 Prediction results of
length change, a Δr8 and b Δr9

Δr4 measured Δr4 predicted(a)

Position /degree

L
en

g
th

 c
h

an
g

e
/m

Δr5 measured Δr5 predicted(b)

Position /degree

L
en

g
th

 c
h

an
g

e
/m

Δr6 measured Δr6 predicted(c)

Position /degree

L
en

g
th

 c
h

an
g

e
/m

Δr7 measured Δr7 predicted(d)

Position /degree

L
en

g
th

 c
h

an
g

e
/m

Fig. 19 Prediction results of length change, a Δr4, b Δr5, c Δr6, and d Δr7
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Fig. 20 Prediction results of
length change, a Δr1 and b Δr2
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number. To show the relationship between condition number
and identification accuracy, the standard deviation of the
PDGEs is used as an indicator.

There are 80 practicable combinations with 5 patterns. The
standard deviations of identified PDGEs of these 80 combi-
nations, σ(EXC), σ(EYC), σ(EZC), σ(EAC), and σ(EBC), were
calculated and shown in Fig. 23a. And the detailed principle
of the standard deviations calculated can be expressed as fol-
lows, where E(cal) denotes the PDGEs calculated with current
combination, and E(ref) denotes the referenced PDGEs calcu-
lated with the combination containing total 10 measurement
patterns, and N denotes the sampling numbers of the whole
circle, which is set as 360 in this work.

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
E calð Þ−E refð Þ½ �2

s
ð27Þ

It should be pointed out that the condition number distrib-
uted on the abscissa from small to large, and the abscissa only
represents the sample number instead of the detailed value of
the condition number. As a result, it is more likely that a small
standard deviation can be achieved when the condition num-
ber is small, but not absolutely. On one hand, using the iden-
tification matrix with a big condition number can also get high
accuracy. On the other hand, using the identification matrix
with a small condition number can also get a low accuracy
sometimes, especially for the translational error EZC. In es-
sence, the accuracy of the solution is not only affected by

the identification matrix, but also affected by the input, that
is, the length change of the DBB. The length change in Z-
direction is much smaller than those in other directions. This
increased the instability of the solution. The translational EZC

is much related to the length change in Z-direction and more
easily affected than other PDGEs in the identification process.

To further show the relationship between the condition
number and the identification accuracy, the standard devia-
tions of PDGEs in other combinations using 6, 7, and 8 pat-
terns were also shown in Fig. 23b–d. The same rules are
shown in these results. Smaller condition numbers are more
likely to correspond to smaller standard deviations. In addi-
tion, as the number of measurement patterns increases, the
probability of obtaining a smaller standard deviation in-
creases. On one hand, with the increase of the number of
measurement patterns used, the identification condition is
closer to the reference identification condition (using 10 mea-
surement patterns). On the other hand, the condition number
of the identification matrix in these kinds of combinations
decreased overall. In detail, the mean values of the con-
dition numbers were 94.8, 92.7, 87.9, and 80.7, respec-
tively. The identification matrix was more and more well-
conditioned overall.

From the analysis of the above results, we can conclude
that it is optional to improve the identification accuracy by
increasing the number of measurement patterns. Meanwhile,
the pattern combination with a small condition number is
more practical. In this way, when using 5 measurement pat-
terns, we can choose the combinations with the smallest
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Fig. 21 Different among the three
prediction experiments
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Fig. 22 Distribution intervals of identified PDGEs with 5 patterns
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condition number, which is actually patterns 1, 2, 3, 8, and 9 in
this work. Then, the PDGEs are obtained. In addition, the
comparison with the referred PDGEs is shown in Fig. 24.
The identified PDGEs using the improved combination
are very close to the referred identified PDGEs using a
total of 10 measurement patterns. That means only 5 mea-
surement patterns would be enough to achieve a high iden-
tification accuracy.

In Section 4, 10 measurement patterns were used for the
identification of a small-size rotary axis. Three hundred sixty-
four combinations using different patterns can be available to

obtain a solution as long as the rank of the identification ma-
trix is 5. However, the correctness and accuracy of the solution
cannot be guaranteed. The prediction experiments indicated
that the identification accuracy of those combinations is quite
different. Generally, it is more likely to achieve high accuracy
when the condition number of identification matrix is small.
However, this rule is not absolute, and an acceptable accuracy
would also be achieved by using the identification matrix with
a big condition number. In general, a small number of condi-
tions mean a higher probability to obtain a high identification
accuracy. Therefore, an improved method was proposed by
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Fig. 23 Error variation trend of the PDGEs with the condition number increasing
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choosing the combination with a small condition number. In
this way, the least measurement patterns would be enough to
achieve a relatively high identification accuracy.

In addition, for further improving the identification and
prediction accuracy for the PDGEs, some researchers identi-
fied the angular errors and translational errors separately [30].
This method can avoid the big condition number problem
dramatically which means high accuracy is more likely to be
achieved. However, this actually limits some measurement
patterns. For example, when only identifying the translational
PDGEs, the angular PDGEs should not be involved in the
length change of DBB. As the simplest combinations, mea-
surement patterns 1, 2, and 3 in Table 1 were necessarily
needed to realize the identification for translational PDGEs.
It is also an option to eliminate the effect of angular PDGEs by
combining similar measurement patterns like using patterns 6
and 8 in Table 1 to eliminate the angular error EBC. It is
undeniable that a separate identification method can improve
the identification accuracy, but in this method, special mea-
surement patterns are necessarily needed, which limits the
generality. Considering the prediction accuracy of the pro-
posed method is acceptable as shown in Fig. 24, the separate
identification method was no longer used and compared in

this work. When higher accuracy is needed, the separate iden-
tification method can be considered.

5 Conclusion

In this work, a general identification method for the PDGEs of
the rotary axis with one axis driven was proposed, which can
evolve into different identification methods according to the
special structure of the machine tool.

(1) The comprehensive error model considering the PDGEs
was established and simplified through the constraint
condition. Being different from common measurement
pattern-identification model principle, the measurement
patterns in the proposed method were determined ac-
cording to special structure of the rotary axis and the
installation condition, which makes the identification
method more general.

(2) The effect of the installation error was analyzed and re-
moved completely. A series of the simulations were car-
ried out with 3 types of input PDGEs, and the results
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Fig. 24 Comparison between the identified PDGEs using improved 5 patterns and the referred PDGEs
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indicated that the proposed method can achieve a high
identification accuracy when the installation errors exist.

(3) According to the structure of a small-size turntable, 10
measurement patterns were designed for the PDGE iden-
tification. In total, 364 combinations with a full rank can
be available. The combination containing 10 measure-
ment patterns was used for the PDGE identification.

(4) It is more likely that the identificationmatrix with a small
condition number can achieve a high identification accu-
racy. Based on that, an improved method was proposed
with only 5 measurement patterns by choosing the iden-
tification matrix with the smallest condition number. The
results show that the selected 5 patterns can achieve the
same performance as a total of 10 patterns.
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